Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1619-2021
https://doi.org/10.5194/bg-18-1619-2021
Technical note
 | 
09 Mar 2021
Technical note |  | 09 Mar 2021

Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water

Matthias Koschorreck, Yves T. Prairie, Jihyeon Kim, and Rafael Marcé

Related authors

Surface CO2 Gradients Challenge Conventional CO2 Emission Quantification in Lentic Water Bodies under Calm Conditions
Patrick Aurich, Uwe Spank, and Matthias Koschorreck
EGUsphere, https://doi.org/10.5194/egusphere-2024-2550,https://doi.org/10.5194/egusphere-2024-2550, 2024
Short summary
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022,https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments
Lukas Lesmeister and Matthias Koschorreck
Atmos. Meas. Tech., 10, 2377–2382, https://doi.org/10.5194/amt-10-2377-2017,https://doi.org/10.5194/amt-10-2377-2017, 2017
Short summary
CO2 emissions from German drinking water reservoirs estimated from routine monitoring data
H. Saidi and M. Koschorreck
Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-648,https://doi.org/10.5194/bg-2015-648, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Zhao-Jun Yong, Wei-Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin
Biogeosciences, 21, 5247–5260, https://doi.org/10.5194/bg-21-5247-2024,https://doi.org/10.5194/bg-21-5247-2024, 2024
Short summary
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024,https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024,https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024,https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024,https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary

Cited articles

Aberg, J. and Wallin, M. B.: Evaluating a fast headspace method for measuring DIC and subsequent calculation of PCO2 in freshwater systems, Inland Waters, 4, 157–166, 2014. 
Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges, A. V.: Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, 2015. 
Cawley, K. M.: neonDissGas: Calculates Dissolved CO2, CH4, and N2O Concentrations in Surface Water, in: R-package, available at: https://github.com/NEONScience/NEON-dissolved-gas/tree/master/neonDissGas (last access: 3 March 2021), 2018. 
Cole, J. J. and Prairie, Y. T.: Dissolved CO2, in: Encyclopedia of Inland Waters, Elsevier, available at: https://www.sciencedirect.com/referencework/9780123706263/encyclopedia-of-inland-waters#book-info (last access: 3 March 2021), 2009. 
Dickson, A. G. and Riley, J. P.: The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water – Kw, Mar. Chem., 7, 89–99, https://doi.org/10.1016/0304-4203(79)90001-X, 1979. 
Download
Short summary
The concentration of carbon dioxide (CO2) in water samples is often measured using a gas chromatograph. Depending on the chemical composition of the water, this method can produce wrong results. We quantified the possible error and how it depends on water composition and the analytical procedure. We propose a method to correct wrong results by additionally analysing alkalinity in the samples. We provide an easily usable computer code to perform the correction calculations.
Altmetrics
Final-revised paper
Preprint