Articles | Volume 18, issue 13
https://doi.org/10.5194/bg-18-4021-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4021-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
Christopher R. Taylor
CORRESPONDING AUTHOR
Department of Animal and Plant Sciences, University of Sheffield,
Sheffield, UK
Victoria Janes-Bassett
Lancaster Environment Centre, Lancaster University, Lancaster, UK
Gareth K. Phoenix
Department of Animal and Plant Sciences, University of Sheffield,
Sheffield, UK
Ben Keane
Department of Animal and Plant Sciences, University of Sheffield,
Sheffield, UK
Iain P. Hartley
Geography, College of Life and Environmental Science, University of
Exeter, Exeter, UK
Jessica A. C. Davies
Lancaster Environment Centre, Lancaster University, Lancaster, UK
Note on correspondence author: the email address included in the article is outdated. Please use christopher.taylor-5@manchester.ac.uk instead.
Related authors
No articles found.
Sebastian Gonzalez-Caro, Mirindi Eric Dusenge, Zorayda Restrepo, Andrew J. Cox, Ian P. Hartley, Patrick Meir, Adriana Sanchez, Daniel Ruiz-Carrascal, and Lina M. Mercado
EGUsphere, https://doi.org/10.5194/egusphere-2025-3434, https://doi.org/10.5194/egusphere-2025-3434, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We evaluated photosynthetic trait variability in montane and lowland tree species using a leaf-level model and transplant experiments across three elevations in the tropical Andes. Intraspecific variation in Vcmax and Jmax proved key for accurate modeling. PAR and temperature limited photosynthesis at 14 °C, while VPD was limiting at 22 °C. Using lowland parameters underestimates montane photosynthesis by up to 65 %. Models should include intra- and interspecific variability.
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022, https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Short summary
In tropical ecosystems, the availability of rock-derived elements such as P can be very low. Thus, without a representation of P cycling, tropical forest responses to rising atmospheric CO2 conditions in areas such as Amazonia remain highly uncertain. We introduced P dynamics and its interactions with the N and P cycles into the JULES model. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon forest with low-fertility soils.
Roisin O'Riordan, Jess Davies, Carly Stevens, and John N. Quinton
SOIL, 7, 661–675, https://doi.org/10.5194/soil-7-661-2021, https://doi.org/10.5194/soil-7-661-2021, 2021
Short summary
Short summary
As urban populations grow, soil sealing with impermeable surfaces will increase. At present there is limited knowledge on the effect of sealing on soil carbon and nutrients. We found that, in general, sealing reduced soil carbon and nutrients; however, where there were additions due to human activity, soil carbon and nutrients were increased. This suggests that there is a legacy soil carbon store in areas with an industrial past and highlights the influence of artefacts in urban soil.
Cited articles
Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future
challenges in coupled C-N-P cycle models for terrestrial ecosystems under
global change: a review, Biogeochemistry, 131, 173–202,
https://doi.org/10.1007/s10533-016-0274-9, 2016.
Aciego, S. M., Riebe, C. S., Hart, S. C., Blakowski, M. A., Carey, C. J.,
Aarons, S. M., Dove, N. C., Botthoff, J. K., Sims, K. W. W., and Aronson, E.
L.: Dust outpaces bedrock in nutrient supply to montane forest ecosystems,
Nat. Commun., 8, 14800, https://doi.org/10.1038/ncomms14800, 2017.
Adams, M. A. and Pate, J. S.: Availability of organic and inorganic forms of
phosphorus to Lupins (Lupinus spp.), Plant Soil, 145, 107–113,
https://doi.org/10.1007/bf00009546, 1992.
An, Z., Niu, D.-C., Wen, H.-Y., Yang, Y., Zhang, H.-R., and Fu, H.: Effects of
N addition on nutrient resorption efficiency and C:N:P stoichiometric
characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau,
China, Chinese J. Plant Ecol., 35, 801–807,
https://doi.org/10.3724/SP.J.1258.2011.00801, 2011.
