Articles | Volume 16, issue 4
https://doi.org/10.5194/bg-16-847-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-847-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: a comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits
Department of Ecology and Evolutionary Biology, Princeton University,
Princeton, NJ 08544, USA
Helene C. Muller-Landau
Smithsonian Tropical Research Institute, 0843-03092, Balboa,
Ancón, Panama
S. Joseph Wright
Smithsonian Tropical Research Institute, 0843-03092, Balboa,
Ancón, Panama
Stephanie A. Bohlman
Smithsonian Tropical Research Institute, 0843-03092, Balboa,
Ancón, Panama
School of Forest Resources and Conservation, University of Florida,
Gainesville, FL 32611, USA
Stephen W. Pacala
Department of Ecology and Evolutionary Biology, Princeton University,
Princeton, NJ 08544, USA
Related authors
No articles found.
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022, https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Trina Merrick, Stephanie Pau, Matteo Detto, Eben N. Broadbent, Stephanie A. Bohlman, Christopher J. Still, and Angelica M. Almeyda Zambrano
Biogeosciences, 18, 6077–6091, https://doi.org/10.5194/bg-18-6077-2021, https://doi.org/10.5194/bg-18-6077-2021, 2021
Short summary
Short summary
Remote sensing measurements of forest structure promise to improve monitoring of tropical forest health. We investigated drone-based vegetation measurements' abilities to capture different structural and functional elements of a tropical forest. We found that emerging vegetation indices captured greater variability than traditional indices and one new index trends with daily change in carbon flux. These new tools can help improve understanding of tropical forest structure and function.
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021, https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Short summary
Representing biological nitrogen fixation (BNF) is an important challenge for land models. We present a novel representation of BNF and updated nitrogen cycling in a land model. It includes a representation of asymbiotic BNF by soil microbes and the competitive dynamics between nitrogen-fixing and non-fixing plants. It improves estimations of major carbon and nitrogen pools and fluxes and their temporal dynamics in comparison to previous representations of BNF in land models.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Ensheng Weng, Ray Dybzinski, Caroline E. Farrior, and Stephen W. Pacala
Biogeosciences, 16, 4577–4599, https://doi.org/10.5194/bg-16-4577-2019, https://doi.org/10.5194/bg-16-4577-2019, 2019
Short summary
Short summary
Our study illustrates that the competition processes for light and soil resources in a game-theoretic vegetation demographic model can substantially change the prediction of the contribution of ecosystems to the global carbon cycle. The model that tracks the competitive allocation strategies can generate significantly different ecosystem-level predictions than those with fixed allocation strategies.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Sam S. Rabin, Daniel S. Ward, Sergey L. Malyshev, Brian I. Magi, Elena Shevliakova, and Stephen W. Pacala
Geosci. Model Dev., 11, 815–842, https://doi.org/10.5194/gmd-11-815-2018, https://doi.org/10.5194/gmd-11-815-2018, 2018
Short summary
Short summary
This paper describes a new fire model that for the first time simulates how fire is used on cropland and pasture in the modern day, as imposed using a recently developed dataset. A non-agricultural fire module is fit algorithmically against non-agricultural burned area. Fitting improves performance and the general global pattern of fire is represented, but some gaps remain. The novel separation of agricultural burning from other fire may necessitate new design thinking in the future.
M. Réjou-Méchain, H. C. Muller-Landau, M. Detto, S. C. Thomas, T. Le Toan, S. S. Saatchi, J. S. Barreto-Silva, N. A. Bourg, S. Bunyavejchewin, N. Butt, W. Y. Brockelman, M. Cao, D. Cárdenas, J.-M. Chiang, G. B. Chuyong, K. Clay, R. Condit, H. S. Dattaraja, S. J. Davies, A. Duque, S. Esufali, C. Ewango, R. H. S. Fernando, C. D. Fletcher, I. A. U. N. Gunatilleke, Z. Hao, K. E. Harms, T. B. Hart, B. Hérault, R. W. Howe, S. P. Hubbell, D. J. Johnson, D. Kenfack, A. J. Larson, L. Lin, Y. Lin, J. A. Lutz, J.-R. Makana, Y. Malhi, T. R. Marthews, R. W. McEwan, S. M. McMahon, W. J. McShea, R. Muscarella, A. Nathalang, N. S. M. Noor, C. J. Nytch, A. A. Oliveira, R. P. Phillips, N. Pongpattananurak, R. Punchi-Manage, R. Salim, J. Schurman, R. Sukumar, H. S. Suresh, U. Suwanvecho, D. W. Thomas, J. Thompson, M. Uríarte, R. Valencia, A. Vicentini, A. T. Wolf, S. Yap, Z. Yuan, C. E. Zartman, J. K. Zimmerman, and J. Chave
Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, https://doi.org/10.5194/bg-11-6827-2014, 2014
Short summary
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
Cited articles
Adler, P. B., Salguero-Gómez, R., Compagnoni, A., Hsu, J. S., Ray-Mukherjee, J., Mbeau-Ache, C., and Franco, M: Functional
traits explain variation in plant life history strategies, P. Natl. Acad. Sci. USA, 111, 740–745, https://doi.org/10.1073/pnas.1315179111, 2014.
