Articles | Volume 17, issue 7
https://doi.org/10.5194/bg-17-2107-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2107-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
Wagner de Oliveira Garcia
CORRESPONDING AUTHOR
Institute of Geology, Center for Earth System Research and
Sustainability, University of Hamburg, Hamburg, Germany
Thorben Amann
Institute of Geology, Center for Earth System Research and
Sustainability, University of Hamburg, Hamburg, Germany
Jens Hartmann
Institute of Geology, Center for Earth System Research and
Sustainability, University of Hamburg, Hamburg, Germany
Kristine Karstens
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Alexander Popp
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Lena R. Boysen
Land in the Earth System (LES), Max Planck Institute for Meteorology, Hamburg, Germany
Pete Smith
Institute of Biological and Environmental Sciences, School of
Biological Sciences, University of Aberdeen, Aberdeen, UK
Daniel Goll
Laboratoire des Sciences du Climat et de l'Environnement, CEA, CNRS,
UVSQ, 91190 Gif-sur-Yvette, France
Institute of Geography, University of Augsburg, Augsburg, Germany
Related authors
No articles found.
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
Geosci. Model Dev., 18, 4915–4933, https://doi.org/10.5194/gmd-18-4915-2025, https://doi.org/10.5194/gmd-18-4915-2025, 2025
Short summary
Short summary
This study enhances the accuracy of modeling the carbon dynamics of the Amazon rainforest by optimizing key model parameters based on satellite data. Using spatially varying parameters for tree mortality and photosynthesis, we improved predictions of biomass, productivity, and tree mortality. Our findings highlight the critical role of wood density and water availability in forest processes, offering insights to use in refining global carbon cycle models.
Ke Yu, Yang Su, Ronny Lauerwald, Philippe Ciais, Yi Xi, Haoran Xu, Xianglin Zhang, Nicolas Viovy, Amie Pickering, Marie Collard, and Daniel S. Goll
EGUsphere, https://doi.org/10.5194/egusphere-2025-1861, https://doi.org/10.5194/egusphere-2025-1861, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Coupling crop and land surface models helps quantify the climate effects of agriculture, but lacks crop-specific management processes. We enhanced a land surface model with time-varying albedo from foliar yellowing and residue cover, improving the simulation of energy and water fluxes. Results show cooler surfaces and slightly wetter soils during residue cover, highlighting how managements improve climate mitigation and adaptation, advancing the development of climate-smart agriculture.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
EGUsphere, https://doi.org/10.5194/egusphere-2025-2545, https://doi.org/10.5194/egusphere-2025-2545, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Accurate estimates of global soil organic carbon (SOC) content and its spatial pattern are critical for future climate change mitigation. However, the most advanced mechanistic SOC models struggle to do this task. Here we apply multiple explainable machine learning methods to identify missing variables and misrepresented relationships between environmental factors and SOC in these models, offering new insights to guide model development for more reliable SOC predictions.
Allanah Joy Paul, Mathias Haunost, Silvan Urs Goldenberg, Jens Hartmann, Nicolás Sánchez, Julieta Schneider, Niels Suitner, and Ulf Riebesell
Biogeosciences, 22, 2749–2766, https://doi.org/10.5194/bg-22-2749-2025, https://doi.org/10.5194/bg-22-2749-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being assessed for its potential to absorb atmospheric CO2 and store it for a long time. OAE still needs comprehensive assessment of its safety and effectiveness. We studied an idealised OAE application in a natural low-nutrient ecosystem over 1 month. Our results showed that biogeochemical functioning remained mostly stable but that the long-term capability for storing carbon may be limited at high alkalinity concentration.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Arthur Vienne, Patrick Frings, Jet Rijnders, Tim Jesper Suhrhoff, Tom Reershemius, Reinaldy P. Poetra, Jens Hartmann, Harun Niron, Miguel Portillo Estrada, Laura Steinwidder, Lucilla Boito, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2025-1667, https://doi.org/10.5194/egusphere-2025-1667, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Our study explores Enhanced Weathering (EW) using basalt rock dust to combat climate change. We treated corn-planted mesocosms with varying basalt amounts and monitored them for 101 days. Surprisingly, we found no significant inorganic carbon dioxide removal (CDR). However, rock weathering was evident through increased exchangeable bases. While immediate inorganic CDR benefits were not observed, basalt amendment may enhance soil health and potentially long-term carbon sequestration.
Niels Suitner, Jens Hartmann, Selene Varliero, Giulia Faucher, Philipp Suessle, and Charly A. Moras
EGUsphere, https://doi.org/10.5194/egusphere-2025-381, https://doi.org/10.5194/egusphere-2025-381, 2025
Short summary
Short summary
Alkalinity leakage limits the efficiency of ocean alkalinity enhancement. Drivers of this process remain unquantified, restricting accurate assessments. The induced runaway process can be modeled using surface area and aragonite oversaturation as key factors. This study proposes a framework for improving predictability of alkalinity loss due to runaway precipitation, emphasizing the need for field experiments to validate theoretical models concerning dilution and particle sinking processes.
Peter M. Kopittke, Ram C. Dalal, Brigid A. McKenna, Pete Smith, Peng Wang, Zhe Weng, Frederik J. T. van der Bom, and Neal W. Menzies
SOIL, 10, 873–885, https://doi.org/10.5194/soil-10-873-2024, https://doi.org/10.5194/soil-10-873-2024, 2024
Short summary
Short summary
Soil produces 98.8 % of the calories consumed by humans, but the contribution that the anthropogenic use of soil makes to global warming is not clear. We show that soil has contributed 15 % of the total global warming caused by well-mixed greenhouse gases. Thus, our finding that soil is a substantial contributor to global anthropogenic greenhouse gas emissions represents a "wicked problem" – how do we continue to increase food production from soil whilst also decreasing emissions?