Barrow, N. J.: Comparing two theories about the nature of soil phosphate,
Eur. J. Soil Sci., 72, 679–685, https://doi.org/10.1111/ejss.13027, 2021.
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore,
M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B.,
Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries,
W.: Global assessment of nitrogen deposition effects on terrestrial plant
diversity: a synthesis, Ecol. Appl., 20, 30–59,
https://doi.org/10.1890/08-1140.1, 2010.
Bünemann, E. K., Oberson, A., Liebisch, F., Keller, F., Annaheim, K. E.,
Huguenin-Elie, O., and Frossard, E.: Rapid microbial phosphorus
immobilization dominates gross phosphorus fluxes in a grassland soil with
low inorganic phosphorus availability, Soil Biol. Biochem., 51,
84–95, https://doi.org/10.1016/j.soilbio.2012.04.012, 2012.
Caldwell, B. A.: Enzyme activities as a component of soil biodiversity: A
review, Pedobiologia, 49, 637–644, https://doi.org/10.1016/j.pedobi.2005.06.003, 2005.
Carroll, J. A., Caporn, S. J. M., Johnson, D., Morecroft, M. D., and Lee, J.
A.: The interactions between plant growth, vegetation structure and soil
processes in semi-natural acidic and calcareous grasslands receiving
long-term inputs of simulated pollutant nitrogen deposition, Environ.
Pollut., 121, 363–376, https://doi.org/10.1016/s0269-7491(02)00241-5, 2003.
Chapin, F. S., Matson, P. A., and Vitousek, P. M. (Eds.): Nutrient cycling, in: Principles of Terrestrial Ecosystem Ecology, Springer, New York, 259–296, 2011.
Chen, J., van Groenigen, K. J., Hungate, B. A., Terrer, C., van Groenigen,
J. W., Maestre, F. T., Ying, S. C., Luo, Y. Q., Jorgensen, U., Sinsabaugh,
R. L., Olesen, J. E., and Elsgaard, L.: Long-term nitrogen loading
alleviates phosphorus limitation in terrestrial ecosystems, Glob. Change
Biol., 26, 5077–5086, https://doi.org/10.1111/gcb.15218, 2020.
Danger, M., Daufresne, T., Lucas, F., Pissard, S., and Lacroix, G.: Does
Liebig's law of the minimum scale up from species to communities?, Oikos,
117, 1741–1751, https://doi.org/10.1111/j.1600-0706.2008.16793.x, 2008.
Davies, J. A. C., Tipping, E., and Whitmore, A. P.: 150 years of
macronutrient change in unfertilized UK ecosystems: Observations vs
simulations, Sci. Total Environ., 572, 1485–1495,
https://doi.org/10.1016/j.scitotenv.2016.03.055, 2016a.
Davies, J. A. C., Tipping, E., Rowe, E. C., Boyle, J. F., Pannatier, E. G.,
and Martinsen, V.: Long-term P weathering and recent N deposition control
contemporary plant-soil C, N, and P, Global Biogeochem. Cy., 30,
231–249, https://doi.org/10.1002/2015gb005167, 2016b.
Du, E. Z., Terrer, C., Pellegrini, A. F. A., Ahlstrom, A., van Lissa, C. J.,
Zhao, X., Xia, N., Wu, X. H., and Jackson, R. B.: Global patterns of
terrestrial nitrogen and phosphorus limitation, Nat. Geosci., 13, 221–226,
https://doi.org/10.1038/s41561-019-0530-4, 2020.
Fay, P. A., Prober, S. M., Harpole, W. S., Knops, J. M. H., Bakker, J. D.,
Borer, E. T., Lind, E. M., MacDougall, A. S., Seabloom, E. W., Wragg, P. D.,
Adler, P. B., Blumenthal, D. M., Buckley, Y., Chu, C. J., Cleland, E. E.,
Collins, S. L., Davies, K. F., Du, G. Z., Feng, X. H., Firn, J., Gruner, D.
