Articles | Volume 18, issue 22
https://doi.org/10.5194/bg-18-6077-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6077-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations
Remote Sensing Division, Naval Research Laboratory, 4555 Overlook
Ave. SW, Washington, DC 20375, USA
Stephanie Pau
Department of Geography, Florida State University, 113 Collegiate
Loop, Tallahassee, FL 32306, USA
Matteo Detto
Smithsonian Tropical Research Institute, Apartado 0843–03092,
Balboa, Ancón, Panama
Department of Ecology and Evolutionary Biology, Princeton University,
Princeton, NJ 08544, USA
Eben N. Broadbent
Spatial Ecology and Conservation Lab, School of Forest, Fisheries, and
Geomatics Sciences, University of Florida, Gainesville, FL 32608, USA
Stephanie A. Bohlman
Smithsonian Tropical Research Institute, Apartado 0843–03092,
Balboa, Ancón, Panama
School of Forest, Fisheries, and Geomatics Sciences, University of
Florida, Gainesville, FL 32608, USA
Christopher J. Still
Department of Forest Ecosystems and Society, Oregon State University,
Corvallis, OR 97331, USA
Angelica M. Almeyda Zambrano
Spatial Ecology and Conservation Lab, Center for Latin American
Studies, University of Florida, Gainesville, FL 32608, USA
Related authors
No articles found.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Max Berkelhammer, Gerald F. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carter, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark Raleigh, Eric Small, and Kenneth H. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-3063, https://doi.org/10.5194/egusphere-2023-3063, 2024
Short summary
Short summary
Warming in montane systems is affecting the amount of snowmelt inputs. This will affect subalpine forests globally that rely on spring snowmelt to support their water demands. We use a network of sensors across in the Upper Colorado Basin to show that changing spring primarily impacts dense forest stands that have high peak water demands. On the other hand, open forest stands show a higher reliance on summer rain and were minimally sensitive to even historically low snow conditions like 2019.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Jeroen Claessen, Annalisa Molini, Brecht Martens, Matteo Detto, Matthias Demuzere, and Diego G. Miralles
Biogeosciences, 16, 4851–4874, https://doi.org/10.5194/bg-16-4851-2019, https://doi.org/10.5194/bg-16-4851-2019, 2019
Short summary
Short summary
Bidirectional interactions between vegetation and climate are unraveled over short (monthly) and long (inter-annual) temporal scales. Analyses use a novel causal inference method based on wavelet theory. The performance of climate models at representing these interactions is benchmarked against satellite data. Climate models can reproduce the overall climate controls on vegetation at all temporal scales, while their performance at representing biophysical feedbacks on climate is less adequate.
Isabel Martínez Cano, Helene C. Muller-Landau, S. Joseph Wright, Stephanie A. Bohlman, and Stephen W. Pacala
Biogeosciences, 16, 847–862, https://doi.org/10.5194/bg-16-847-2019, https://doi.org/10.5194/bg-16-847-2019, 2019
Bharat Rastogi, Max Berkelhammer, Sonia Wharton, Mary E. Whelan, Frederick C. Meinzer, David Noone, and Christopher J. Still
Biogeosciences, 15, 7127–7139, https://doi.org/10.5194/bg-15-7127-2018, https://doi.org/10.5194/bg-15-7127-2018, 2018
Short summary
Short summary
Carbonyl sulfide (OCS) has gained prominence as an independent tracer for gross primary productivity, which is usually modelled by partitioning net CO2 fluxes. Here, we present a simple empirical model for estimating ecosystem-scale OCS fluxes for a temperate old-growth forest and find that OCS sink strength scales with independently estimated CO2 uptake and is sensitive to the the fraction of downwelling diffuse light. We also examine the response of OCS and CO2 fluxes to sequential heat waves.
Hyojung Kwon, Whitney Creason, Beverly E. Law, Christopher J. Still, and Chad Hanson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-297, https://doi.org/10.5194/bg-2018-297, 2018
Preprint retracted
Short summary
Short summary
Ecosystem responses to short-term extreme climate were diverse and non-linear due to the interactive effects of physiological and environmental factors even within the same plant functional types and species in the Pacific Northwest. A negative (reducing) effect of the short-term extreme climate on seasonal carbon uptake was observed. Douglas-fir is likely to experience more constraints on carbon uptake than ponderosa pine if hot/dry season intensifies in the Pacific Northwest.
