Articles | Volume 18, issue 19
https://doi.org/10.5194/bg-18-5555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring the use of compound-specific carbon isotopes as a palaeoproductivity proxy off the coast of Adélie Land, East Antarctica
Kate E. Ashley
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Xavier Crosta
EPOC, UMR-CNRS 5805, Université de Bordeaux, 33615 Pessac, France
Johan Etourneau
EPOC, UMR-CNRS 5805, Université de Bordeaux, 33615 Pessac, France
EPHE/PSL Research University, 75014 Paris, France
Philippine Campagne
EPOC, UMR-CNRS 5805, Université de Bordeaux, 33615 Pessac, France
LOCEAN, UMR CNRS/UPCM/IRD/MNHN 7159, Université Pierre et Marie
Curie, 4 Place Jussieu, 75252 Paris, France
Harry Gilchrist
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Uthmaan Ibraheem
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Sarah E. Greene
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Sabine Schmidt
EPOC, UMR-CNRS 5805, Université de Bordeaux, 33615 Pessac, France
Yvette Eley
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Guillaume Massé
LOCEAN, UMR CNRS/UPCM/IRD/MNHN 7159, Université Pierre et Marie
Curie, 4 Place Jussieu, 75252 Paris, France
TAKUVIK, UMI 3376 UL/CNRS, Université Laval, 1045 avenue de la
Médecine, Quebec City, Quebec, G1V 0A6, Canada
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Related authors
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Zanna Chase, Karen E. Kohfeld, Amy Leventer, David Lund, Xavier Crosta, Laurie Menviel, Helen C. Bostock, Matthew Chadwick, Samuel L. Jaccard, Jacob Jones, Alice Marzocchi, Katrin J. Meissner, Elisabeth Sikes, Louise C. Sime, and Luke Skinner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3504, https://doi.org/10.5194/egusphere-2025-3504, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The impact of recent dramatic declines in Antarctic sea ice on the Earth system are uncertain. We reviewed how sea ice affects ocean circulation, ice sheets, winds, and the carbon cycle by considering theory and modern observations alongside paleo-proxy reconstructions. We found evidence for connections between sea ice and these systems but also conflicting results, which point to missing knowledge. Our work highlights the complex role of sea ice in the Earth system.
Anna Bang Kvorning, Marie-Alexandrine Sicre, Gregor Luetzenburg, Sabine Schmidt, Thorbjørn Joest Andersen, Vincent Klein, Eleanor Georgiadis, Audrey Limoges, Jacques Giraudeau, Anders Anker Bjørk, Nicolaj Krog Larsen, and Sofia Ribeiro
EGUsphere, https://doi.org/10.5194/egusphere-2025-2641, https://doi.org/10.5194/egusphere-2025-2641, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We compare two marine sediment cores collected from contrasting locations in Kane Basin, northwest Greenland. The two sites differ in terms of sedimentation rates, primary production, and organic matter composition and source. Despite these spatial differences, both records reveal a similar long-term trend, a shift from cold, heavy sea ice influenced conditions between ca. 1750–1900 CE, towards more open, fresher, and biologically productive waters beginning around 1950 CE.
Andrés S. Rigual-Hernández, Amy Leventer, Manuel Fernández-Barba, José A. Flores, Gabriel Navarro, Johan Etourneau, Dimitris Evangelinos, Megan Duffy, Carlota Escutia, Fernando Bohoyo, Manon Sabourdy, Francisco J. Jimenez-Espejo, and María Ángeles Bárcena
EGUsphere, https://doi.org/10.5194/egusphere-2025-2892, https://doi.org/10.5194/egusphere-2025-2892, 2025
Short summary
Short summary
We studied phytoplankton in the Drake Passage and northern Antarctic Peninsula during a marine heatwave in summer 2020. Warmer waters transported by an anticyclonic eddy caused increased temperatures. This led to higher diatom abundance and an increase in the relative contribution of a small diatom species in the southern Drake Passage while reducing coccolithophore populations north of the polar front. The consequences on marine ecosystems remain uncertain.
