Articles | Volume 18, issue 13
https://doi.org/10.5194/bg-18-4021-2021
https://doi.org/10.5194/bg-18-4021-2021
Research article
 | 
06 Jul 2021
Research article |  | 06 Jul 2021

Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study

Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Note on correspondence author: the email address included in the article is outdated. Please use christopher.taylor-5@manchester.ac.uk instead.

Related authors

Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP)
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022,https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
The effects of sealing on urban soil carbon and nutrients
Roisin O'Riordan, Jess Davies, Carly Stevens, and John N. Quinton
SOIL, 7, 661–675, https://doi.org/10.5194/soil-7-661-2021,https://doi.org/10.5194/soil-7-661-2021, 2021
Short summary
Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019,https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
Michael M. Loranty, Benjamin W. Abbott, Daan Blok, Thomas A. Douglas, Howard E. Epstein, Bruce C. Forbes, Benjamin M. Jones, Alexander L. Kholodov, Heather Kropp, Avni Malhotra, Steven D. Mamet, Isla H. Myers-Smith, Susan M. Natali, Jonathan A. O'Donnell, Gareth K. Phoenix, Adrian V. Rocha, Oliver Sonnentag, Ken D. Tape, and Donald A. Walker
Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018,https://doi.org/10.5194/bg-15-5287-2018, 2018
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary

Cited articles

Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review, Biogeochemistry, 131, 173–202, https://doi.org/10.1007/s10533-016-0274-9, 2016. 
Aciego, S. M., Riebe, C. S., Hart, S. C., Blakowski, M. A., Carey, C. J., Aarons, S. M., Dove, N. C., Botthoff, J. K., Sims, K. W. W., and Aronson, E. L.: Dust outpaces bedrock in nutrient supply to montane forest ecosystems, Nat. Commun., 8, 14800, https://doi.org/10.1038/ncomms14800, 2017. 
Adams, M. A. and Pate, J. S.: Availability of organic and inorganic forms of phosphorus to Lupins (Lupinus spp.), Plant Soil, 145, 107–113, https://doi.org/10.1007/bf00009546, 1992. 
An, Z., Niu, D.-C., Wen, H.-Y., Yang, Y., Zhang, H.-R., and Fu, H.: Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China, Chinese J. Plant Ecol., 35, 801–807, https://doi.org/10.3724/SP.J.1258.2011.00801, 2011. 
Barrow, N. J.: Comparing two theories about the nature of soil phosphate, Eur. J. Soil Sci., 72, 679–685, https://doi.org/10.1111/ejss.13027, 2021. 
Download

Please read the editorial note first before accessing the article.

Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Altmetrics
Final-revised paper
Preprint