Maoya Bassiouni, Chad W. Higgins, Christopher J. Still, and Stephen P. Good
Hydrol. Earth Syst. Sci., 22, 3229–3243, https://doi.org/10.5194/hess-22-3229-2018, https://doi.org/10.5194/hess-22-3229-2018, 2018
Related subject area
Biogeophysics: Environmental Optics
Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data
Assessing shaded-leaf effects on photochemical reflectance index (PRI) for water stress detection in winter wheat
On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance
Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014
A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures
Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance
High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing
Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa
Technical Note: Multispectral lidar time series of pine canopy chlorophyll content
A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa
Nitrogen food-print: N use related to meat and dairy consumption in France
Remote sensing-based estimation of gross primary production in a subalpine grassland
Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region
Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data
Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Xin Yang, Shishi Liu, Yinuo Liu, Xifeng Ren, and Hang Su
Biogeosciences, 16, 2937–2947, https://doi.org/10.5194/bg-16-2937-2019, https://doi.org/10.5194/bg-16-2937-2019, 2019
Short summary
Short summary
The photochemical reflectance index (PRI) derived from remotely sensed data has emerged to be a pre-visual indicator of water stress. This study evaluated the impact of the varying shaded-leaf fractions on estimating relative water content (RWC) across growth stages of winter wheat using PRI derived from hyperspectral imagery. Results showed that PRI of the pure shaded leaves may yield inaccurate estimates of plant water status, but the accuracy of RWC predictions was not significantly affected.
Sofia Cerasoli, Manuel Campagnolo, Joana Faria, Carla Nogueira, and Maria da Conceição Caldeira
Biogeosciences, 15, 5455–5471, https://doi.org/10.5194/bg-15-5455-2018, https://doi.org/10.5194/bg-15-5455-2018, 2018
Short summary
Short summary
We compared the ability of in situ spectral and satellite sensors to estimate the productivity of Mediterranean grasslands undergoing different fertilization treatments. The objective of the study was to identify the best set of spectral predictors. In situ CO gas exchange and vegetation reflectance measurements were used for this purpose. Our results show the potential of Sentinel 2 and Landsat 8 satellites to monitor grasslands in support of a sustainable agriculture management.
Philipp M. M. Groetsch, Stefan G. H. Simis, Marieke A. Eleveld, and Steef W. M. Peters
Biogeosciences, 13, 4959–4973, https://doi.org/10.5194/bg-13-4959-2016, https://doi.org/10.5194/bg-13-4959-2016, 2016
Short summary
Short summary
Phytoplankton spring bloom phenology was derived from a 15-year time series (2000–2014) of ship-of-opportunity chlorophyll a fluorescence observations in the Baltic Sea. Bloom peak concentrations have declined over the study period, while bloom duration has increased. It is concluded that nutrient reduction efforts led to decreasing bloom intensity, while changes in Baltic Sea environmental conditions associated with global change corresponded to a lengthening spring bloom period.
Rebecca N. Handcock, D. L. Gobbett, Luciano A. González, Greg J. Bishop-Hurley, and Sharon L. McGavin
Biogeosciences, 13, 4673–4695, https://doi.org/10.5194/bg-13-4673-2016, https://doi.org/10.5194/bg-13-4673-2016, 2016
Short summary
Short summary
Proximal sensors can assist in managing feed in livestock production systems but raw data needs calibration to biophysical values such as biomass and ground cover. Our pilot project monitored tropical pastures for 18 months using digital cameras, multispectral sensors, soil moisture sensors, and field observations. We developed stringent data cleaning rules that are applicable to other sensor projects. Proximal sensors were found to deliver continual and timely pasture data.
T. Tagesson, R. Fensholt, S. Huber, S. Horion, I. Guiro, A. Ehammer, and J. Ardö
Biogeosciences, 12, 4621–4635, https://doi.org/10.5194/bg-12-4621-2015, https://doi.org/10.5194/bg-12-4621-2015, 2015
Short summary
Short summary
Relationships between ecosystem properties of semi-arid savanna and reflected solar radiance between 35 and 1800nm were investigated. Normalised combinations of reflectance for the near infrared, shortwave infrared, and 600 to 700nm were strongly affected by solar and viewing angle effects. Ecosystem properties of savannas were strongly correlated with reflectance at 350-1800nm, and normalised combinations of reflectance were strong predictors of the savanna ecosystem properties.