S., Hagenah, N., Hautier, Y., Heckman, R. W., Jin, V. L., Kirkman, K. P.,
Klein, J., Ladwig, L. M., Li, Q., McCulley, R. L., Melbourne, B. A.,
Mitchell, C. E., Moore, J. L., Morgan, J. W., Risch, A. C., Schutz, M.,
Stevens, C. J., Wedin, D. A., and Yang, L. H.: Grassland productivity
limited by multiple nutrients, Nat. Plants, 1, 15080, https://doi.org/10.1038/nplants.2015.80,
2015.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M. K., Haverd,
V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E.,
Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A.,
Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y. P., Yang, X. J., Zaehle,
S., Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization
dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9, 2019.
Fornara, D. A., Banin, L., and Crawley, M. J.: Multi-nutrient vs.
nitrogen-only effects on carbon sequestration in grassland soils, Glob.
Change Biol., 19, 3848–3857, https://doi.org/10.1111/gcb.12323, 2013.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S.,
Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P.,
Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D.,
Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first
century, Philos. T. R. Soc. B, 368, 1–13, https://doi.org/10.1098/rstb.2013.0164, 2013.
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P.
B., van Bodegom, P. M., and Niinemets, U.: Nutrient limitation reduces land
carbon uptake in simulations with a model of combined carbon, nitrogen and
phosphorus cycling, Biogeosciences, 9, 3547–3569, https://doi.org/10.5194/bg-9-3547-2012,
2012.
Gundale, M. J., Bach, L. H., and Nordin, A.: The impact of simulated chronic
nitrogen deposition on the biomass and N-2-fixation activity of two boreal
feather moss-cyanobacteria associations, Biol. Lett., 9, 1–4,
https://doi.org/10.1098/rsbl.2013.0797, 2013.
Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T.,
Bracken, M. E. S., Elser, J. J., Gruner, D. S., Hillebrand, H., Shurin, J.
B., and Smith, J. E.: Nutrient co-limitation of primary producer
communities, Ecol. Lett., 14, 852–862, https://doi.org/10.1111/j.1461-0248.2011.01651.x,
2011.
He, N. P., Yu, Q., Wang, R. M., Zhang, Y. H., Gao, Y., and Yu, G. R.:
Enhancement of Carbon Sequestration in Soil in the Temperature Grasslands of
Northern China by Addition of Nitrogen and Phosphorus, Plos One, 8, 10,
https://doi.org/10.1371/journal.pone.0077241, 2013.
Horswill, P., O'Sullivan, O., Phoenix, G. K., Lee, J. A., and Leake, J. R.:
Base cation depletion, eutrophication and acidification of species-rich
grasslands in response to long-term simulated nitrogen deposition,
Environ. Pollut., 155, 336–349, https://doi.org/10.1016/j.envpol.2007.11.006, 2008.
Hou, E. Q., Luo, Y. Q., Kuang, Y. W., Chen, C. R., Lu, X. K., Jiang, L. F.,
Luo, X. Z., and Wen, D. Z.: Global meta-analysis shows pervasive phosphorus
limitation of aboveground plant production in natural terrestrial
ecosystems, Nat. Commun., 11, 637, https://doi.org/10.1038/s41467-020-14492-w, 2020.
Janes-Bassett, V., Davies, J., Rowe, E. C., and Tipping, E.: Simulating
long-term carbon nitrogen and phosphorus biogeochemical cycling in
agricultural environments, Sci. Total Environ., 714, 136599,
https://doi.org/10.1016/j.scitotenv.2020.136599, 2020.
Jiang, M. K., Caldararu, S., Zaehle, S., Ellsworth, D. S., and Medlyn, B.
E.: Towards a more physiological representation of vegetation phosphorus
processes in land surface models, New Phytol., 222, 1223–1229,
https://doi.org/10.1111/nph.15688, 2019.