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024, https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024, https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Short summary
This study examines about 8000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. Statistical metrics and machine learning techniques are applied to identify common GWL dynamics patterns and analyze their controlling factors. The study also highlights the potential and limitations of this data-driven approach to improve our understanding of groundwater recharge and discharge processes.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Mingyang Tian, Jens Hartmann, Gibran Romero-Mujalli, Thorben Amann, Lishan Ran, and Ji-Hyung Park
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-131, https://doi.org/10.5194/bg-2023-131, 2023
Manuscript not accepted for further review
Short summary
Short summary
Effective water quality management in the Elbe River from 1984 to 2018 significantly reduced CO2 emissions, particularly after Germany's reunification. Key factors in the reduction include organic carbon removal and nutrient management, with nitrogen control being more critical than phosphorus for the restoration of ecosystem capacity. Unpredictable influxes of organic carbon and the relocation of emissions from wastewater treatment can cause uncertainties for CO2 removals.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data, 13, 5831–5846, https://doi.org/10.5194/essd-13-5831-2021, https://doi.org/10.5194/essd-13-5831-2021, 2021
Short summary
Short summary
Our database of globally distributed natural soil total P (STP) concentration showed concentration ranged from 1.4 to 9630.0 (mean 570.0) mg kg−1. Global predictions of STP concentration increased with latitude. Global STP stocks (excluding Antarctica) were estimated to be 26.8 and 62.2 Pg in the topsoil and subsoil, respectively. Our global map of STP concentration can be used to constrain Earth system models representing the P cycle and to inform quantification of global soil P availability.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73, https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
Short summary
Soil organic carbon sequestration is considered an attractive technology to partially mitigate climate change. Here, we show how the SOC storage potential varies globally. The estimated additional SOC storage potential in the topsoil of global croplands (29–67 Pg C) equates to only 2 to 5 years of emissions offsetting and 32 % of agriculture's 92 Pg historical carbon debt. Since SOC is temperature-dependent, this potential is likely to reduce by 18 % by 2040 due to climate change.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Yuanyuan Huang, Phillipe Ciais, Maurizio Santoro, David Makowski, Jerome Chave, Dmitry Schepaschenko, Rose Z. Abramoff, Daniel S. Goll, Hui Yang, Ye Chen, Wei Wei, and Shilong Piao
Earth Syst. Sci. Data, 13, 4263–4274, https://doi.org/10.5194/essd-13-4263-2021, https://doi.org/10.5194/essd-13-4263-2021, 2021
Short summary
Short summary
Roots play a key role in our Earth system. Here we combine 10 307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially explicit global high-resolution (~ 1 km) root biomass dataset. In total, 142 ± 25 (95 % CI) Pg of live dry-matter biomass is stored belowground, representing a global average root : shoot biomass ratio of 0.25 ± 0.10.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Yan Sun, Daniel S. Goll, Jinfeng Chang, Philippe Ciais, Betrand Guenet, Julian Helfenstein, Yuanyuan Huang, Ronny Lauerwald, Fabienne Maignan, Victoria Naipal, Yilong Wang, Hui Yang, and Haicheng Zhang
Geosci. Model Dev., 14, 1987–2010, https://doi.org/10.5194/gmd-14-1987-2021, https://doi.org/10.5194/gmd-14-1987-2021, 2021
Short summary
Short summary
We evaluated the performance of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 against remote sensing, ground-based measurement networks and ecological databases. The simulated carbon, nitrogen and phosphorus fluxes among different spatial scales are generally in good agreement with data-driven estimates. However, the recent carbon sink in the Northern Hemisphere is substantially underestimated. Potential causes and model development priorities are discussed.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
14688-1:2002: 14688-1:2002: Geotechnical investigation and
testing–Identification and classification of soil–Part 1: Identification
and description, International Organization for Standardization, Geneva,
2002.
Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future
challenges in coupled C–N–P cycle models for terrestrial ecosystems under
global change: a review, Biogeochemistry, 131, 173–202,
https://doi.org/10.1007/s10533-016-0274-9, 2016.
Amann, T. and Hartmann, J.: Ideas and perspectives: Synergies from co-deployment of negative emission technologies, Biogeosciences, 16, 2949–2960, https://doi.org/10.5194/bg-16-2949-2019, 2019.
Amiotte Suchet, P., Probst, J. L., and Ludwig, W.: Worldwide distribution of
continental rock lithology: Implications for the atmospheric/soil CO2 uptake
by continental weathering and alkalinity river transport to the oceans,
Global Biogeochem. Cy., 17, 1038, 2003.
Anda, M., Shamshuddin, J., Fauziah, C. I., and Omar, S. R. S.: Dissolution
of Ground Basalt and Its Effect on Oxisol Chemical Properties and Cocoa
Growth, Soil Sci., 174, 264–271, https://doi.org/10.1097/SS.0b013e3181a56928, 2009.
Anda, M., Shamshuddin, J., and Fauziah, C. I.: Increasing negative charge
and nutrient contents of a highly weathered soil using basalt and rice husk
to promote cocoa growth under field conditions, Soil Till. Res.,
132, 1–11, https://doi.org/10.1016/j.still.2013.04.005, 2013.
Anda, M., Shamshuddin, J., and Fauziah, C. I.: Improving chemical properties
of a highly weathered soil using finely ground basalt rocks, Catena, 124,
147–161, https://doi.org/10.1016/j.catena.2014.09.012, 2015.
Appelo, C. A. J. and Postma, D.: Geochemistry, Groundwater and Pollution,
Second Edition, CRC Press, 2005.
Aslyng, H.: Klima, jord og planter, Kulturteknik I, 5. Den. kgl Veter.- og Landbohosk, 368 pp., Kopenhavn, 1976.
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., and Ringeval, B.: Soil
parent material-A major driver of plant nutrient limitations in terrestrial
ecosystems, Glob. Chang Biol., 23, 3808–3824, https://doi.org/10.1111/gcb.13691, 2017.
Batjes, N.: ISRIC-WISE global data set of derived soil properties on a 0.5
by 0.5 degree grid (version 3.0), ISRIC – World Soil Information, available at: https://data.isric.org/geonetwork/srv/api/records/d9eca770-29a4-4d95-bf93-f32e1ab419c3 (last access: 16 April 2020), 2005.
Bear, J.: Dynamics of fluids in porous media, American Elsevier, New York,
1972.
Beech, E., Rivers, M., Oldfield, S., and Smith, P.: GlobalTreeSearch: The
first complete global database of tree species and country distributions,
J. Sustain. Forest., 36, 454–489, 2017.
Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson,
P. N., Bird, M., Kantzas, E., Taylor, L. L., Sarkar, B., Kelland, M.,
DeLucia, E., Kantola, I., Müller, C., Rau, G., and Hansen, J.: Farming
with crops and rocks to address global climate, food and soil security,
Nat. Plants, 4, 138–147, https://doi.org/10.1038/s41477-018-0108-y, 2018.
Beringer, T., Lucht, W., and Schaphoff, S.: Bioenergy production potential
of global biomass plantations under environmental and agricultural
constraints, GCB Bioenergy, 3, 299–312, 2011.
Berner, A. R.,
Lasaga, A. C., and
Garrels, R. M.: The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon dioxide over the past
100 million years, Am. J. Sci., 283, 641–683, 1983.