Bella J. Duncan, Robert McKay, Richard Levy, Joseph G. Prebble, Timothy Naish, Osamu Seki, Christoph Kraus, Heiko Moossen, G. Todd Ventura, Denise K. Kulhanek, and James Bendle
EGUsphere, https://doi.org/10.5194/egusphere-2024-4021, https://doi.org/10.5194/egusphere-2024-4021, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We use plant wax compound specific stable isotopes to investigate how ancient Antarctic vegetation adapted to glacial conditions 23 million years ago. We find plants became less water efficient to prioritise photosynthesis during short, harsh growing seasons. Ecosystem changes also included enhanced aridity, and a shift to a stunted, low elevation vegetation. This shows the adaptability of ancient Antarctic vegetation under atmospheric CO2 conditions comparable to modern.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Isabel A. Dove, Ian W. Bishop, Xavier Crosta, Natascha Riedinger, R. Patrick Kelly, and Rebecca S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2564, https://doi.org/10.5194/egusphere-2023-2564, 2023
Preprint archived
Short summary
Short summary
The diatom-bound nitrogen isotope proxy is used to study how efficiently diatoms in the Southern Ocean help to remove CO2 from the atmosphere, but may be biased by different diatom species. We examine a specific type of diatom, Chaetoceros resting spores (CRS), commonly preserved in Southern Ocean sediments. We find that CRS record surprisingly low δ15NDB values compared to other diatoms, yet changes in their relative abundance over time does not significantly bias previously published records.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Matthew Chadwick, Xavier Crosta, Oliver Esper, Lena Thöle, and Karen E. Kohfeld
Clim. Past, 18, 1815–1829, https://doi.org/10.5194/cp-18-1815-2022, https://doi.org/10.5194/cp-18-1815-2022, 2022
Short summary
Short summary
Algae preserved in seafloor sediments have allowed us to reconstruct how Antarctic sea ice has varied between cold and warm time periods in the last 130 000 years. The patterns and timings of sea-ice increase and decrease vary between different parts of the Southern Ocean. Sea ice is most sensitive to changing climate at the external edges of Southern Ocean gyres (large areas of rotating ocean currents).
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Osamu Seki and James Bendle
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-62, https://doi.org/10.5194/cp-2021-62, 2021
Manuscript not accepted for further review
Short summary
Short summary
The reconstruction of CO2 levels in the past is a crucial objective in palaeoclimate research. However, estimates of CO2 level markedly differ among the data. We revised reported alkenone δ13C based CO2 records from the Pliocene to Pleistocene based on a refined approach. Our approach significantly reduced the large offsets between reported alkenone δ13C CO2 records, confirming that better constraints on environmental variables are key aspects for improving alkenone δ13C based CO2 estimates.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Cited articles
Allen, E. E. and Bartlett, D. H.: Structure and regulation of the omega-3
polyunsaturated fatty acid synthase genes from the deep-sea bacterium
Photobacterium profundum strain SS9The GenBank accession numbers for the
sequences reported in this paper are AF409100 and AF467805, Microbiology,
148, 1903–1913, https://doi.org/10.1099/00221287-148-6-1903, 2002.
Allen, E. E., Facciotti, D., and Bartlett, D. H.: Monounsaturated but Not
Polyunsaturated Fatty Acids Are Required for Growth of the Deep-Sea
Bacterium Photobacterium profundum SS9 at High Pressure and Low Temperature, Appl.
Environ. Microbiol., 65, 1710–1720, https://doi.org/10.1128/aem.65.4.1710-1720.1999,
1999.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher,
M. Q., Anderson, B. E., and Burckle, L. H.: Wind-Driven Upwelling in the
Southern Ocean and the Deglacial Rise in Atmospheric CO2, Science, 323,
1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Archambeau, A. S., Pierre, C., and Poisson, A.: Distributions of oxygen and
carbon stable isotopes and CFC-12 in the water masses of the Southern Ocean
at 30∘ E from South Africa to Antarctica: Results of the CIVA1
cruise, J. Marine Syst., 17, 25–38,
https://doi.org/10.1016/S0924-7963(98)00027-X, 1998.
Arrigo, K. R.: Chapter 7 Physical Control of Primary Productivity in Arctic and Antarctic Polynyas, Elsevier Oceanography Series, 74, 223–238, https://doi.org/10.1016/S0422-9894(06)74007-7, 2007.