Johnson, D., Leake, J. R., and Lee, J. A.: The effects of quantity and
duration of simulated pollutant nitrogen deposition on root-surface
phosphatase activities in calcareous and acid grasslands: a bioassay
approach, New Phytol., 141, 433–442, https://doi.org/10.1046/j.1469-8137.1999.00360.x,
1999.
Jones, M. B. and Donnelly, A.: Carbon sequestration in temperate grassland
ecosystems and the influence of management, climate and elevated CO(2), New
Phytol., 164, 423–439, https://doi.org/10.1111/j.1469-8137.2004.01201.x, 2004.
Keane, J. B., Hoosbeek, M. R., Taylor, C. R., Miglietta, F., Phoenix, G. K., and Hartley, I. P.: Soil C, N and P cycling enzyme responses to nutrient limitation under elevated CO2, Biogeochemistry, 151, 221–235, https://doi.org/10.1007/s10533-020-00723-1, 2020.
Kooijman, A. M., Dopheide, J. C. R., Sevink, J., Takken, I., and Verstraten,
J. M.: Nutrient limitations and their implications on the effects of
atmospheric deposition in coastal dunes; lime-poor and lime-rich sites in
the Netherlands, J. Ecol., 86, 511–526,
https://doi.org/10.1046/j.1365-2745.1998.00273.x, 1998.
Lajtha, K., Driscoll, C. T., Jarrell, W. M., and Elliott, E. T.: Soil
phosphorus: characterization and total element analysis, in:
Standard soil methods for long-term ecological research, edited by: Robertson, G.
P., Coleman, D. C., Bledsoe, C. S., and Sollins, P., New York, NY,
Oxford University Press, 115–142, 1999.
LeBauer, D. S. and Treseder, K. K.: Nitrogen limitation of net primary
productivity in terrestrial ecosystems is globally distributed, Ecology, 89,
371–379, https://doi.org/10.1890/06-2057.1, 2008.
Li, J. H., Hou, Y. L., Zhang, S. X., Li, W. J., Xu, D. H., Knops, J. M. H.,
and Shi, X. M.: Fertilization with nitrogen and/or phosphorus lowers soil
organic carbon sequestration in alpine meadows, Land Degrad.
Dev., 29, 1634–1641, https://doi.org/10.1002/ldr.2961, 2018.
Long, M., Wu, H. H., Smith, M. D., La Pierre, K. J., Lu, X. T., Zhang, H.
Y., Han, X. G., and Yu, Q.: Nitrogen deposition promotes phosphorus uptake
of plants in a semi-arid temperate grassland, Plant Soil, 408, 475–484,
https://doi.org/10.1007/s11104-016-3022-y, 2016.
Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A. C., Hartwig, U.,
Hungate, B., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw,
M. R., Zak, D. R., and Field, C. B.: Progressive nitrogen limitation of
ecosystem responses to rising atmospheric carbon dioxide, Bioscience, 54,
731–739, https://doi.org/10.1641/0006-3568(2004)054[0731:pnloer]2.0.co;2, 2004.
Margalef, O., Sardans, J., Fernandez-Martinez, M., Molowny-Horas, R.,
Janssens, I. A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio,
D., and Penuelas, J.: Global patterns of phosphatase activity in natural
soils, Sci. Rep., 7, 1337, https://doi.org/10.1038/s41598-017-01418-8, 2017.
Menge, D. N. L. and Field, C. B.: Simulated global changes alter phosphorus
demand in annual grassland, Glob. Change Biol., 13, 2582–2591,
https://doi.org/10.1111/j.1365-2486.2007.01456.x, 2007.
Menge, D. N. L., Hedin, L. O., and Pacala, S. W.: Nitrogen and Phosphorus
Limitation over Long-Term Ecosystem Development in Terrestrial Ecosystems,
Plos One, 7, e42045, https://doi.org/10.1371/journal.pone.0042045, 2012.
Moore, J. A. M., Anthony, M. A., Pec, G. J., Trocha, L. K., Trzebny, A.,
Geyer, K. M., van Diepen, L. T. A., and Frey, S. D.: Fungal community
structure and function shifts with atmospheric nitrogen deposition, Glob.