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas
Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, https://doi.org/10.5194/bg-12-4051-2015, 2015
Short summary
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
L. Peperzak, H. J. van der Woerd, and K. R. Timmermans
Biogeosciences, 12, 1659–1670, https://doi.org/10.5194/bg-12-1659-2015, https://doi.org/10.5194/bg-12-1659-2015, 2015
T. Hakala, O. Nevalainen, S. Kaasalainen, and R. Mäkipää
Biogeosciences, 12, 1629–1634, https://doi.org/10.5194/bg-12-1629-2015, https://doi.org/10.5194/bg-12-1629-2015, 2015
Short summary
Short summary
A hyperspectral lidar produces point clouds with multiple spectral channels (colours) for each point. We measured a pine and used the spectral content to estimate chlorophyll content. We validated these results using chemical laboratory analysis of needles taken from the pine. Our prototype has limitations, but still shows the great potential of coloured point clouds. Potential applications include forestry, security, archaeology and city modelling.
C. Lin, S. C. Popescu, S. C. Huang, P. T. Chang, and H. L. Wen
Biogeosciences, 12, 49–66, https://doi.org/10.5194/bg-12-49-2015, https://doi.org/10.5194/bg-12-49-2015, 2015
N. K. Ganju, J. L. Miselis, and A. L. Aretxabaleta
Biogeosciences, 11, 7193–7205, https://doi.org/10.5194/bg-11-7193-2014, https://doi.org/10.5194/bg-11-7193-2014, 2014
Short summary
Short summary
Light availability to seagrass is an important factor in their success. We deployed instrumentation to measure light in Barnegat Bay, New Jersey, and found lower availability in the southern bay due to high turbidity (suspended sediment), while the northern bay has higher availability. In the northern bay, dissolved organic material and chlorophyll are most responsible for blocking light to the seagrass canopy. We also found that boat wakes do not have a large effect on sediment resuspension.
M. W. Matthews and S. Bernard
Biogeosciences, 10, 8139–8157, https://doi.org/10.5194/bg-10-8139-2013, https://doi.org/10.5194/bg-10-8139-2013, 2013
P. Chatzimpiros and S. Barles
Biogeosciences, 10, 471–481, https://doi.org/10.5194/bg-10-471-2013, https://doi.org/10.5194/bg-10-471-2013, 2013
M. Rossini, S. Cogliati, M. Meroni, M. Migliavacca, M. Galvagno, L. Busetto, E. Cremonese, T. Julitta, C. Siniscalco, U. Morra di Cella, and R. Colombo
Biogeosciences, 9, 2565–2584, https://doi.org/10.5194/bg-9-2565-2012, https://doi.org/10.5194/bg-9-2565-2012, 2012
A. Fujiwara, T. Hirawake, K. Suzuki, and S.-I. Saitoh
Biogeosciences, 8, 3567–3580, https://doi.org/10.5194/bg-8-3567-2011, https://doi.org/10.5194/bg-8-3567-2011, 2011
C. Höpfner and D. Scherer
Biogeosciences, 8, 3359–3373, https://doi.org/10.5194/bg-8-3359-2011, https://doi.org/10.5194/bg-8-3359-2011, 2011
F. Gao, S. Stanič, K. Bergant, T. Bolte, F. Coren, T.-Y. He, A. Hrabar, J. Jerman, A. Mladenovič, J. Turšič, D. Veberič, and M. Iršič Žibert
Biogeosciences, 8, 2351–2363, https://doi.org/10.5194/bg-8-2351-2011, https://doi.org/10.5194/bg-8-2351-2011, 2011
Cited articles
Alonso, L., Moreno, J., Moya, I., and Miller, J. R.: A comparison of different techniques for passive measurement of vegetation photosynthetic activity: solar-induced fluorescence, red-edge reflectance structure and photochemical reflectance indices, in: IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings IEEE, 1, 604–606, 2003.
Alonso, L., Gómez-Chova, L., Vila-Francés, J., Amorós-López,
J., Guanter, L., Calpe, J., and Moreno, J.: Sensitivity analysis of the
Fraunhofer Line Discrimination method for the measurement of chlorophyll
fluorescence using a field spectroradiometer, in: 2007 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 3756–3759, 2007.