Arrigo, K. R. and van Dijken, G. L.: Phytoplankton dynamics within 37
Antarctic coastal polynya systems, J. Geophys. Res.-Oceans,
108, 3271, https://doi.org/10.1029/2002jc001739, 2003.
Arrigo, K. R., Dijken, G. L., and Strong, A. L.: Environmental controls of
marine productivity hot spots around Antarctica, J. Geophys.
Res.-Oceans, 118, 2121–2128, https://doi.org/10.1002/2015JC010888, 2015.
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G.
R., VanWoert, M., and Lizotte, M. P.: Phytoplankton community structure and
the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283,
365–367, https://doi.org/10.1126/science.283.5400.365, 1999.
Arrigo, K. R., van Dijken, G., and Long, M.: Coastal Southern Ocean: A strong anthropogenic CO2 sink, Geophys. Res. Lett., 35, 1–6, https://doi.org/10.1029/2008GL035624, 2008.
Ashley, K. E., McKay, R., Etourneau, J., Jimenez-Espejo, F. J., Condron, A., Albot, A., Crosta, X., Riesselman, C., Seki, O., Massé, G., Golledge, N. R., Gasson, E., Lowry, D. P., Barrand, N. E., Johnson, K., Bertler, N., Escutia, C., Dunbar, R., and Bendle, J. A.: Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat, Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, 2021a.
Ashley, K., Bendle, J. A., Crosta, X., Etourneau, J., Campagne, P., Gilchrist, H., Ibraheem, U., Greene, S., Schmidt, S., Eley, Y., and Massé, G.: Adélie Drift, East Antarctic Fatty Acid Carbon Isotope Data from 1587-1998 CE, NOAA [data set], available at: https://www.ncei.noaa.gov/access/paleo-search/study/34232, last access: 30 September 2021b.
Beaman, R. J., O’Brien, P. E., Post, A. L., and De Santis, L.: A new high-resolution bathymetry model for the Terre Adélie and George V continental margin, East Antarctica, Antarct. Sci., 23, 95–103, https://doi.org/10.1017/S095410201000074X, 2011.
Beans, C., Hecq, J. H., Koubbi, P., Vallet, C., Wright, S., and Goffart, A.: A study of the diatom-dominated microplankton summer assemblages in coastal waters from Terre Adelie to the Mertz Glacier, East Antarctica (139∘ E–145∘ E), Polar Biol., 31, 1101–1117, https://doi.org/10.1007/s00300-008-0452-x, 2008.
Belt, S. T. and Müller, J.: The Arctic sea ice biomarker IP25: a review of
current understanding, recommendations for future research and applications
in palaeo sea ice reconstructions, Quaternary Sci. Rev., 79, 9–25,
https://doi.org/10.1016/j.quascirev.2012.12.001, 2013.
Belt, S. T., Allard, W. G., Rintatalo, J., Johns, L. A., van Duin, A. C. T.,
and Rowland, S. J.: Clay and acid catalysed isomerisation and cyclisation
reactions of highly branched isoprenoid (HBI) alkenes: Implications for
sedimentary reactions and distributions, Geochim. Cosmochim. Ac.,
64, 3337–3345, https://doi.org/10.1016/s0016-7037(00)00444-0, 2000.
Belt, S. T., Massé, G., Rowland, S. J., Poulin, M., Michel, C., and LeBlanc, B.: A novel chemical fossil of palaeo sea ice: IP25, Org. Geochem., 38, 16–27, https://doi.org/10.1016/j.orggeochem.2006.09.013, 2007.
Belt, S. T., Smik, L., Brown, A., Kim, J. H., Rowland, S. J., Allen, C. S.,
Gal, J. K., Shin, K. H., Lee, J. I., and Taylor, K. W. R.: Source
identification and distribution reveals the potential of the geochemical
Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 12655,
https://doi.org/10.1038/ncomms12655, 2016.
Belt, S. T., Brown, T. A., Smik, L., Tatarek, A., Wiktor, J., Stowasser, G.,
Assmy, P., Allen, C. S., and Husum, K.: Identification of C-25 highly
branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in
polar and sub-polar marine phytoplankton, Org. Geochem., 110, 65–72,
https://doi.org/10.1016/j.orggeochem.2017.05.007, 2017.