Change Biol., 27, 1349–1364, https://doi.org/10.1111/gcb.15444, 2020.
Morecroft, M. D., Sellers, E. K., and Lee, J. A.: An Experimental
Investigation Into The Effects Of Atmospheric Nitrogen Deposition On 2
Seminatural Grasslands, J. Ecol., 82, 475–483, https://doi.org/10.2307/2261256,
1994.
Phoenix, G. K., Booth, R. E., Leake, J. R., Read, D. J., Grime, J. P., and
Lee, J. A.: Effects of enhanced nitrogen deposition and phosphorus
limitation on nitrogen budgets of semi-natural grasslands, Glob. Change
Biol., 9, 1309–1321, https://doi.org/10.1046/j.1365-2486.2003.00660.x, 2003.
Phoenix, G. K., Booth, R. E., Leake, J. R., Read, D. J., Grime, J. P., and
Lee, J. A.: Simulated pollutant nitrogen deposition increases P demand and
enhances root-surface phosphatase activities of three plant functional types
in a calcareous grassland, New Phytol., 161, 279–289,
https://doi.org/10.1046/j.1469-8137.2003.00910.x, 2004.
Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., Jones, L., Leake, J. R., Leith, I. D., Sheppard, L. J., Sowerby, A., Pilkington, M. G., Rowe, E. C., Ashmorek, M. R., and Power, S. A.: Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments, Glob. Change Biol., 18, 1197–1215, https://doi.org/10.1111/j.1365-2486.2011.02590.x, 2012.
Phoenix, G. K., Johnson, D. A., Muddimer, S. P., Leake, J. R., and Cameron,
D. D.: Niche differentiation and plasticity in soil phosphorus acquisition
among co-occurring plants, Nat. Plants, 6, 349–354, https://doi.org/10.1038/s41477-020-0624-4,
2020.
Quirk, J., Beerling, D. J., Banwart, S. A., Kakonyi, G., Romero-Gonzalez, M.
E., and Leake, J. R.: Evolution of trees and mycorrhizal fungi intensifies
silicate mineral weathering, Biol. Lett., 8, 1006–1011,
https://doi.org/10.1098/rsbl.2012.0503, 2012.
Ridame, C. and Guieu, C.: Saharan input of phosphate to the oligotrophic
water of the open western Mediterranean Sea, Limnol. Oceanogr., 47,
856–869, https://doi.org/10.4319/lo.2002.47.3.0856, 2002.
Schneider, K. D., Voroney, R. P., Lynch, D. H., Oberson, A., Frossard, E.,
and Bunemann, E. K.: Microbially-mediated P fluxes in calcareous soils as a
function of water-extractable phosphate, Soil Biol. Biochem.,
106, 51–60, https://doi.org/10.1016/j.soilbio.2016.12.016, 2017.
Schöpp, W., Posch, M., Mylona, S., and Johansson, M.: Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe, Hydrol. Earth Syst. Sci., 7, 436–446, https://doi.org/10.5194/hess-7-436-2003, 2003.
Smits, M. M., Bonneville, S., Benning, L. G., Banwart, S. A., and Leake, J.
R.: Plant-driven weathering of apatite – the role of an ectomycorrhizal
fungus, Geobiology, 10, 445–456, https://doi.org/10.1111/j.1472-4669.2012.00331.x, 2012.
Southon, G. E., Field, C., Caporn, S. J. M., Britton, A. J., and Power, S.
A.: Nitrogen Deposition Reduces Plant Diversity and Alters Ecosystem
Functioning: Field-Scale Evidence from a Nationwide Survey of UK Heathlands,
Plos One, 8, e59031, https://doi.org/10.1371/journal.pone.0059031, 2013.
Taylor, C. R., Janes-Bassett, V., Phoenix, G. K., Keane, B., Hartley, I. P., and Davies, J. A. C.: Empirical and modelled carbon, nitrogen and phosphorus content of plants and soils from Wardlow Hay Cop, UK, NERC Environmental Information Data Centre [Dataset], https://doi.org/10.5285/98b473c7-3ca9-498d-a851-31152b1f1da7 (last access: 29 June 2021), 2021.