Beyer, W.: Zur bestimmung der wasserdurchlässigkeit von kiesen und
sanden aus der kornverteilungskurve, WWT, 14, 165–168, 1964.
Bissonnais, Y. L. and Singer, M. J.: Crusting, Runoff, and Erosion Response
to Soil Water Content and Successive Rainfalls, Soil Sci. Soc.
Am. J., 56, 1898–1903, https://doi.org/10.2136/sssaj1992.03615995005600060042x,
1992.
Bodirsky, B. L., Popp, A., Weindl, I., Dietrich, J. P., Rolinski, S., Scheiffele, L., Schmitz, C., and Lotze-Campen, H.: N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios, Biogeosciences, 9, 4169–4197, https://doi.org/10.5194/bg-9-4169-2012, 2012.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., LOTZE-CAMPEN, H., Müller, C., and Reichstein, M.: Modelling
the role of agriculture for the 20th century global terrestrial carbon
balance, Glob. Change Biol., 13, 679–706, 2007.
Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P.,
Rolinski, S., Biewald, A., Lotze-Campen, H., Weindl, I., Gerten, D., and
Stevanovic, M.: Trade-offs between land and water requirements for
large-scale bioenergy production, GCB Bioenergy, 8, 11–24,
https://doi.org/10.1111/gcbb.12226, 2016.
Börker, J., Hartmann, J., Romero-Mujalli, G., and Li, G.: Aging of basalt volcanic systems and decreasing CO2 consumption by weathering, Earth Surf. Dynam., 7, 191–197, https://doi.org/10.5194/esurf-7-191-2019, 2019.
Bowen, M. E., McAlpine, C. A., House, A. P. N., and Smith, G. C.: Regrowth
forests on abandoned agricultural land: A review of their habitat values for
recovering forest fauna, Biol. Conserv., 140, 273–296, https://doi.org/10.1016/j.biocon.2007.08.012, 2007.
Boysen, L. R., Lucht, W., and Gerten, D.: Trade-offs for food production,
nature conservation and climate limit the terrestrial carbon dioxide removal
potential, Glob. Change Biol., 23, 4303–4317, https://doi.org/10.1111/gcb.13745, 2017a.
Boysen, L. R., Lucht, W., Gerten, D., Heck, V., Lenton, T. M., and
Schellnhuber, H. J.: The limits to global-warming mitigation by terrestrial
carbon removal, Earth's Future, 5, 463–474, https://doi.org/10.1002/2016EF000469, 2017b.
Cadoux, S., Riche, A. B., Yates, N. E., and Machet, J.-M.: Nutrient
requirements of Miscanthus x giganteus: Conclusions from a review of
published studies, Biomass Bioenerg., 38, 14–22, https://doi.org/10.1016/j.biombioe.2011.01.015, 2012.
Calabrese, S., Porporato, A., and Parolari, A. J.: Hydrologic transport of
dissolved inorganic carbon and its control on chemical weathering,
J. Geophys. Res.-Earth, 122, 2016–2032, 2017.
Carrier III, W. D.: Goodbye, hazen; hello, kozeny-carman,
J. Geotech. Geoenviron., 129, 1054–1056, 2003.
Christman, Z. J. and Rogan, J.: Error Propagation in Raster Data
Integration, Photogramm. Eng. Rem. S., 78, 617–624,
2012.
Ciceri, D., de Oliveira, M., Stokes, R. M., Skorina, T., and Allanore, A.:
Characterization of potassium agrominerals: Correlations between
petrographic features, comminution and leaching of ultrapotassic syenites,
Miner. Eng., 102, 42–57, https://doi.org/10.1016/j.mineng.2016.11.016, 2017.
Clarkson, D. T. and Hanson, J. B.: The Mineral Nutrition of Higher Plants,
Annu. Rev. Plant Physiol., 31, 239–298,
https://doi.org/10.1146/annurev.pp.31.060180.001323, 1980.
Cornelissen, S., Koper, M., and Deng, Y. Y.: The role of bioenergy in a
fully sustainable global energy system, Biomass Bioenerg., 41, 21–33,
https://doi.org/10.1016/j.biombioe.2011.12.049, 2012.
Creutzig, F.: Economic and ecological views on climate change mitigation
with bioenergy and negative emissions, GCB Bioenergy, 8, 4–10,
https://doi.org/10.1111/gcbb.12235, 2016.
Crowley, K. F., McNeil, B. E., Lovett, G. M., Canham, C. D., Driscoll, C.
T., Rustad, L. E., Denny, E., Hallett, R. A., Arthur, M. A., Boggs, J. L.,
Goodale, C. L., Kahl, J. S., McNulty, S. G., Ollinger, S. V., Pardo, L. H.,
Schaberg, P. G., Stoddard, J. L., Weand, M. P., and Weathers, K. C.: Do
Nutrient Limitation Patterns Shift from Nitrogen Toward Phosphorus with
Increasing Nitrogen Deposition Across the Northeastern United States?,
Ecosystems, 15, 940–957, https://doi.org/10.1007/s10021-012-9550-2, 2012.
Dietrich, J. P., Schmitz, C., Müller, C., Fader, M., Lotze-Campen, H.,
and Popp, A.: Measuring agricultural land-use intensity–A global analysis
using a model-assisted approach, Ecol. Modell., 232, 109–118, 2012.
Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A., and Müller,
C.: Forecasting technological change in agriculture–an endogenous
implementation in a global land use model,
Technol. Forecast. Soc., 81, 236–249, 2014.
Dietrich, J. P., Bodirsky, B. L., Weindl, I., Humpenöder, F.,
Stevanovic, M., Kreidenweis, U., Wang, X., Karstens, K., Mishra, A., Klein,
D., Ambrósio, G., Araujo, E., Biewald, A., Lotze-Campen, H., and Popp,
A.: MAgPIE – An Open Source land-use modeling framework – Version 4.0,
https://doi.org/10.5281/zenodo.1418752, 2018.
Dietzen, C., Harrison, R., and Michelsen-Correa, S.: Effectiveness of
enhanced mineral weathering as a carbon sequestration tool and alternative
to agricultural lime: An incubation experiment,
Int. J. Greenh. Gas Con., 74, 251–258, 2018.