Beucher, C., Treguer, P., Hapette, A. M., Corvaisier, R., Metzl, N., and
Pichon, J. J.: Intense summer Si-recycling in the surface Southern Ocean,
Geophys. Res. Lett., 31, L09305, https://doi.org/10.1029/2003gl018998, 2004.
Bindoff, N., Rintoul, S., and Massom, R.: Bottom water formation and polynyas in Adelie Land, Antarctica, Papers and Proceedings of the Royal Society of Tasmania, 133, 51–56, https://doi.org/10.26749/rstpp.133.3.51, 2000.
Budge, S. M., Wooller, M. J., Springer, A. M., Iverson, S. J., McRoy, C. P.,
and Divoky, G. J.: Tracing carbon flow in an arctic marine food web using
fatty acid-stable isotope analysis, Oecologia, 157, 117–129,
https://doi.org/10.1007/s00442-008-1053-7, 2008.
Burke, A. and Robinson, L. F.: The Southern Ocean's Role in Carbon Exchange
During the Last Deglaciation, Science, 335, 557–561,
https://doi.org/10.1126/science.1208163, 2012.
Cabedo Sanz, P., Smik, L., and Belt, S. T.: On the stability of various
highly branched isoprenoid (HBI) lipids in stored sediments and sediment
extracts, Org. Geochem., 97, 74–77, https://doi.org/10.1016/j.orggeochem.2016.04.010,
2016.
Campagne, P.: Étude de la variabilité des conditions
océanographiques et climatiques en Antarctique de l'Est (Terre
Adélie-Georges V) au cours de l'Holocène tardif et de la période
instrumentale, Université de Bordeaux, France, 2015.
Ceccaroni, L., Frank, M., Frignani, M., Langone, L., Ravaioli, M., and
Mangini, A.: Late Quaternary fluctuations of biogenic component fluxes on
the continental slope of the Ross Sea, Antarctica, J. Marine
Syst., 17, 515–525, https://doi.org/10.1016/s0924-7963(98)00061-x, 1998.
Chiba, S., Hirawake, T., Ushio, S., Horimoto, N., Satoh, R., Nakajima, Y.,
Ishimaru, T., and Yamaguchi, Y.: An overview of the biological/oceanographic
survey by the RTV Umitaka-Maru III off Adelie Land, Antarctica in
January–February 1996, Deep-Sea Res. Pt. II, 47, 2589–2613, https://doi.org/10.1016/s0967-0645(00)00037-0, 2000.
Colombo, J. C., Silverberg, N., and Gearing, J. N.: Lipid biogeochemistry in the Laurentian Trough–ll. Changes in composition of fatty acids, sterols and aliphatic hydrocarbons during early diagenesis, Org. Geochem., 26, 257–274, 1997.
Crosta, X. and Koç, N.: Chapter Eight Diatoms: From Micropaleontology to Isotope Geochemistry, Dev. Mar. Geol., 1, 327–369, https://doi.org/10.1016/S1572-5480(07)01013-5, 2007.
Crosta, X., Crespin, J., Billy, I., and Ther, O.: Major factors controlling
Holocene delta C-13(org) changes in a seasonal sea-ice environment, Adelie
Land, East Antarctica, Global Biogeochem. Cy., 19, GB4029,
https://doi.org/10.1029/2004gb002426, 2005.
Crosta, X., Debret, M., Denis, D., Courty, M. A., and Ther, O.: Holocene
long- and short-term climate changes off Adelie Land, East Antarctica,
Geochem. Geophy. Geosys., 8, Q11009, https://doi.org/10.1029/2007gc001718, 2007.
Crosta, X., Shukla, S. K., Ther, O., Ikehara, M., Yamane, M., and Yokoyama,
Y.: Last Abundant Appearance Datum of Hemidiscus karstenii driven by climate
change, Mar. Micropaleontol., 157, 101861, https://doi.org/10.1016/j.marmicro.2020.101861, 2020.
Dalsgaard, J., St John, M., Kattner, G., Muller-Navarra, D., and Hagen, W.:
Fatty acid trophic markers in the pelagic marine environment, in: Advances
in Marine Biology, Vol 46, edited by: Southwards, A. J., Tyler, P. A.,
Young, C. M., and Fuiman, L. A., Advances in Marine Biology, 225–340,
https://doi.org/10.1016/s0065-2881(03)46005-7, 2003.