Alonso, L., Gómez-Chova, L., Vila-Francés, J., Amorós-López,
J., Guanter, L., Calpe, J., and Moreno, J.: Improved Fraunhofer Line
Discrimination Method for Vegetation Fluorescence Quantification, IEEE
Geosci. Remote Sens. Lett., 5, 620–624, 2008.
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared
reflectance and terrestrial photosynthesis, Sci. Adv., 3, e1602244,
https://doi.org/10.1126/sciadv.1602244, 2017.
Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B.: Terrestrial
gross primary production: Using NIRV to scale from site to globe, Glob. Change
Biol., 25, 3731–3740, https://doi.org/10.1111/gcb.14729, 2019.
Baldocchi, D. D., Ryu, Y., Dechant, B., Eichelmann, E., Hemes, K., Ma, S.,
Rey Sanchez, C., Shortt, R., Szutu, D., Valach, A., Verfaillie, J., Badgley,
G., Zeng, Y., and Berry, J. A.: Outgoing Near Infrared Radiation from
Vegetation Scales with Canopy Photosynthesis Across a Spectrum of Function,
Structure, Physiological Capacity and Weather, J. Geophys.
Res.-Biogeo., 125, e2019JG005534, https://doi.org/10.1029/2019jg005534, 2020.
Berry, Z. C. and Goldsmith, G. R.: Diffuse light and wetting
differentially affect tropical tree leaf photosynthesis, New
Phytol., 225, 143–153, https://doi.org/10.1111/nph.16121, 2020.
Bohlman, S.: Hyperspectral remote sensing of exposed wood and
deciduous trees in seasonal tropical forests, in: Hyperspectral remote sensing of tropical and subtropical forests, CRC Press,
edited by: Kalacska, M. and Sanchez-Azofeifa, G. A., 177–192, 2008.
Bohlman, S. and O'Brien, S.: Allometry, adult stature and regeneration
requirement of 65 tree species on Barro Colorado Island, Panama, J.
Trop. Ecol., 22, 123–136, https://doi.org/10.1017/s0266467405003019, 2006.
Bohlman, S. and Pacala, S.: A forest structure model that determines crown
layers and partitions growth and mortality rates for landscape-scale
applications of tropical forests, J. Ecol., 100, 508–518,
https://doi.org/10.1111/j.1365-2745.2011.01935.x, 2012.
Castro, A. O., Chen, J., Zang, C. S., Shekhar, A., Jimenez, J. C.,
Bhattacharjee, S., Kindu, M., Morales, V. H., and Rammig, A.: OCO-2
Solar-Induced Chlorophyll Fluorescence Variability across Ecoregions of the
Amazon Basin and the Extreme Drought Effects of El Niño (2015–2016),
Remote Sens., 12, 1202, https://doi.org/10.3390/rs12071202, 2020.
Clark, D. B., Olivas, P. C., Oberbauer, S. F., Clark, D. A., and Ryan, M.
G.: First direct landscape-scale measurement of tropical rain forest Leaf
Area Index, a key driver of global primary productivity, Ecol. Lett., 11,
163–172, https://doi.org/10.1111/j.1461-0248.2007.01134.x, 2008.
Clark, D. A., Asao, S., Fisher, R., Reed, S., Reich, P. B., Ryan, M. G.,
Wood, T. E., and Yang, X.: Reviews and syntheses: Field data to benchmark
the carbon cycle models for tropical forests, Biogeosciences, 14, 4663–4690,
https://doi.org/10.5194/bg-14-4663-2017, 2017.
Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L., Vicent, J.,
Moreno, J., Drusch, M., and Colombo, R.: Retrieval of sun-induced
fluorescence using advanced spectral fitting methods, Remote Sens.
Environ., 169, 344–357, https://doi.org/10.1016/j.rse.2015.08.022, 2015.
Condit, R. S., Watts, K., Bohlman, S., Perez, R., Foster, R. B., and
Hubbell, S. P.: Quantifying the deciduousness of tropical forest canopies
under varying climates, J. Veg. Sci., 11, 649–658, 2000.
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y.,
Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., and Moya, I.: Canopy
structure explains the relationship between photosynthesis and sun-induced
chlorophyll fluorescence in crops, Remote Sens. Environ., 241, 111733,
https://doi.org/10.1016/j.rse.2020.111733, 2020.