Doetterl, S., Berhe, A. A., Arnold, C., Bodé, S., Fiener, P., Finke, P.,
Fuchslueger, L., Griepentrog, M., Harden, J. W., Nadeu, E., Schnecker, J.,
Six, J., Trumbore, S., Van Oost, K., Vogel, C., and Boeckx, P.: Links among
warming, carbon and microbial dynamics mediated by soil mineral weathering,
Nat. Geosci., 11, 589–593, https://doi.org/10.1038/s41561-018-0168-7, 2018.
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C.
J., Zhao, X., Xia, N., Wu, X., and Jackson, R. B.: Global patterns of
terrestrial nitrogen and phosphorus limitation, Nat. Geosci.,
13, 221–226, https://doi.org/10.1038/s41561-019-0530-4, 2020.
Edwards, D. P., Lim, F., James, R. H., Pearce, C. R., Scholes, J.,
Freckleton, R. P., and Beerling, D. J.: Climate change mitigation: potential
benefits and pitfalls of enhanced rock weathering in tropical agriculture,
Biol. Lett.-UK, 13, 20160715, https://doi.org/10.1098/rsbl.2016.0715, 2017.
Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W.
S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith,
J. E.: Global analysis of nitrogen and phosphorus limitation of primary
producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett.,
10, 1135–1142, https://doi.org/10.1111/j.1461-0248.2007.01113.x, 2007.
Fageria, N. K. and Baligar, V. C.: Chapter 7 Ameliorating Soil Acidity of
Tropical Oxisols by Liming For Sustainable Crop Production, in: Advances in
Agronomy, Academic Press, 345–399, 2008.
Fertilizer Technology Research Centre: Technical Bulletin: Fertilizer and Soil Acidity, in: The University of Adelaide, edited by: McLaughlin, M., available at: http://sciences.adelaide.edu.au/fertiliser/system/files/media/documents/2020-01/factsheet-fertilizers-and-soil-acidity.pdf, (last access: 24 September 2019), 2016.
Fischer, G., Shah, M., van Velthuizen, H., and Nachtergaele, F. O.: Global
agro-ecological assessment for agriculture in the 21st century, Internation Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, 2001.
Fishkis, O., Ingwersen, J., Lamers, M., Denysenko, D., and Streck, T.:
Phytolith transport in soil: A field study using fluorescent labelling,
Geoderma, 157, 27–36,
https://doi.org/10.1016/j.geoderma.2010.03.012, 2010.
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. L. V., Wilcox, J., del Mar Zamora Dominguez, M., and Minx, J. C.: Negative emissions–Part 2: Costs, potentials and side effects, Environ. Res. Lett., 13, 063002, https://doi.org/10.1088/1748-9326/aabf9f, 2018.
Gaillardet, J., Dupré, B., Louvat, P., and Allegre, C.: Global silicate
weathering and CO2 consumption rates deduced from the chemistry of large
rivers, Chem. Geol., 159, 3–30, 1999.
Gaiser, T.,
Graef, F. C., and
Carvalho, J.: Water retention
characteristics of soils with contrasting clay mineral composition in
semi-arid tropical regions, Soil Res., 38, 523–536,
https://doi.org/10.1071/SR99001, 2000.
Garcia, D. O. W., Amann, T., and Hartmann, J.: Increasing biomass demand
enlarges negative forest nutrient budget areas in wood export regions,
Sci. Rep.-UK, 8, 5280, https://doi.org/10.1038/s41598-018-22728-5, 2018.
Gijsman, A. J., Jagtap, S. S., and Jones, J. W.: Wading through a swamp of
complete confusion: how to choose a method for estimating soil water
retention parameters for crop models, Eur. J. Agron., 18,
77-0106, https://doi.org/10.1016/S1161-0301(02)00098-9, 2002.
Goddéris, Y., François, L. M., Probst, A., Schott, J., Moncoulon,
D., Labat, D., and Viville, D.: Modelling weathering processes at the
catchment scale: The WITCH numerical model, Geochim. Cosmochim. Ac.,
70, 1128–1147, https://doi.org/10.1016/j.gca.2005.11.018, 2006.
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., van Bodegom, P. M., and Niinemets, Ü.: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, 9, 3547–3569, https://doi.org/10.5194/bg-9-3547-2012, 2012.
Goll, D. S., Moosdorf, N., Hartmann, J., and Brovkin, V.: Climate-driven
changes in chemical weathering and associated phosphorus release since 1850:
Implications for the land carbon balance, Geophys. Res. Lett., 41,
3553–3558, https://doi.org/10.1002/2014GL059471, 2014.
Goll, D. S., Winkler, A. J., Raddatz, T., Dong, N., Prentice, I. C., Ciais, P., and Brovkin, V.: Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10), Geosci. Model Dev., 10, 2009–2030, https://doi.org/10.5194/gmd-10-2009-2017, 2017.
Goll, D. S., Joetzjer, E., Huang, M., and Ciais, P.: Low Phosphorus
Availability Decreases Susceptibility of Tropical Primary Productivity to
Droughts, Geophys. Res. Lett., 45, 8231–8240, https://doi.org/10.1029/2018gl077736,
2018.
Goswami, S.,
Fisk, M. C.,
Vadeboncoeur, M. A.,
Garrison‐Johnston, M.,
Yanai, R. D., and
Fahey, T. J.: Phosphorus limitation of aboveground production in northern hardwood
forests, Ecology, 99, 438–449, https://doi.org/10.1002/ecy.2100, 2018.
Grathwohl, P.: On equilibration of pore water in column leaching tests,
Waste Manage., 34, 908–918, https://doi.org/10.1016/j.wasman.2014.02.012, 2014.
Hartmann, J. and Kempe, S.: What is the maximum potential for CO2
sequestration by “stimulated” weathering on the global scale?,
Naturwissenschaften, 95, 1159–1164, https://doi.org/10.1007/s00114-008-0434-4, 2008.
Hartmann, J., Jansen, N., Kempe, S., and Dürr, H. H.: Geochemistry of
the river Rhine and the upper Danube: Recent trends and lithological
influence on baselines,
Journal of Environmental Science for Sustainable Society, 1, 39–46, 2007.
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.:
Global CO2-consumption by chemical weathering: What is the contribution of
highly active weathering regions?, Global Planet. Change, 69, 185–194,
2009.
Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L.,
Wolf-Gladrow, D. A., Durr, H. H., and Scheffran, J.: Enhanced chemical
weathering as a geoengineering strategy to reduce atmospheric carbon
dioxide, supply nutrients, and mitigate ocean acidification,
Rev. Geophys., 51, 113–149, https://doi.org/10.1002/rog.20004, 2013.