Aiba, S.-I. and Kitayama, K.: Structure, composition and species diversity
in an altitude-substrate matrix of rain forest tree communities on Mount
Kinabalu, Borneo, Plant Ecol., 140, 139–157, https://doi.org/10.1023/a:1009710618040, 1999.
Anten, N. P. R. and Schieving, F.: The Role of Wood Mass Density and
Mechanical Constraints in the Economy of Tree Architecture, Am. Nat., 175,
250–260, https://doi.org/10.1086/649581, 2010.
Antin, C., Pélissier, R., Vincent, G., and Couteron, P: Crown allometries are
less responsive than stem allometry to tree size and habitat variations in
an Indian monsoon forest, Trees, 27, 1485–1495, https://doi.org/10.1007/s00468-013-0896-7,
2013.
Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J.,
Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bradford, M., Brienen, R.
J. W., Davies, S., Drescher, M., Higuchi, N., Hilbert, D. W., Hladik, A.,
Iida, Y., Salim, K. A., Kassim, A. R., King, D. A., Lopez-Gonzalez, G.,
Metcalfe, D., Nilus, R., Peh, K. S. H., Reitsma, J. M., Sonké, B., Taedoumg,
H., Tan, S., White, L., Wöll, H., and Lewis, S. L: What controls tropical
forest architecture? Testing environmental, structural and floristic drivers,
Global Ecol. Biogeogr., 21, 1179–1190,
https://doi.org/10.1111/j.1466-8238.2012.00778.x, 2012.
Hubbell, S. P., Condit, R., and Foster, R. B.:Barro Colorado Forest Census Plot Data, http://ctfs.si.edu/webatlas/datasets/bci (last access: 20 January 2018), 2005.
Blanchard, E., Birnbaum, P., Ibanez, T., Boutreux, T., Antin, C., Ploton, P.,
Vincent, G., Pouteau, R., Vandrot, H., Hequet, V., Barbier, N., Droissart,
V., Sonké, B., Texier, N., Kamdem, N. G., Zebaze, D., Libalah, M., and
Couteron, P: Contrasted allometries between stem diameter, crown area, and
tree height in five tropical biogeographic areas, Trees, 30, 1953–1968,
https://doi.org/10.1007/s00468-016-1424-3, 2016.
Bohlman, S. and O'Brien, S.: Allometry, Adult Stature and Regeneration
Requirement of 65 Tree Species on Barro Colorado Island, Panama, J. Trop.
Ecol., 22, 123–136, 2006.
Bohlman, S. and Pacala, S.: A forest structure model that determines crown
layers and partitions growth and mortality rates for landscape-scale
applications of tropical forests, J. Ecol., 100, 508–518,
https://doi.org/10.1111/j.1365-2745.2011.01935.x, 2012.
Bonan, G. B.: Ecological Climatology, Concepts and Applications, 2nd
Edition, Cambridge University Press, New York, USA, 2008.
Brown, S.: Estimating Biomass and Biomass Change of Tropical Forests: A
Primer, FAO – Forestry Paper 134, Food and Agriculture Organization, Rome,
Italy, 1997.
Brown, S., Gillespie, A. J. R., and Lugo, A. E.: Biomass Estimation Methods
for Tropical Forests with Applications to Forest Inventory Data, For. Sci.,
35, 881–902,
https://academic.oup.com/forestscience/article-abstract/35/4/881/4642515?redirectedFrom=PDF,
1989.
Bullock, S. H.: Developmental Patterns of Tree Dimensions in a Neotropical
Deciduous Forest, Biotropica, 32, 42–52, 2000.
Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference: a
practical information-theoretic approach, 2nd ed., Springer, New York, USA, 2002.