Detto, M., Baldocchi, D., and Katul, G. G.: Scaling Properties of
Biologically Active Scalar Concentration Fluctuations in the Atmospheric
Surface Layer over a Managed Peatland, Bound.-Lay. Meteorol., 136,
407–430, https://doi.org/10.1007/s10546-010-9514-z, 2010.
Detto, M., Wright, S. J., Calderon, O., and Muller-Landau, H. C.: Resource
acquisition and reproductive strategies of tropical forest in response to
the El Nino-Southern Oscillation, Nat. Commun., 9, 1–8,
https://doi.org/10.1038/s41467-018-03306-9, 2018.
Frankenberg, C., Fisher, J. B., Worden, J. R., Badgley, G., Saatchi, S. S.,
Lee, J. E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New
global observations of the terrestrial carbon cycle from GOSAT: Patterns of
plant fluorescence with gross primary productivity, Geophys. Res.
Lett., 38, 17, https://doi.org/10.1029/2011gl048738, 2011.
Gamon, J. A., Kovalchuck, O., Wong, C. Y. S., Harris, A., and Garrity, S.
R.: Monitoring seasonal and diurnal changes in photosynthetic pigments with
automated PRI and NDVI sensors, Biogeosciences, 12, 4149–4159,
https://doi.org/10.5194/bg-12-4149-2015, 2015.
Gao, W., Kim, Y., Ustin, S. L., Huete, A. R., Jiang, Z., and Miura, T.:
Multisensor reflectance and vegetation index comparisons of Amazon tropical
forest phenology with hyperspectral Hyperion data, Remote Sens.
Model. Ecosyst. Sustain. IV, https://doi.org/10.1117/12.734974, 2007.
Gelybó, G., Barcza, Z., Kern, A., and Kljun, N.: Effect of spatial
heterogeneity on the validation of remote sensing based GPP estimations,
Agr. Forest Meteorol., 174/175, 43–53,
https://doi.org/10.1016/j.agrformet.2013.02.003, 2013.
Glenn, E. P., Huete, A. R., Nagler, P. L., and Nelson, S. G.: Relationship
Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant
Physiological Processes: What Vegetation Indices Can and Cannot Tell Us
About the Landscape, Sensors, 8, 2136–2160, 2008.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K.,
Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska,
Scott R., Berry, J., Joiner, J., and Lyapustin, A. I.: Photosynthetic
seasonality of global tropical forests constrained by hydroclimate, Nat.
Geosci., 8, 284–289, https://doi.org/10.1038/ngeo2382, 2015.
Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J.,
Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and global assessment of
terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote
Sens. Environ., 121, 236–251, https://doi.org/10.1016/j.rse.2012.02.006, 2012.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A.,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J. E., Moran, M. S.,
Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D.,
Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and
time-resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333, https://doi.org/10.1073/pnas.1320008111, 2014.
Hao, D., Asrar, G. R., Zeng, Y., Yang, X., Li, X., Xiao, J., Guan, K., Wen,
J., Xiao, Q., Berry, J. A., and Chen, M.: Potential of hotspot solar-induced
chlorophyll fluorescence for better tracking terrestrial photosynthesis,
Glob. Change Biol., 27, 2144–2158, https://doi.org/10.1111/gcb.15554, 2021.
Heinsch, F. A., Maosheng, Z., Running, S. W., Kimball, J. S., Nemani, R. R.,
Davis, K. J., Bolstad, P. V., Cook, B. D., Desai, A. R., Ricciuto, D. M.,
Law, B. E., Oechel, W. C., Hyojung, K., Hongyan, L., Wofsy, S. C., Dunn, A.
L., Munger, J. W., Baldocchi, D. D., Liukang, X., Hollinger, D. Y.,
Richardson, A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S.
P., and Flanagan, L. B.: Evaluation of remote sensing based terrestrial
productivity from MODIS using regional tower eddy flux network observations,
IEEE Trans. Geosci. Remote Sens., 44, 1908–1925,
https://doi.org/10.1109/tgrs.2005.853936, 2006.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performanceof the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Huete, A. R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S. R.,
Ichii, K., Panuthai, S., and Gamo, M.: Multiple site tower flux and remote
sensing comparisons of tropical forest dynamics in Monsoon Asia,
Agr. Forest Meteorol., 148, 748–760,
https://doi.org/10.1016/j.agrformet.2008.01.012, 2008.