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West, A. J.:
Global chemical weathering and associated P-release – The role of lithology,
temperature and soil properties, Chem. Geol., 363, 145–163,
https://doi.org/10.1016/j.chemgeo.2013.10.025, 2014.
Haynes, R. J. and Swift, R. S.: Effects of soil acidification and
subsequent leaching on levels of extractable nutrients in a soil, Plant
Soil, 95, 327–336, https://doi.org/10.1007/bf02374613, 1986.
He, Y., Zhu, Y., Smith, S., and Smith, F.: Interactions between soil
moisture content and phosphorus supply in spring wheat plants grown in pot
culture, J. Plant Nutr.,
25, 913–925,
https://doi.org/10.1081/PLN-120002969, 2002.
He, Y., Shen, Q., Kong, H., Xiong, Y., and Wang, X.: Effect of soil moisture
content and phosphorus application on phosphorus nutrition of rice
cultivated in different water regime systems, J. Plant Nutr.,
27, 2259–2272, 2005.
Herbert, D. A. and Fownes, J. H.: Phosphorus limitation of forest leaf area
and net primary production on a highly weathered soil, Biogeochemistry, 29,
223–235, https://doi.org/10.1007/bf02186049, 1995.
Hesterberg, D.: Effects of stopping liming on abandoned agricultural land,
Land Degrad. Dev., 4, 257–267, https://doi.org/10.1002/ldr.3400040409, 1993.
Holtan, H., Kamp-Nielsen, L., and Stuanes, A. O.: Phosphorus in Soil, Water and Sediment: An Overview, in: Phosphorus in Freshwater Ecosystems, edited by: Persson, G. and Jansson, M., Developments in Hydrobiology, Springer, Dordrecht, 19–34, 1988.
Hopkins, W. G. and Hüner, N. P. A.: Introduction to plant physiology,
Ed. 4, John Wiley and Sons, 2008.
Humpenöder, F., Popp, A., Dietrich, J. P., Klein, D., Lotze-Campen, H.,
Bonsch, M., Bodirsky, B. L., Weindl, I., Stevanovic, M., and Müller, C.:
Investigating afforestation and bioenergy CCS as climate change mitigation
strategies, Environ. Res. Lett., 9, 064029, https://doi.org/10.1088/1748-9326/9/6/064029, 2014.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J.,
Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones,
C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K.,
Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van
Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the
period 1500–2100: 600 years of global gridded annual land-use transitions,
wood harvest, and resulting secondary lands, Climatic Change, 109, 117,
https://doi.org/10.1007/s10584-011-0153-2, 2011.
IGBP-DIS: A program for creating global soil-property databases, IGBP
Global Soils Data Task, France, 1998.
Irvine, T. and Baragar, W.: A guide to the chemical classification of the
common volcanic rocks, Can. J. Earth Sci., 8, 523–548, 1971.
John, W.: An introduction to igneous and metamorphic petrology, Prentice Hall, Upper Saddle River, NJ, 347 pp., 2001.
Johnson, A. H., Frizano, J., and Vann, D. R.: Biogeochemical implications of
labile phosphorus in forest soils determined by the Hedley fractionation
procedure, Oecologia, 135, 487–499, https://doi.org/10.1007/s00442-002-1164-5, 2003.
Jonard, M., Legout, A., Nicolas, M., Dambrine, E., Nys, C., Ulrich, E.,
Perre, R., and Ponette, Q.: Deterioration of Norway spruce vitality despite
a sharp decline in acid deposition: a long-term integrated perspective,
Glob. Change Biol., 18, 711–725, https://doi.org/10.1111/j.1365-2486.2011.02550.x,
2012.
Jonard, M., Furst, A., Verstraeten, A., Thimonier, A., Timmermann, V.,
Potocic, N., Waldner, P., Benham, S., Hansen, K., Merila, P., Ponette, Q.,
de la Cruz, A. C., Roskams, P., Nicolas, M., Croise, L., Ingerslev, M.,
Matteucci, G., Decinti, B., Bascietto, M., and Rautio, P.: Tree mineral
nutrition is deteriorating in Europe, Glob. Chang Biol., 21, 418–430,
https://doi.org/10.1111/gcb.12657, 2015.
Kang, Y., Khan, S., and Ma, X.: Climate change impacts on crop yield, crop
water productivity and food security – A review,
Prog. Nat. Sci., 19, 1665–1674,
https://doi.org/10.1016/j.pnsc.2009.08.001, 2009.
Kantola, I. B., Masters, M. D., Beerling, D. J., Long, S. P., and DeLucia,
E. H.: Potential of global croplands and bioenergy crops for climate change
mitigation through deployment for enhanced weathering, Biol. Lett., 13,
20160714, https://doi.org/10.1098/rsbl.2016.0714, 2017.
Kempe, S.: Carbon in the rock cycle, The global carbon cycle, 380, 343–375,
1979.
Knust, C., Schua, K., and Feger, K.-H.: Estimation of Nutrient Exports
Resulting from Thinning and Intensive Biomass Extraction in Medium-Aged
Spruce and Pine Stands in Saxony, Northeast Germany, Forests, 7, 302, https://doi.org/10.3390/f7120302, 2016.
Kracher, D.: Nitrogen-Related Constraints of Carbon Uptake by Large-Scale
Forest Expansion: Simulation Study for Climate Change and Management
Scenarios, Earth's Future, 5, 1102–1118, https://doi.org/10.1002/2017EF000622, 2017.
Kvakić, M., Pellerin, S., Ciais, P., Achat, D. L., Augusto, L., Denoroy,
P., Gerber, J. S., Goll, D., Mollier, A., Mueller, N. D., Wang, X., and
Ringeval, B.: Quantifying the Limitation to World Cereal Production Due To
Soil Phosphorus Status, Global Biogeochem. Cy., 32, 143–157,
https://doi.org/10.1002/2017gb005754, 2018.
La Scala, N., Bolonhezi, D., and Pereira, G. T.: Short-term soil CO2
emission after conventional and reduced tillage of a no-till sugar cane area
in southern Brazil, Soil Till. Res., 91, 244–248, https://doi.org/10.1016/j.still.2005.11.012, 2006.
Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W., and van Breemen,
N.: Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from
minerals, Trends Ecol. Evol., 16, 248–254, https://doi.org/10.1016/S0169-5347(01)02122-X, 2001.
Lenton, T. M.: The potential for land-based biological CO2 removal to lower
future atmospheric CO2 concentration, Carbon Manag., 1, 145–160, 2010.
Lenton, T. M.: The global potential for carbon dioxide removal,
Geoengineering of the Climate System, edited by: Harrison, R. M. and Hester, R. E., Cambridge, The Royal Society of Chemistry, London, 52–79, 2014.