Canham, C. D., Finzi, A. C., Pacala, S. W., and Burbank, D. H.: Causes and consequences
of resource heterogeneity in forests: interspecific variation in light
transmission by canopy trees, Can. J. Forest Res., 24, 337–349,
https://doi.org/10.1139/x94-046, 1994.
Chapin III, F. S., Matson, P. A., and Vitousek, P.: Principles of
terrestrial ecosystem ecology, Springer, New York, USA, 2011.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan,
M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R.
C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C.,
Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M.,
Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga,
J. G., and Vieilledent, G.: Improved allometric models to estimate the
aboveground biomass of tropical trees, Global Change Biol., 20, 3177–3190,
https://doi.org/10.1111/gcb.12629, 2014.
Chazdon, R. L.: Second Growth, The Promise of Tropical Forest Regeneration
in an Age of Deforestation, The University of Chicago Press, Chicago, USA,
2014.
Clark, D. A. and Clark, D. B.: Life History Diversity of Canopy and
Emergent Trees in a Neotropical Rain Forest, Ecol. Monogr., 62, 315–344,
https://doi.org/10.2307/2937114, 1992.
Clark, D. B., Olivas, P. C., Oberbauer, S. F., Clark, D. A., and Ryan, M. G.: First direct
landscape-scale measurement of tropical rain forest Leaf Area Index, a key
driver of global primary productivity, Ecol. Lett., 11, 163–172,
https://doi.org/10.1111/j.1461-0248.2007.01134.x, 2008.
Condit, R.: Ecological Implications of Changes in Drought Patterns: Shifts
in Forest Composition in Panama, Clim. Change, 39, 413–427,
https://doi.org/10.1023/a:1005395806800, 1998.
Condit, R., Ashton, P., Bunyavejchewin, S., Dattaraja, H. S., Davies, S.,
Esufali, S., Ewango, C., Foster, R., Gunatilleke, I. A. U. N., Gunatilleke,
C. V. S., Hall, P., Harms, K. E., Hart, T., Hernandez, C., Hubbell, S., Itoh,
A., Kiratiprayoon, S., LaFrankie, J., de Lao, S. L., Makana, J.-R., Noor, M.
N. S., Kassim, A. R., Russo, S., Sukumar, R., Samper, C., Suresh, H. S., Tan,
S., Thomas, S., Valencia, R., Vallejo, M., Villa, G., and Zillio, T: The
Importance of Demographic Niches to Tree Diversity, Science, 313, 98–101,
https://doi.org/10.1126/science.1124712, 2006.
Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V., and Wikle, C. K.:
Accounting for uncertainty in ecological analysis: the strengths and
limitations of hierarchical statistical modeling, Ecol. Appl., 19, 553–570,
https://doi.org/10.1890/07-0744.1, 2009.
Denslow, J. S. and Guzman G., S.: Variation in stand structure, light and
seedling abundance across a tropical moist forest chronosequence, Panama,
J. Veg. Sci., 11, 201–212, https://doi.org/10.2307/3236800, 2000.
Dietze, M. C., Wolosin, M. S., and Clark, J. S.: Capturing diversity and
interspecific variability in allometries: A hierarchical approach, Forest
Ecol. Manag., 256, 1939–1948, https://doi.org/10.1016/j.foreco.2008.07.034, 2008.
Dybzinski, R., Farrior, C., Wolf, A., Reich, P. B., and Pacala, S. W.:
Evolutionarily Stable Strategy Carbon Allocation to Foliage, Wood, and Fine
Roots in Trees Competing for Light and Nitrogen: An Analytically Tractable,
Individual-Based Model and Quantitative Comparisons to Data, Am. Nat., 177,
153–166, https://doi.org/10.1086/657992, 2011.
Ellison, A. M.: Bayesian inference in ecology, Ecol. Lett., 7, 509–520,
https://doi.org/10.1111/j.1461-0248.2004.00603.x, 2004.
Enquist, B. J. and Bentley, L. P.: Land Plants: New Theoretical Directions
and Empirical Prospects, in: Metabolic Ecology: A Scaling Approach, edited
by: Sibly, R. M., Brown, J. H., and Kodric-Brown, A., John Wiley & Sons,
Ltd, Chichester, UK, 2012.
Falster, D. S. and Westoby, M.: Plant height and evolutionary games, Trends
Ecol. Evol., 18, 337–343, https://doi.org/10.1016/S0169-5347(03)00061-2, 2003.