Denis, D., Crosta, X., Schmidt, S., Carson, D. S., Ganeshram, R. S., Renssen, H., Crespin, J., Ther, O., Billy, I., and Giraudeau, J.: Holocene productivity changes off Adélie land (East Antarctica), Paleoceanography, 24, 1–12, https://doi.org/10.1029/2008PA001689, 2009.
DiTullio, G. R., Grebmeier, J. M., Arrigo, K. R., Lizotte, M. P., Robinson,
D. H., Leventer, A., Barry, J. B., VanWoert, M. L., and Dunbar, R. B.: Rapid
and early export of Phaeocystis antarctica blooms in the Ross Sea,
Antarctica, Nature, 404, 595–598, https://doi.org/10.1038/35007061, 2000.
Escutia, C., Brinkhuis, H., Klaus, A., and the Expedition 318 Scientists: Expedition 318 summary, Integrated Ocean Drilling Program Management International, Inc.,
for the Integrated Ocean Drilling Program, U.S. Implementing Organization Science Services, Texas A&M University, https://doi.org/10.2204/iodp.proc.318.101.2011, 2011.
Etourneau, J., Collins, L. G., Willmott, V., Kim, J.-H., Barbara, L., Leventer, A., Schouten, S., Sinninghe Damsté, J. S., Bianchini, A., Klein, V., Crosta, X., and Massé, G.: Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability, Clim. Past, 9, 1431–1446, https://doi.org/10.5194/cp-9-1431-2013, 2013.
Fischer, G., Schneider, R., Muller, P. J., and Wefer, G.: Anthropogenic CO2
in Southern Ocean surface waters: evidence from stable organic carbon
isotopes, Terra Nova, 9, 153–157, https://doi.org/10.1046/j.1365-3121.1997.d01-29.x, 1997.
Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting,
I. G., Leuenberger, M., Langenfelds, R. L., Michel, E., and Steele, L. P.: A
1000-year high precision record of delta C-13 in atmospheric CO2, Tellus
B, 51, 170–193,
https://doi.org/10.1034/j.1600-0889.1999.t01-1-00005.x, 1999.
Frignani, M., Giglio, F., Langone, L., Ravaioli, M., and Mangini, A.: Late
Pleistocene-Holocene sedimentary fluxes of organic carbon and biogenic
silica in the northwestern Ross Sea, Antarctica, Ann. Glaciol., 27, 697–703, 1998.
Gibson, J. A. E., Trull, T., Nichols, P. D., Summons, R. E., and McMinn, A.:
Sedimentation of C-13-rich organic matter from Antarctic sea-ice algae: A
potential indicator of past sea-ice extent, Geology, 27, 331–334,
https://doi.org/10.1130/0091-7613(1999)027<0331:Socrom>2.3.Co;2, 1999.
Gilchrist, H.: A high-resolution record of sea ice, glacial and biological
dynamics from an Antarctic coast environment, Masters Thesis, School of
Geography, Earth and Environmental University of Birmingham, 2018.
Haddad, R. I., Martens, C. S., and Farrington, J. W.: Quantifying Early
Diagenesis of Fatty-Acids in a Rapidly Accumulating Coastal Marine Sediment,
Org. Geochem., 19, 205–216, https://doi.org/10.1016/0146-6380(92)90037-x, 1992.
Henley, S. F., Annett, A. L., Ganeshram, R. S., Carson, D. S., Weston, K., Crosta, X., Tait, A., Dougans, J., Fallick, A. E., and Clarke, A.: Factors influencing the stable carbon isotopic composition of suspended and sinking organic matter in the coastal Antarctic sea ice environment, Biogeosciences, 9, 1137–1157, https://doi.org/10.5194/bg-9-1137-2012, 2012.
Jensen, S., Renberg, L., and Reutergårdh, L.: Residue Analysis of Sediment and Sewage Sludge for Organochlorines in the Presence of Elemental Sulfur, Ana. Chem., 49, 316–318, https://doi.org/10.1021/ac50010a033, 1977.
Johns, L., Wraige, E. J., Belt, S. T., Lewis, C. A., Masse, G., Robert, J.
