Articles | Volume 16, issue 3
https://doi.org/10.5194/bg-16-797-2019
https://doi.org/10.5194/bg-16-797-2019
Research article
 | 
13 Feb 2019
Research article |  | 13 Feb 2019

Variations in the summer oceanic pCO2 and carbon sink in Prydz Bay using the self-organizing map analysis approach

Suqing Xu, Keyhong Park, Yanmin Wang, Liqi Chen, Di Qi, and Bingrui Li

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (23 Oct 2018) by Christoph Heinze
AR by Anna Mirena Feist-Polner on behalf of the Authors (16 Nov 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (27 Nov 2018) by Christoph Heinze
RR by Anonymous Referee #1 (10 Dec 2018)
ED: Publish subject to minor revisions (review by editor) (12 Dec 2018) by Christoph Heinze
AR by Anna Wenzel on behalf of the Authors (04 Jan 2019)  Author's response    Manuscript
ED: Publish as is (14 Jan 2019) by Christoph Heinze
Download
Short summary
In this study we applied the self-organizing map (SOM) method to estimate the oceanic pCO2 in Prydz Bay derived from its main controlling factors. The RMSE of the SOM-derived pCO2 was 22.14 µatm compared to SOCAT datasets. Our results showed that the monthly averaged uptake of atmospheric CO2 for February 2015 was 23.57±6.36 TgC. Strong potential anthropogenic CO2 uptake in the shelf region will enhance ocean acidification (OA) in the deep water of Prydz Bay and subsequently affect deep OA.
Altmetrics
Final-revised paper
Preprint