Falster, D. S., Brännström, Å., Westoby, M., and Dieckmann, U.:
Multitrait successional forest dynamics enable diverse competitive
coexistence, P. Natl. Acad. Sci. USA, 114, E2719–E2728,
https://doi.org/10.1073/pnas.1610206114, 2017.
Farrior, C. E., Dybzinski, R., Levin, S. A., and Pacala, S. W.: Competition
for Water and Light in Closed-Canopy Forests: A Tractable Model of Carbon
Allocation with Implications for Carbon Sinks, Am. Nat., 181, 314–330,
https://doi.org/10.1086/669153, 2013.
Farrior, C. E., Bohlman, S. A., Hubbell, S., and Pacala, S. W.: Dominance of
the suppressed: Power-law size structure in tropical forests, Science, 351,
155–157, https://doi.org/10.1126/science.aad0592, 2016.
Fayolle, A., Loubota Panzou, G. J., Drouet, T., Swaine, M. D., Bauwens, S.,
Vleminckx, J., Biwole, A., Lejeune, P., and Doucet, J.-L.: Taller trees,
denser stands and greater biomass in semi-deciduous than in evergreen lowland
central African forests, Forest Ecol. Manag., 374, 42–50,
https://doi.org/10.1016/j.foreco.2016.04.033, 2016.
Fayolle, A., Ngomanda, A., Mbasi, M., Barbier, N., Bocko, Y., Boyemba, F.,
Couteron, P., Fonton, N., Kamdem, N., Katembo, J., Kondaoule, H. J., Loumeto,
J., Maïdou, H. M., Mankou, G., Mengui, T., Mofack II, G., Moundounga,
C., Moundounga, Q., Nguimbous, L., Nsue Nchama, N., Obiang, D., Ondo Meye
Asue, F., Picard, N., Rossi, V., Senguela, Y.-P., Sonké, B., Viard, L.,
Yongo, O. D., Zapfack, L., and Medjibe, V. P.: A regional allometry for the
Congo basin forests based on the largest ever destructive sampling, Forest
Ecol. Manag., 430, 228–240, https://doi.org/10.1016/j.foreco.2018.07.030, 2018.
Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L.,
Quesada, C. A., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M.,
Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T.
F., Drescher, M., Fearnside, P. M., França, M. B., Fyllas, N. M.,
Lopez-Gonzalez, G., Hladik, A., Higuchi, N., Hunter, M. O., Iida, Y., Salim,
K. A., Kassim, A. R., Keller, M., Kemp, J., King, D. A., Lovett, J. C.,
Marimon, B. S., Marimon-Junior, B. H., Lenza, E., Marshall, A. R., Metcalfe,
D. J., Mitchard, E. T. A., Moran, E. F., Nelson, B. W., Nilus, R., Nogueira,
E. M., Palace, M., Patiño, S., Peh, K. S.-H., Raventos, M. T., Reitsma, J.
M., Saiz, G., Schrodt, F., Sonk'e, B., Taedoumg, H. E., Tan, S., White, L.,
WÖll, H., and Lloyd, J.: Height-diameter allometry of tropical forest trees,
Biogeosciences, 8, 1081–1106, https://doi.org/10.5194/bg-8-1081-2011, 2011.
Ferry, B., Morneau, F., Bontemps, J. D., Blanc, L., and Freycon, V.: Higher
treefall rates on slopes and waterlogged soils result in lower stand biomass
and productivity in a tropical rain forest, J. Ecol., 98, 106–116,
https://doi.org/10.1111/j.1365-2745.2009.01604.x, 2010.
Francis, E. J., Muller-Landau, H. C., Wright, S. J., Visser, M. D., Iida, Y.,
Fletcher, C., Hubbell, S. P., Kassim, A. R., and Kerkhoff, A.: Quantifying
the role of wood density in explaining interspecific variation in growth of
tropical trees, Global. Ecol. Biogeogr., 26, 1078–1087,
https://doi.org/10.1111/geb.12604, 2017.
Gelman, A. and Rubin, D. B.: Inference from Iterative Simulation Using
Multiple Sequences, Statist. Sci., 7, 457–472, https://doi.org/10.1214/ss/1177011136, 1992.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. D., Vehtari, A., and
Rubin, D. B.: Bayesian Data Analysis, 3rd ed., Chapman & Hall/CRC Texts
in Statistical Science, CRC Press, Boca Raton, FL, USA, 2014.