M., and Rowland, S. J.: Identification of a C-25 highly branched isoprenoid
(HBI) diene in Antarctic sediments, Antarctic sea-ice diatoms and cultured
diatoms, Org. Geochem., 30, 1471–1475, https://doi.org/10.1016/s0146-6380(99)00112-6,
1999.
Jónasdóttir, S. H.: Fatty Acid Profiles and Production in Marine
Phytoplankton, Mar. Drugs, 17, 151, https://doi.org/10.3390/md17030151, 2019.
Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P.,
Heimann, M., and Meijer, H. A., Ehleringer, J. R., Cerling, T., and Dearing,
M. D. (Eds.): Atmospheric CO2 and 13CO2 Exchange with the Terrestrial
Biosphere and Oceans from 1978 to 2000: Observations and Carbon Cycle
Implications, A History of Atmospheric CO2 and Its Effects on Plants,
Animals, and Ecosystems, Springer, https://doi.org/10.1007/0-387-27048-5_5,
2005.
Kopczynska, E. E., Goeyens, L., Semeneh, M., and Dehairs, F.: Phytoplankton
Composition and Cell Carbon Distribution in Prydz Bay, Antarctica – Relation
to Organic Particulate Matter and its Delta-C-13 Values, J. Plankton
Res., 17, 685–707, https://doi.org/10.1093/plankt/17.4.685, 1995.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., Van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4 and N2O ice
core records extended to 2000 years BP, Geophys. Res. Lett., 33,
1–4, https://doi.org/10.1029/2006GL026152, 2006.
Mackensen, A.: Oxygen and carbon stable isotope tracers of Weddell Sea water
masses: new data and some paleoceanographic implications, Deep-Sea Res.
Pt. I, 48, 1401–1422,
https://doi.org/10.1016/s0967-0637(00)00093-5, 2001.
Martin, A., Houssais, M., Le Geoff, H., Marec, C., and Dausse, D.: Circulation and water mass transports on the East Antarctic shelf in the Mertz Glacier region, Deep-Sea Res. Pt. I, 126, 1–20, https://doi.org/10.1016/j.dsr.2017.05.007, 2017.
Massé, G., Belt, S. T., Crosta, X., Schmidt, S., Snape, I., Thomas, D. N.,
and Rowland, S. J.: Highly branched isoprenoids as proxies for variable sea
ice conditions in the Southern Ocean, Antarct. Sci., 23, 487–498,
https://doi.org/10.1017/s0954102011000381, 2011.
Matsuda, H.: Early Diagenesis of Fatty-Acids in Lacustrine Sediments .3.
Changes in Fatty-Acid Composition in Sediments from a Brackish Water Lake,
Geochim. Cosmochim. Ac., 42, 1027–1034,
https://doi.org/10.1016/0016-7037(78)90291-0, 1978.
Matsuda, H. and Koyama, T.: Early Diagenesis of Fatty-Acids in Lacustrine
Sediment .1. Identification and Distribution of Fatty-Acids in Recent
Sediment from a Freshwater Lake, Geochim. Cosmochim. Ac., 41,
777–783, https://doi.org/10.1016/0016-7037(77)90048-5, 1977.
Moisan, T. A. and Mitchell, B. G.: Photophysiological acclimation of
Phaeocystis antarctica Karsten under light limitation, Limnol.
Oceanogr., 44, 247–258, https://doi.org/10.4319/lo.1999.44.2.0247, 1999.
Pancost, R. D. and Boot, C. S.: The palaeoclimatic utility of terrestrial
biomarkers in marine sediments, Mar. Chem., 92, 239–261,
https://doi.org/10.1016/j.marchem.2004.06.029, 2004.
Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L., and Hodgson, D.: Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water, Quaternary Sci. Rev., 119, 54–65, https://doi.org/10.1016/j.quascirev.2015.04.002, 2015.
Popp, B. N., Trull, T., Kenig, F., Wakeham, S. G., Rust, T. M., Tilbrook,
B., Griffiths, F. B., Wright, S. W., Marchant, H. J., Bidigare, R. R., and
Laws, E. A.: Controls on the carbon isotopic composition of Southern Ocean
phytoplankton, Global Biogeochem. Cy., 13, 827–843,
https://doi.org/10.1029/1999gb900041, 1999.