Lenton, T. M. and Britton, C.: Enhanced carbonate and silicate weathering
accelerates recovery from fossil fuel CO2 perturbations, Global Biogeochem. Cy., 20, GB3009, https://doi.org/10.1029/2005GB002678,
2006.
Leonardos, O. H., Fyfe, W. S., and Kronberg, B. I.: The use of ground rocks
in laterite systems: An improvement to the use of conventional soluble
fertilizers?, Chem. Geol., 60, 361–370, https://doi.org/10.1016/0009-2541(87)90143-4, 1987.
Liu, S., Han, C., Liu, J., and Li, H.: Hydrothermal decomposition of
potassium feldspar under alkaline conditions, RSC Adv., 5, 93301–93309,
2015.
Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and
Lucht, W.: Global food demand, productivity growth, and the scarcity of land
and water resources: a spatially explicit mathematical programming approach,
Agr. Econ., 39, 325–338, 2008.
Ma, X., Ma, H., and Yang, J.: Sintering Preparation and Release Properties
of K2MgSi3O8 Slow-Release Fertilizer Using Biotite Acid-Leaching Residues as
Silicon Source, Ind. Eng. Chem. Res., 55,
10926–10931, 2016a.
Ma, X., Yang, J., Ma, H., and Liu, C.: Hydrothermal extraction of potassium
from potassic quartz syenite and preparation of aluminum hydroxide,
Int. J. Miner. Process., 147, 10–17, 2016b.
Madsen, H. B.: Distribution of spring barley roots in Danish soils, of
different texture and under different climatic conditions, Plant Soil,
88, 31–43, https://doi.org/10.1007/bf02140664, 1985.
Menge, D. N. L., Hedin, L. O., and Pacala, S. W.: Nitrogen and Phosphorus
Limitation over Long-Term Ecosystem Development in Terrestrial Ecosystems,
PLoS ONE, 7, e42045, https://doi.org/10.1371/journal.pone.0042045, 2012.
Mersi, W. V., Kuhnert-Finkernagel, R., and Schinner, F.: The influence of
rock powders on microbial activity of three forest soils,
Z. Pflanz. Bodenkunde, 155, 29–33, https://doi.org/10.1002/jpln.19921550107, 1992.
Moon, S., Chamberlain, C. P., and Hilley, G. E.: New estimates of silicate
weathering rates and their uncertainties in global rivers, Geochim. Cosmochim. Ac., 134, 257–274, https://doi.org/10.1016/j.gca.2014.02.033, 2014.
Müller, C. and Robertson, R. D.: Projecting future crop productivity
for global economic modeling, Agr. Econ., 45, 37–50,
https://doi.org/10.1111/agec.12088, 2013.
Munkholm, L. J., Schjønning, P., and Sørensen, H.: Jordpakning og
mekanisk løsning på grovsandet jord, Ministeriet for Fødevarer,
Landbrug og Fiskeri, Viborg, 6 pp., 2003.
National Research Council: Climate Intervention: Carbon Dioxide Removal and Reliable
Sequestration, The National Academies Press, Washington, DC, 154 pp., 2015.
Nkouathio, D. G., Wandji, P., Bardintzeff, J. M., Tematio, P., Kagou Dongmo,
A., and Tchoua, F.: Utilisation des roches volcaniques pour la
remineralisation des sols ferrallitiques des regions tropicales. Cas des
pyroclastites basaltiques du graben de Tombel (Ligne volcanique du
Cameroun), Bull. Soc. Vaudoise Sci. Nat., 14 pp., 2008.
Noordin, W., Zulkefly, S., Shamshuddin, J., and Hanafi, M.: Improving soil
chemical properties and growth performance of Hevea Brasiliensis through
basalt application, International Proceedings of IRC 2017, 1, 308–323, 2017.
Nunes, J. M. G., Kautzmann, R. M., and Oliveira, C.: Evaluation of the
natural fertilizing potential of basalt dust wastes from the mining district
of Nova Prata (Brazil), J. Clean. Prod., 84, 649–656,
https://doi.org/10.1016/j.jclepro.2014.04.032, 2014.
Olness, A. and Archer, D.: Effect of organic carbon on available water in
soil, Soil Sci., 170, 90–101, 2005.
Olsen, M.: Orienterende forsøg vedrørende jordes dybdebehandling,
Hedeselskabets Forskningsvirksomhed, Viborg, 41 pp., 1958.
Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E.,
Maier, C., Schafer, K. V., McCarthy, H., Hendrey, G., McNulty, S. G., and
Katul, G. G.: Soil fertility limits carbon sequestration by forest
ecosystems in a CO2-enriched atmosphere, Nature, 411, 469–472,
https://doi.org/10.1038/35078064, 2001.
Pardo, L. H., Robin-Abbott, M., Duarte, N., and Miller, E., K.: Tree
Chemistry Database (Version 1.0), United States Department of Agriculture,
NE-324. Newtown Square PA, Gen. Tech. Rep., 45, available at: https://www.fs.usda.gov/treesearch/pubs/9464 (last access: 14 April 2020), 2005.
Pontius, R.: Quantification error versus location error in comparison of
categorical maps, Photogramm. Eng. Rem. S., 66,
540–540, 2000.
Popp, A., Lotze-Campen, H., and Bodirsky, B.: Food consumption, diet shifts
and associated non-CO2 greenhouse gases from agricultural production, Global Environ. Chang., 20, 451–462, 2010.
Popp, A., Lotze-Campen, H., Leimbach, M., Knopf, B., Beringer, T., Bauer,
N., and Bodirsky, B.: On sustainability of bioenergy production: Integrating
co-emissions from agricultural intensification, Biomass Bioenerg., 35,
4770–4780, https://doi.org/10.1016/j.biombioe.2010.06.014,
2011.
Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F.,
Stehfest, E., Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti, M.,
Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin,
H., Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H.,
Fricko, O., Riahi, K., and Vuuren, D. P. V.: Land-use futures in the shared
socio-economic pathways, Global Environ. Chang., 42, 331–345,
https://doi.org/10.1016/j.gloenvcha.2016.10.002, 2017.
Porder, S. and Hilley, G. E.: Linking chronosequences with the rest of the
world: predicting soil phosphorus content in denuding landscapes,
Biogeochemistry, 102, 153–166, https://doi.org/10.1007/s10533-010-9428-3, 2011.
Porder, S. and Ramachandran, S.: The phosphorus concentration of common
rocks–a potential driver of ecosystem P status, Plant Soil, 367,
41–55, 2013.