Goodman, R. C., Phillips, O. L., and Baker, T. R.: The importance of crown
dimensions to improve tropical tree biomass estimates, Ecol. Appl., 24,
680–698, https://doi.org/10.1890/13-0070.1, 2014.
Heineman, K. D., Jensen, E., Shapland, A., Bogenrief, B., Tan, S., Rebarber,
R., and Russo, S. E.: The effects of belowground resources on aboveground
allometric growth in Bornean tree species, Forest Ecol. Manag., 261,
1820–1832, https://doi.org/10.1016/j.foreco.2011.02.005, 2011.
Hooten, M. B. and Hobbs, N. T.: A guide to Bayesian model selection for
ecologists, Ecol. Monogr., 85, 3–28, https://doi.org/10.1890/14-0661.1, 2015.
Houghton, R. A.: Aboveground Forest Biomass and the Global Carbon Balance,
Global Change Biol., 11, 945–958, https://doi.org/10.1111/j.1365-2486.2005.00955.x, 2005.
Hubbell, S. P., Foster, R. B., O'Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., and de Lao, S. L: Light-Gap
Disturbances, Recruitment Limitation, and Tree Diversity in a Neotropical
Forest, Science, 283, 554–557, https://doi.org/10.1126/science.283.5401.554, 1999.
Hunter, M. O., Keller, M., Victoria, D., and Morton, D. C.: Tree height and
tropical forest biomass estimation, Biogeosciences, 10, 8385–8399,
https://doi.org/10.5194/bg-10-8385-2013, 2013.
Iida, Y., Kohyama, T. S., Kubo, T., Kassim, A. R., Poorter, L., Sterck, F.,
and Potts, M. D.: Tree architecture and life-history strategies across 200
co-occurring tropical tree species, Funct. Ecol., 25, 1260–1268,
https://doi.org/10.1111/j.1365-2435.2011.01884.x, 2011.
Iida, Y., Poorter, L., Sterck, F. J., Kassim, A. R., Kubo, T., Potts, M. D.,
and Kohyama, T. S.: Wood density explains architectural differentiation
across 145 co-occurring tropical tree species, Funct. Ecol., 26, 274–282,
https://doi.org/10.1111/j.1365-2435.2011.01921.x, 2012.
Iida, Y., Poorter, L., Sterck, F., Kassim, A. R., Potts, M. D., Kubo, T., and
Kohyama, T. S.: Linking size-dependent growth and mortality with
architectural traits across 145 co-occurring tropical tree species, Ecology,
95, 353–363, https://doi.org/10.1890/11-2173.1, 2014.
Iwasa, Y., Cohen, D., and Leon, J. A.: Tree height and crown shape, as
results of competitive games, J. Theor. Biol., 112, 279–297,
https://doi.org/10.1016/S0022-5193(85)80288-5, 1985.
Koch, G. W., Sillett, S. C., Jennings, G. M., and Davis, S. D.: The limits to
tree height, Nature, 428, 851–854, https://doi.org/10.1038/nature02417, 2004.
Larjavaara, M. and Muller-Landau, H. C.: Measuring tree height: a
quantitative comparison of two common field methods in a moist tropical
forest, Methods Ecol. Evol., 4, 793–801,
https://doi.org/10.1111/2041-210X.12071, 2013.
Ledo, A., Cornulier, T., Illian, J. B., Iida, Y., Kassim, A. R., and Burslem,
D. F. R. P.: Re-evaluation of individual diameter: height allometric models
to improve biomass estimation of tropical trees, Ecol. Appl., 26, 2376–2382,
https://doi.org/10.1002/eap.1450, 2016.
Leigh, E. G.: Tropical Forest Ecology: A View from Barro Colorado Island,
Oxford University Press, New York, USA, 1999.
Lindenmayer, D. B., Laurance, W. F., and Franklin, J. F.: Global Decline in
Large Old Trees, Science, 338, 1305–1306, https://doi.org/10.1126/science.1231070, 2012.
Lines, E. R., Zavala, M. A., Purves, D. W., and Coomes, D. A.: Predictable
changes in aboveground allometry of trees along gradients of temperature,
aridity and competition, Global Ecol. Biogeogr., 21, 1017–1028,
https://doi.org/10.1111/j.1466-8238.2011.00746.x, 2012.