Poulton, A. J., Moore, C. M., Seeyave, S., Lucas, M. I., Fielding, S., and
Ward, P.: Phytoplankton community composition around the Crozet Plateau,
with emphasis on diatoms and Phaeocystis, Deep-Sea Res. Pt. II, 54, 2085–2105, https://doi.org/10.1016/j.dsr2.2007.06.005, 2007.
Rau, G. H., Takahashi, T., and Marais, D. J. D.: Latitudinal Variations in
Plankton Delta-C-13 – Implications for CO2 and Productivity in Past Oceans,
Nature, 341, 516–518, https://doi.org/10.1038/341516a0, 1989.
Riaux-Gobin, C., Poulin, M., Dieckmann, G., Labrune, C., and Vetion, G.:
Spring phytoplankton onset after the ice break-up and sea-ice signature
(Adelie Land, East Antarctica), Polar Res., 30, 5910,
https://doi.org/10.3402/polar.v30i0.5910, 2011.
Riaux-Gobin, C., Dieckmann, G. S., Poulin, M., Neveux, J., Labrune, C., and
Vetion, G.: Environmental conditions, particle flux and sympagic microalgal
succession in spring before the sea-ice break-up in Adelie Land, East
Antarctica, Polar Res., 32, 19675, https://doi.org/10.3402/polar.v32i0.19675, 2013.
Riis, V. and Babel, W.: Removal of sulfur interfering in the analysis of organochlorines by GC-ECD, Analyst, 124, 1771–1773, https://doi.org/10.1039/a907504f, 1999.
Roden, N. P., Shadwick, E. H., Tilbrook, B., and Trull, T. W.: Annual cycle
of carbonate chemistry and decadal change in coastal Prydz Bay, East
Antarctica, Mar. Chem., 155, 135–147, https://doi.org/10.1016/j.marchem.2013.06.006,
2013.
Salminen, T. A., Eklund, D. M., Joly, V., Blomqvist, K., Matton, D. P., and
Edqvist, J.: Deciphering the Evolution and Development of the Cuticle by
Studying Lipid Transfer Proteins in Mosses and Liverworts, Plants-Basel, 7, 6,
https://doi.org/10.3390/plants7010006, 2018.
Sambrotto, R. N., Matsuda, A., Vaillancourt, R., Brown, M., Langdon, C.,
Jacobs, S. S., and Measures, C.: Summer plankton production and nutrient
consumption patterns in the Mertz Glacier Region of East Antarctica, Deep-Sea Res. Pt. II, 50, 1393–1414,
https://doi.org/10.1016/S0967-0645(03)00076-6, 2003.
Shadwick, E. H., Tilbrook, B., and Williams, G. D.: Carbonate chemistry in
the Mertz Polynya (East Antarctica): Biological and physical modification of
dense water outflows and the export of anthropogenic CO2, J.
Geophys. Res.-Oceans, 119, 1–14, https://doi.org/10.1002/2013jc009286, 2014.
Shevenell, A. E. and Kennett, J. P.: Antarctic Holocene climate change: A
benthic foraminiferal stable isotope record from Palmer Deep,
Paleoceanography, 17, PAL 9-1–PAL 9-12, https://doi.org/10.1029/2000pa000596, 2002.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869, https://doi.org/10.1038/35038000, 2000.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Coolen, M. J. L., Schouten,
S., and Volkman, J. K.: Rapid sulfurisation of highly branched isoprenoid
(HBI) alkenes in sulfidic Holocene sediments from Ellis Fjord, Antarctica,
Org. Geochem., 38, 128–139,
https://doi.org/10.1016/j.orggeochem.2006.08.003, 2007.
Skerratt, J. H., Davidson, A. D., Nichols, P. D., and McMeekin, T. A.:
Effect of UV-B on lipid content of three Antarctic marine phytoplankton,
Phytochemistry, 49, 999–1007, https://doi.org/10.1016/s0031-9422(97)01068-6, 1998.
Smik, L., Belt, S. T., Lieser, J. L., Armand, L. K., and Leventer, A.:
Distributions of highly branched isoprenoid alkenes and other algal lipids
in surface waters from East Antarctica: Further insights for biomarker-based
paleo sea-ice reconstruction, Org. Geochem., 95, 71–80,
https://doi.org/10.1016/j.orggeochem.2016.02.011, 2016.