Taylor, D. M., Griffiths, H. I., Pedley, M. H., and Prince, I.:
Radiocarbon-dated Holocene pollen and ostracod sequences from barrage tufa-dammed fluvial systems in the White Peak, Derbyshire, UK, The Holocene, 4, 356–364, https://doi.org/10.1177/095968369400400403, 1994.
Tipping, E., Rowe, E. C., Evans, C. D., Mills, R. T. E., Emmett, B. A.,
Chaplow, J. S., and Hall, J. R.: N14C: A plant-soil nitrogen and carbon
cycling model to simulate terrestrial ecosystem responses to atmospheric
nitrogen deposition, Ecol. Model., 247, 11–26,
https://doi.org/10.1016/j.ecolmodel.2012.08.002, 2012.
Tipping, E., Benham, S., Boyle, J. F., Crow, P., Davies, J., Fischer, U.,
Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor, A. J., Monteith, D.
T., Rowe, E. C., and Toberman, H.: Atmospheric deposition of phosphorus to
land and freshwater, Environ. Sci.-Proc. Im., 16,
1608–1617, https://doi.org/10.1039/c3em00641g, 2014.
Tipping, E., Davies, J. A. C., Henrys, P. A., Jarvis, S. G., Rowe, E. C.,
Smart, S. M., Le Duc, M. G., Marrs, R. H., and Pakeman, R. J.: Measured
estimates of semi-natural terrestrial NPP in Great Britain: comparison with
modelled values, and dependence on atmospheric nitrogen deposition,
Biogeochemistry, 144, 215–227, https://doi.org/10.1007/s10533-019-00582-5, 2019.
Tipping, E., Davies, J. A. C., Henrys, P. A., Kirk, G. J. D., Lilly, A.,
Dragosits, U., Carnell, E. J., Dore, A. J., Sutton, M. A., and Tomlinson, S.
J.: Long-term increases in soil carbon due to ecosystem fertilization by
atmospheric nitrogen deposition demonstrated by regional-scale modelling and
observations, Sci. Rep., 7, 1890, https://doi.org/10.1038/s41598-017-02002-w, 2017.
Vance, C. P., Uhde-Stone, C., and Allan, D. L.: Phosphorus acquisition and
use: critical adaptations by plants for securing a nonrenewable resource,
New Phytol., 157, 423–447, https://doi.org/10.1046/j.1469-8137.2003.00695.x, 2003.
Vitousek, P. M. and Farrington, H.: Nutrient limitation and soil
development: Experimental test of a biogeochemical theory, Biogeochemistry,
37, 63–75, https://doi.org/10.1023/a:1005757218475, 1997.
Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the
sea – how can it occur, Biogeochemistry, 13, 87–115, 1991.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and
phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7,
2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Yuan, Z. W., Jiang, S. Y., Sheng, H., Liu, X., Hua, H., Liu, X. W., and
Zhang, Y.: Human Perturbation of the Global Phosphorus Cycle: Changes and
Consequences, Environ. Sci. Technol., 52, 2438–2450,
https://doi.org/10.1021/acs.est.7b03910, 2018.
Zheng, M. H., Zhang, W., Luo, Y. Q., Li, D. J., Wang, S. H., Huang, J., Lu,
X. K., and Mo, J. M.: Stoichiometry controls asymbiotic nitrogen fixation
and its response to nitrogen inputs in a nitrogen-saturated forest, Ecology,
99, 2037–2046, https://doi.org/10.1002/ecy.2416, 2018.
Download
Please read the editorial note first before accessing the article.
- Article
(1108 KB) - Full-text XML
-
Supplement
(1007 KB) - BibTeX
- EndNote
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
We used experimental data to model two phosphorus-limited grasslands and investigated their...
Altmetrics
Final-revised paper
Preprint