Loubota Panzou, G. J., Ligot, G., Gourlet-Fleury, S., Doucet, J.-L., Forni,
E., Loumeto, J.-J., and Fayolle, A.: Architectural differences associated
with functional traits among 45 coexisting tree species in Central Africa,
Funct. Ecol., 32, 2583–2593, https://doi.org/10.1111/1365-2435.13198, 2018.
Marshall, A. R., Willcock, S., Platts, P. J., Lovett, J. C., Balmford, A.,
Burgess, N. D., Latham, J. E., Munishi, P. K. T., Salter, R., Shirima, D. D.,
and Lewis, S. L.: Measuring and modelling above-ground carbon and tree
allometry along a tropical elevation gradient, Biol. Conserv., 154, 20–33,
https://doi.org/10.1016/j.biocon.2012.03.017, 2012.
Martínez Cano, I., Muller-Landau, H. C., Wright, S. J., Bohlman, S. A., and Pacala,
S. W.: Data from: Tropical tree height and crown allometries for the Barro
Colorado Natural Monument, Panama: a comparison of alternative hierarchical
models incorporating interspecific variation in relation to life history
traits, Dryad Digital Repository, https://doi.org/10.5061/dryad.85k53v8, 2019.
Mascaro, J., Asner, G. P., Muller-Landau, H. C., van Breugel, M., Hall, J.,
and Dahlin, K.: Controls over aboveground forest carbon density on Barro
Colorado Island, Panama, Biogeosciences, 8, 1615–1629,
https://doi.org/10.5194/bg-8-1615-2011, 2011.
Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A., and Schnitzer, S. A.: Is logarithmic
transformation necessary in allometry? Ten, one-hundred, one-thousand-times
yes, Biol. J. Linn. Soc., 111, 230–233, https://doi.org/10.1111/bij.12177, 2014.
McMahon, T.: Size and Shape in Biology: Elastic criteria impose limits on
biological proportions, and consequently on metabolic rates, Science, 179,
1201–1204, https://doi.org/10.1126/science.179.4079.1201, 1973.
Mensah, S., Pienaar, O. L., Kunneke, A., du Toit, B., Seydack, A., Uhl, E.,
Pretzsch, H., and Seifert, T.: Height – Diameter allometry in South Africa's
indigenous high forests: Assessing generic models performance and function
forms, Forest Ecol. Manag., 410, 1–11, https://doi.org/10.1016/j.foreco.2017.12.030,
2018.
Molto, Q., Hérault, B., Boreux, J.-J., Daullet, M., Rousteau, A., and Rossi,
V.: Predicting tree heights for biomass estimates in tropical forests – a
test from French Guiana, Biogeosciences, 11, 3121–3130,
https://doi.org/10.5194/bg-11-3121-2014, 2014.
Muller-Landau, H. C., Condit, R. S., Chave, J., Thomas, S. C., Bohlman, S.
A., Bunyavejchewin, S., Davies, S., Foster, R., Gunatilleke, S., Gunatilleke,
N., Harms, K. E., Hart, T., Hubbell, S. P., Itoh, A., Kassim, A. R.,
LaFrankie, J. V., Lee, H. S., Losos, E., Makana, J. R., Ohkubo, T., Sukumar,
R., Sun, I. F., Supardi, M. N. N., Tan, S., Thompson, J., Valencia, R.,
Muñoz, G. V., Wills, C., Yamakura, T., Chuyong, G., Dattaraja, H. S.,
Esufali, S., Hall, P., Hernandez, C., Kenfack, D., Kiratiprayoon, S., Suresh,
H. S., Thomas, D., Vallejo, M. I., and Ashton, P.: Testing metabolic ecology
theory for allometric scaling of tree size, growth and mortality in tropical
forests, Ecol. Lett., 9, 575–588, https://doi.org/10.1111/j.1461-0248.2006.00904.x,
2006.
Niklas, K. J.: Plant Allometry: The Scaling of Form and Process, University
of Chicago Press, Chicago, USA, 1994.
Niklas, K. J.: Maximum plant height and the biophysical factors that limit
it, Tree Physiol., 27, 433–440, https://doi.org/10.1093/treephys/27.3.433, 2007.
Niklas, K. J. and Spatz, H.-C.: Growth and hydraulic (not mechanical)
constraints govern the scaling of tree height and mass, P. Natl. Acad. Sci. USA, 101, 15661–15663, https://doi.org/10.1073/pnas.0405857101, 2004.
O'Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R., and Foster, R. B.:
Diameter, Height, Crown, and Age Relationship in Eight Neotropical Tree
Species, Ecology, 76, 1926–1939, https://doi.org/10.2307/1940724, 1995.