Sun, M. Y., Zou, L., Dai, J. H., Ding, H. B., Culp, R. A., and Scranton, M.
I.: Molecular carbon isotopic fractionation of algal lipids during
decomposition in natural oxic and anoxic seawaters, Org. Geochem.,
35, 895–908, https://doi.org/10.1016/j.orggeochem.2004.04.001, 2004.
Sweeney, C.: The annual cycle of surface water CO2 And O2 in the Ross Sea: A
model for gas exchange on the continental shelves of Antarctica, Antarct.
Res. Ser., 78, https://doi.org/10.1029/078ars19, 2003.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M.,
Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO(2), and net
sea-air CO2 flux over the global oceans (vol 56, pg 554, 2009), Deep-Sea
Res. Pt. I, 56, 2075–2076,
https://doi.org/10.1016/j.dsr.2009.07.007, 2009.
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The Antarctic Slope Current in a Changing Climate, Rev. Geophys., 56, 741–770, https://doi.org/10.1029/2018RG000624, 2018.
Tortell, P. D., Gueguen, C., Long, M. C., Payne, C. D., Lee, P., and
DiTullio, G. R.: Spatial variability and temporal dynamics of surface water
pCO(2), Delta O-2/Ar and dimethylsulfide in the Ross Sea, Antarctica,
Deep-Sea Res. Pt. I, 58, 241–259,
https://doi.org/10.1016/j.dsr.2010.12.006, 2011.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence of diatom diversity on the ocean biological carbon pump, Nat. Geosci., 11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2017.
Vaillancourt, R. D., Sambrotto, R. N., Green, S., and Matsuda, A.:
Phytoplankton biomass and photosynthetic competency in the summertime Mertz
Glacier Region of East Antarctica, Deep-Sea Res. Pt. II, 50, 1415–1440, https://doi.org/10.1016/s0967-0645(03)00077-8, 2003.
Villinski, J. C., Hayes, J. M., Brassell, S. C., Riggert, V. L., and Dunbar,
R. B.: Sedimentary sterols as biogeochemical indicators in the Southern
Ocean, Org. Geochem., 39, 567–588, https://doi.org/10.1016/j.orggeochem.2008.01.009,
2008.
Wakeham, S. G., Lee, C., Farrington, J. W., and Gagosian, R. B.:
Biogeochemistry of Particulate Organic-Matter in the Oceans – Results from
Sediment Trap Experiments, Deep-Sea Res. Pt. A, 31, 509–528, https://doi.org/10.1016/0198-0149(84)90099-2, 1984.
Williams, G. D. and Bindoff, N. L.: Wintertime oceanography of the Adelie
Depression, Deep-Sea Res. Pt. II, 50,
1373–1392, https://doi.org/10.1016/s0967-0645(03)00074-2, 2003.
Williams, G. D., Bindoff, N. L., Marsland, S. J., and Rintoul, S. R.: Formation and export of dense shelf water from the Adélie depression, East Antarctica, J. Geophys. Res.-Oceans, 113, 1–12, https://doi.org/10.1029/2007JC004346, 2008.
Wilson, D. L., Smith, W. O., and Nelson, D. M.: Phytoplankton Bloom Dynamics
of the Western Ross Sea Ice Edge .1. Primary Productivity and
Species-Specific Production, Deep-Sea Res. Pt. A, 33, 1375–1387, https://doi.org/10.1016/0198-0149(86)90041-5, 1986.
Wong, W. W. and Sackett, W. M.: Fractionation of Stable Carbon Isotopes by
Marine-Phytoplankton, Geochim. Cosmochim. Ac., 42, 1809–1815,
https://doi.org/10.1016/0016-7037(78)90236-3, 1978.
Zhang, R., Zheng, M. F., Chen, M., Ma, Q., Cao, J. P., and Qiu, Y. S.: An
isotopic perspective on the correlation of surface ocean carbon dynamics and
sea ice melting in Prydz Bay (Antarctica) during austral summer, Deep-Sea
Res. Pt. I, 83, 24–33,
https://doi.org/10.1016/j.dsr.2013.08.006, 2014.
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for...
Altmetrics
Final-revised paper
Preprint