Raymond, P. A. and Hamilton, S. K.: Anthropogenic influences on riverine
fluxes of dissolved inorganic carbon to the oceans,
Limnology and Oceanography Letters, 3, 143–155, 2018.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM,
J. Adv. Model. Earth Sy., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Reicosky, D. C.: Tillage-induced CO2 emission from soil,
Nutr. Cycl. Agroecosys., 49, 273–285, https://doi.org/10.1023/A:1009766510274, 1997.
Renforth, P.: The potential of enhanced weathering in the UK, Int. J. Greenh. Gas Con., 10, 229–243, https://doi.org/10.1016/j.ijggc.2012.06.011,
2012.
Renforth, P., von Strandmann, P. A. E. P., and Henderson, G. M.: The
dissolution of olivine added to soil: Implications for enhanced weathering,
Appl. Geochem., 61, 109–118, https://doi.org/10.1016/j.apgeochem.2015.05.016, 2015.
Ringeval, B., Kvakić, M., Augusto, L., Ciais, P., Goll, D., Mueller, N. D., Müller, C., Nesme, T., Vuichard, N., Wang, X., and Pellerin, S.: Insights on nitrogen and phosphorus co-limitation in global croplands from theoretical and modelling fertilization experiments, Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-298, 2019.
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin Iii, F.
S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H.
J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H.,
Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M.,
Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman,
D., Richardson, K., Crutzen, P., and Foley, J. A.: A safe operating space
for humanity, Nature, 461, 472–475, https://doi.org/10.1038/461472a, 2009.
Romero-Mujalli, G., Hartmann, J., Börker, J., Gaillardet, J., and
Calmels, D.: Ecosystem controlled soil-rock pCO2 and carbonate weathering –
Constraints by temperature and soil water content, Chem. Geol., 527,
118634,
https://doi.org/10.1016/j.chemgeo.2018.01.030, 2018.
Rossato, L., Alvalá, R. C. D. S., Marengo, J. A., Zeri, M., Cunha, A. P.
M. D. A., Pires, L. B. M., and Barbosa, H. A.: Impact of Soil Moisture on
Crop Yields over Brazilian Semiarid, Front. Environ. Sci., 5,
73, https://doi.org/10.3389/fenvs.2017.00073, 2017.
Sadras, V. O. and Milroy, S. P.: Soil-water thresholds for the responses of
leaf expansion and gas exchange: A review, Field Crop. Res., 47, 253–266,
https://doi.org/10.1016/0378-4290(96)00014-7, 1996.
Sairam, R.: Physiology of waterlogging tolerance in plants, National Seminar
on Sustainable Crop Productivity through Physiological Interventions, 24–26 November 2011,
Matunga, Mumbai, 2011.
Saxton, K., Rawls, W. J., Romberger, J., and Papendick, R.: Estimating
generalized soil-water characteristics from texture 1, Soil Sci. Soc.
Am. J., 50, 1031–1036, 1986.
Saxton, K. E. and Rawls, W. J.: Soil water characteristic estimates by
texture and organic matter for hydrologic solutions, Soil Sci. Soc.
Am. J., 70, 1569–1578, 2006.
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: rosetta: a computer
program for estimating soil hydraulic parameters with hierarchical
pedotransfer functions, J. Hydrol., 251, 163–176, https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
Schuiling, R. D. and Krijgsman, P.: Enhanced Weathering: An Effective and
Cheap Tool to Sequester CO2, Climatic Change, 74, 349–354,
https://doi.org/10.1007/s10584-005-3485-y, 2006.
Sharpley, A.: Phosphorus availability, CRC Press, Boca Raton Florida,
D18–D37, 2000.
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., and
Zhang, F.: Phosphorus Dynamics: From Soil to Plant, Plant Physiol., 156,
997–1005, https://doi.org/10.1104/pp.111.175232, 2011.
Singh, B. and Schulze, D.: Soil minerals and plant nutrition,
Nature Education Knowledge, 6, 1, 2015.
Smeets, E. M. W. and Faaij, A. P. C.: Bioenergy potentials from forestry in
2050, Climatic Change, 81, 353–390, https://doi.org/10.1007/s10584-006-9163-x, 2007.
Smith, P.: Agricultural greenhouse gas mitigation potential globally, in
Europe and in the UK: what have we learnt in the last 20 years?, Glob. Change Biol., 18, 35–43, https://doi.org/10.1111/j.1365-2486.2011.02517.x, 2012.
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B.,
Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P.,
Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G.,
Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T.,
Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F.,
Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M.,
Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata,
Y., Edmonds, J., and Yongsung, C.: Biophysical and economic limits to
negative CO2 emissions, Nature Climate Change, 6, 42–50, https://doi.org/10.1038/nclimate2870,
2015.
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B.,
Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P.,
Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G.,
Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grubler,
A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E.,
Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A.,
Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds,
J., and Yongsung, C.: Biophysical and economic limits to negative CO2
emissions, Nat. Clim. Change, 6, 42–50, https://doi.org/10.1038/nclimate2870,
2016.
Smith, W. K., Zhao, M., and Running, S. W.: Global Bioenergy Capacity as
Constrained by Observed Biospheric Productivity Rates, BioScience, 62,
911–922, https://doi.org/10.1525/bio.2012.62.10.11, 2012.
Sonntag, S., Pongratz, J., Reick, C. H., and Schmidt, H.: Reforestation in a
high-CO2 world—Higher mitigation potential than expected, lower adaptation
potential than hoped for, Geophys. Res. Lett., 43, 6546–6553,
https://doi.org/10.1002/2016gl068824, 2016.
Stefánsson, A., Gıìslason, S. R., and Arnórsson, S.: Dissolution
of primary minerals in natural waters: II. Mineral saturation state,
Chem. Geol., 172, 251–276, 2001.
Straaten, P. V.: Agrogeology: the use of rocks for crops, 631.4 S894,
Ed. Enviroquest Ltd, 440 pp., 2007.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.:
Potential and costs of Carbon Dioxide Removal by Enhanced Weathering of
rocks, Environ. Res. Lett., 13, 034010, https://doi.org/10.1088/1748-9326/aaa9c4, 2018.
Sun, Y., Peng, S., Goll, D. S., Ciais, P., Guenet, B., Guimberteau, M.,
Hinsinger, P., Janssens, I. A., Peñuelas, J., Piao, S., Poulter, B.,
Violette, A., Yang, X., Yin, Y., and Zeng, H.: Diagnosing phosphorus
limitations in natural terrestrial ecosystems in carbon cycle models,
Earth's Future, 5, 730–749, https://doi.org/10.1002/2016ef000472, 2017.