Pacala, S. W., Canham, C. D., Saponara, J., Silander, J. A., Kobe, R. K., and
Ribbens, E.: Forest Models Defined by Field Measurements: Estimation, Error
Analysis and Dynamics, Ecol. Monogr., 66, 1–43, https://doi.org/10.2307/2963479, 1996.
Pan, Y., Birdsey, R. A., Phillips, O. L., and Jackson, R. B.: The Structure,
Distribution, and Biomass of the World's Forests, Annu. Rev. Ecol. Evol. S.,
44, 593–622, https://doi.org/10.1146/annurev-ecolsys-110512-135914, 2013.
Paris, C., Valduga, D., and Bruzzone, L.: A Hierarchical Approach to
Three-Dimensional Segmentation of LiDAR Data at Single-Tree Level in a
Multilayered Forest, IEEE T. Geosci. Remote Sens., 54,
4190–4203, https://doi.org/10.1109/TGRS.2016.2538203, 2016.
Paton, S.: 2017 Meteorological and Hydrological Summary for Barro Colorado
Island, Smithsonian Tropical Research Institute, Panama, 41 pp., 2018.
Piperno, D. R.: Fitolitos, arquelogía y cambios prehistóricos de la
vegetación en un lote de cincuenta hectáreas de la Isla de Barro
Colorado, in: Ecología de Un Bosque Tropical: Ciclo Estacionales Y
Cambios de Largo Plazo, edited by: Leigh, E. G., Rand, A. S., and Windsor,
D. M., 1990.
Ploton, P., Barbier, N., Takoudjou Momo, S., Réjou-Méchain, M., Boyemba
Bosela, F., Chuyong, G., Dauby, G., Droissart, V., Fayolle, A., Goodman, R.
C., Henry, M., Kamdem, N. G., Mukirania, J. K., Kenfack, D., Libalah, M.,
Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D.,
Couteron, P., Berger, U., and Pélissier, R.: Closing a gap in tropical forest
biomass estimation: taking crown mass variation into account in pantropical
allometries, Biogeosciences, 13, 1571–1585,
https://doi.org/10.5194/bg-13-1571-2016, 2016.
Poorter, L., Bongers, F., Sterck, F. J., and Wöll, H.: Arquitecture of 53
rain forest tree species differing in adult stature and shade tolerance,
Ecology, 84, 602–608, https://doi.org/10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2,
2003.
Poorter, L., Bongers, L., and Bongers, F.: Architecture of 54 moist-forest
tree species: traits, trade-offs, and functional groups, Ecology, 87,
1289–1301, https://doi.org/10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2, 2006.
Poorter, L., Hawthorne, W., Bongers, F., and Sheil, D.: Maximum size
distributions in tropical forest communities: relationships with rainfall and
disturbance, J. Ecol., 96, 495–504, https://doi.org/10.1111/j.1365-2745.2008.01366.x,
2008.
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A.,
and Solomon, A. M.: A global biome model based on plant physiology and
dominance, soil properties and climate, J. Biogeogr., 19, 117–134, 1992.
Price, C. A., Ogle, K., White, E. P., and Weitz, J. S.: Evaluating scaling
models in biology using hierarchical Bayesian approaches, Ecol. Lett., 12,
641–651, https://doi.org/10.1111/j.1461-0248.2009.01316.x, 2009.
Rüger, N., Wirth, C., Wright, S. J., and Condit, R.: Functional traits
explain light and size response of growth rates in tropical tree species,
Ecology, 93, 2626–2636, https://doi.org/10.1890/12-0622.1, 2012.
Rüger, N., Comita, L. S., Condit, R., Purves, D., Rosenbaum, B., Visser,
M. D., Wright, S. J., and Wirth, C.: Beyond the fast–slow continuum:
demographic dimensions structuring a tropical tree community, Ecol. Lett.,
21, 1075–1084, https://doi.org/10.1111/ele.12974, 2018.
Shendryk, I., Broich, M., Tulbure, M. G., and Alexandrov, S. V.: Bottom-up
delineation of individual trees from full-waveform airborne laser scans in a
structurally complex eucalypt forest, Remote Sens. Environ., 173, 69–83,
https://doi.org/10.1016/j.rse.2015.11.008, 2016.
Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: A quantitative analysis of
plant form - The pipe model theory II. Further evidence of the theory and its
application in forest ecology, Jpn. J. Ecol., 14, 133–139, 1964a.
Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: A quantitative analysis of
plant form – The pipe model theory I. Basic analyses, Jpn. J. Ecol., 14,
97–105, 1964b.
Sprugel, D. G.: Correcting for Bias in Log-Transformed Allometric Equations,
Ecology, 64, 209–210, https://doi.org/10.2307/1937343, 1983.
Stan Development Team: The R Interface to Stan,
Version 2.10.1.: http://mc-stan.org/ (last access: February 2018),
2016.
Sullivan, M. J. P., Lewis, S. L., Hubau, W., Qie, L., Baker, T. R., Banin, L.
F., Chave, J., Cuni-Sanchez, A., Feldpausch, T. R., Lopez-Gonzalez, G.,
Arets, E., Ashton, P., Bastin, J. F., Berry, N. J., Bogaert, J., Boot, R.,
Brearley, F. Q., Brienen, R., Burslem, D. F. R. P., Canniere, C.,
Chudomelová, M., Dančák, M., Ewango, C., Hédl, R., Lloyd, J.,
Makana, J. R., Malhi, Y., Marimon, B. S., Junior, B. H. M., Metali, F.,
Moore, S., Nagy, L., Vargas, P. N., Pendry, C. A., Ramírez-Angulo, H.,
Reitsma, J., Rutishauser, E., Salim, K. A., Sonké, B., Sukri, R. S.,
Sunderland, T., Svátek, M., Umunay, P. M., Martinez, R. V., Vernimmen, R.
R. E., Torre, E. V., Vleminckx, J., Vos, V., and Phillips, O. L.: Field
methods for sampling tree height for tropical forest biomass estimation,
Methods Ecol. Evol., 9, 1179–1189, https://doi.org/10.1111/2041-210X.12962, 2018.
Thomas, S. C.: Asymptotic height as a predictor of growth and allometric
characteristics in malaysian rain forest trees, Am. J. Bot., 83, 556–566,
https://doi.org/10.1002/j.1537-2197.1996.tb12739.x, 1996.
Watanabe, S. A.: Widely Applicable Bayesian Information Criterion, J. Mach.
Learn. Res., 14, 867–897, 2013.
Weng, E., Farrior, C. E., Dybzinski, R., and Pacala, S. W.: Predicting
vegetation type through physiological and environmental interactions with
leaf traits: evergreen and deciduous forests in an earth system modeling
framework, Global Change Biol., 23, 2482–2498, https://doi.org/10.1111/gcb.13542,
2017.
Weng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, R.,
Zhang, T., Shevliakova, E., and Pacala, S. W.: Scaling from individual trees
to forests in an Earth system modeling framework using a mathematically
tractable model of height-structured competition, Biogeosciences, 12,
2655–2694, https://doi.org/10.5194/bg-12-2655-2015, 2015.
West, G. B., Enquist, B. J., and Brown, J. H.: A general quantitative theory
of forest structure and dynamics, P. Natl. Acad. Sci. USA, 106,
7040–7045, https://doi.org/10.1073/pnas.0812294106, 2009.
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., and Wright, I. J.:
Plant Ecological Strategies: Some Leading Dimensions of Variation Between
Species, Annu. Rev. Ecol. Syst., 33, 125–159,
https://doi.org/10.1146/annurev.ecolsys.33.010802.150452, 2002.
Williamson, G. B. and Wiemann, M. C.: Measuring wood specific
gravity… Correctly, Am. J. Bot., 97, 519–524, https://doi.org/10.3732/ajb.0900243,
2010.
Wright, J. S.: Plant diversity in tropical forests: a review of mechanisms
of species coexistence, Oecologia, 130, 1–14, https://doi.org/10.1007/s004420100809, 2002.
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J.,
Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S.,
Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen,
M. C., Salvador, C. M., and Zanne, A. E.: Functional traits and the
growth–mortality trade-off in tropical trees, Ecology, 91, 3664–3674,
https://doi.org/10.1890/09-2335.1, 2010.
Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V.
J., Sayer, E. J., Santiago, L. S., Kaspari, M., Hedin, L. O., Harms, K. E.,
Garcia, M. N., and Corre, M. D.: Potassium, phosphorus, or nitrogen limit
root allocation, tree growth, or litter production in a lowland tropical
forest, Ecology, 92, 1616–1625, https://doi.org/10.1890/10-1558.1, 2011.
Altmetrics
Final-revised paper
Preprint