Tanner, E. V. J., Vitousek, P. M., and Cuevas, E.: Experimental
investigation of nutrient limitation of forest growth on wet tropical
mountains, Ecology, 79, 10–22, 1998.
Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., and
Beerling, D. J.: Biological weathering and the long-term carbon cycle:
integrating mycorrhizal evolution and function into the current paradigm,
Geobiology, 7, 171–191, https://doi.org/10.1111/j.1472-4669.2009.00194.x, 2009.
Taylor, L. L., Quirk, J., Thorley, R. M. S., Kharecha, P. A., Hansen, J.,
Ridgwell, A., Lomas, M. R., Banwart, S. A., and Beerling, D. J.: Enhanced
weathering strategies for stabilizing climate and averting ocean
acidification, Nat. Clim. Change, 6, 402–406, https://doi.org/10.1038/nclimate2882,
2015.
Theodoro, S. H., de Souza Martins, E., Fernandes, M. M., and de Carvalho, A.
M. X.: II Congresso Brasileiro de Rochagem, Poços de Caldas – MG, 2013.
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel,
P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., and
Edmonds, J. A.: RCP4.5: a pathway for stabilization of radiative forcing by
2100, Climatic Change, 109, 77–94, https://doi.org/10.1007/s10584-011-0151-4, 2011.
Tokimatsu, K., Yasuoka, R., and Nishio, M.: Global zero emissions scenarios:
The role of biomass energy with carbon capture and storage by forested land
use, Appl. Energ., 185, 1899–1906, https://doi.org/10.1016/j.apenergy.2015.11.077, 2017.
Uhlig, D. and von Blanckenburg, F.: How Slow Rock Weathering Balances
Nutrient Loss During Fast Forest Floor Turnover in Montane, Temperate Forest
Ecosystems, Front. Earth Sci., 7, 159, https://doi.org/10.3389/feart.2019.00159, 2019.
Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L., and von Blanckenburg, F.: Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes, Biogeosciences, 14, 3111–3128, https://doi.org/10.5194/bg-14-3111-2017, 2017.
Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., and Jackson, R. B.:
A Global Database of Carbon and Nutrient Concentrations of Green and
Senesced Leaves, ORNL Distributed Active Archive Center, available at: https://daac.ornl.gov/VEGETATION/guides/Leaf_carbon_nutrients.html (last access: 14 April 2020), 2012.
Vienken, T. and Dietrich, P.: Field evaluation of methods for determining
hydraulic conductivity from grain size data, J. Hydrol., 400,
58–71, 2011.
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A.,
Schindler, D. W., Schlesinger, W. H., and Tilman, D. G.: Human alteration of
the global nitrogen cycle: sources and consequences, Ecol.
Appl., 7, 737–750, 1997.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.:
Terrestrial phosphorus limitation: mechanisms, implications, and
nitrogen–phosphorus interactions, Ecol. Appl., 20, 5–15,
https://doi.org/10.1890/08-0127.1, 2010.
von Liebig, J. F. and Playfair, L. P. B.: Chemistry in its application to
agriculture and physiology, JM Campbell, 1843.
Von Wilpert, K. and Lukes, M.: Ecochemical effects of phonolite rock
powder, dolomite and potassium sulfate in a spruce stand on an acidified
glacial loam, Nutr. Cycl. Agroecosys., 65, 115–127, 2003.
Waldbauer, J. R. and Chamberlain, C. P.: Influence of uplift, weathering,
and base cation supply on past and future CO2 levels, in: A history of
atmospheric CO2 and its effects on Plants, Animals, and Ecosystems,
Springer, 166–184, 2005.
Walker, J. C., Hays, P., and Kasting, J. F.: A negative feedback mechanism
for the long-term stabilization of Earth's surface temperature, J.
Geophys. Res.-Oceans, 86, 9776–9782, 1981.
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D., Boucher, O., Ciais, P.,
Janssens, I., Penuelas, J., Guenet, B., Sardans, J., Bopp, L., Vuichard, N.,
Zhou, F., Li, B., Piao, S., Peng, S., Huang, Y., and Tao, S.: Global forest
carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100,
Glob. Change Biol., 23, 4854–4872, https://doi.org/10.1111/gcb.13766, 2017.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7, 2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Whitfield, C. J. and Reid, C.: Predicting surface area of coarse-textured
soils: Implications for weathering rates, Can. J. Soil Sci.,
93, 621–630, 2013.
Wösten, J. H. M., Pachepsky, Y. A., and Rawls, W. J.: Pedotransfer
functions: bridging the gap between available basic soil data and missing
soil hydraulic characteristics, J. Hydrol., 251, 123–150,
https://doi.org/10.1016/S0022-1694(01)00464-4, 2001.
Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V.,
Sayer, E. J., Santiago, L. S., Kaspari, M., Hedin, L. O., and Harms, K. E.:
Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or
litter production in a lowland tropical forest, Ecology, 92, 1616–1625,
2011.
Yang, X., Post, W. M., Thornton, P. E., and Jain, A. K.: Global Gridded Soil
Phosphorus Distribution Maps at 0.5-degree Resolution, ORNL Distributed
Active Archive Center, available at: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1223 (last access: 14 April 2020), 2014a.
Yang, X., Thornton, P. E., Ricciuto, D. M., and Post, W. M.: The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP, Biogeosciences, 11, 1667–1681, https://doi.org/10.5194/bg-11-1667-2014, 2014b.
Yasunari, T.: The Uplift of the Himalaya-Tibetan Plateau and Human
Evolution: An Overview on the Connection Among the Tectonics, Eco-Climate
System and Human Evolution During the Neogene Through the Quaternary Period,
in: Himalayan Weather and Climate and their Impact on the Environment,
edited by: Dimri, A. P., Bookhagen, B., Stoffel, M., and Yasunari, T.,
Springer International Publishing, Cham, 281–305, 2020.
Yousefpour, R., Nabel, J. E. M. S., and Pongratz, J.: Simulating growth-based harvest adaptive to future climate change, Biogeosciences, 16, 241–254, https://doi.org/10.5194/bg-16-241-2019, 2019.
Zaehle, S. and Dalmonech, D.: Carbon–nitrogen interactions on land at
global scales: current understanding in modelling climate biosphere
feedbacks, Curr. Opin. Env. Sust., 3, 311–320,
2011.
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to...
Altmetrics
Final-revised paper
Preprint