Jiang, Z., Huete, A., Didan, K., and Miura, T.: Development of a two-band
enhanced vegetation index without a blue band, Remote Sens.
Environ., 112, 3833–3845, https://doi.org/10.1016/j.rse.2008.06.006, 2008.
Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., and
Middleton, E. M.: First observations of global and seasonal terrestrial
chlorophyll fluorescence from space, Biogeosciences, 8, 637–651,
https://doi.org/10.5194/bg-8-637-2011, 2011.
Julitta, T.: Optical proximal sensing for vegetation monitoring, PhD
Dissertation, Department of Earth and Environmental Sciences, University of
Milano-Bicocca, 136 pp., 2015.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.,
116, G3, https://doi.org/10.1029/2010jg001566, 2011.
Köhler, P., Guanter, L., Kobayashi, H., Walther, S., and Yang, W.:
Assessing the potential of sun-induced fluorescence and the canopy
scattering coefficient to track large-scale vegetation dynamics in Amazon
forests, Remote Sens. Environ., 204, 769–785, https://doi.org/10.1016/j.rse.2017.09.025,
2017.
Lasslop, G., Reichstein, M., Detto, M., Richardson, A. D., and Baldocchi, D.
D.: Comment on Vickers et al.: Self-correlation between assimilation and
respiration resulting from flux partitioning of eddy-covariance CO2 fluxes,
Agr. Forest Meteorol., 150, 312–314,
https://doi.org/10.1016/j.agrformet.2009.11.003, 2010.
Lee, J. E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L.,
Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R., Asefi, S., Badgley,
G., and Saatchi, S.: Forest productivity and water stress in Amazonia:
observations from GOSAT chlorophyll fluorescence, Proc. Biol.
Sci., 280, 20130171, https://doi.org/10.1098/rspb.2013.0171, 2013.
Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A., and Laurance, W. F.:
Changing Ecology of Tropical Forests: Evidence and Drivers, Ann. Rev.
Ecol. Evol. Syst., 40, 529–549,
https://doi.org/10.1146/annurev.ecolsys.39.110707.173345, 2009.
Liu, L., Yang, X., Gong, F., Su, Y., Huang, G., and Chen, X.: The Novel
Microwave Temperature Vegetation Drought Index (MTVDI) Captures Canopy
Seasonality across Amazonian Tropical Evergreen Forests, Remote Sens., 13, 339,
https://doi.org/10.3390/rs13030339, 2021.
Logan, B. A., Adams, W. W., and Demmig-Adams, B.: Viewpoint:Avoiding common
pitfalls of chlorophyll fluorescence analysis under field conditions,
Funct. Plant Biol., 34, 853–859, https://doi.org/10.1071/fp07113, 2007.
Magney, T. S., Frankenberg, C., Fisher, J. B., Sun, Y., North, G. B., Davis,
T. S., Kornfeld, A., and Siebke, K.: Connecting active to passive
fluorescence with photosynthesis: a method for evaluating remote sensing
measurements of Chl fluorescence, New Phytol., 215, 1594–1608,
https://doi.org/10.1111/nph.14662, 2017.
Malenovsky, Z., Mishra, K. B., Zemek, F., Rascher, U., and Nedbal, L.:
Scientific and technical challenges in remote sensing of plant canopy
reflectance and fluorescence, J. Exp. Bot., 60, 2987–3004,
https://doi.org/10.1093/jxb/erp156, 2009.
Malhi, Y.: The productivity, metabolism and carbon cycle of tropical forest
vegetation, J. Ecol., 100, 65–75,
https://doi.org/10.1111/j.1365-2745.2011.01916.x, 2012.
Medlyn, B. E.: Physiological basis of the light use efficiency model, Tree
Physiol., 18, 167–176, https://doi.org/10.1093/treephys/18.3.167, 1998.
Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R.,
and Moreno, J.: Remote sensing of solar-induced chlorophyll fluorescence:
Review of methods and applications, Remote Sens. Environ., 113,
2037–2051, https://doi.org/10.1016/j.rse.2009.05.003, 2009.
Merrick, T. and Broadbent, E. B.: Barro Colorado Data, available at: http://www.gatoreye.org, last access: 6 June 2021.
Merrick, T., Pau, S., Jorge, M. L. S. P., Silva, T. S. F., and Bennartz, R.: Spatiotemporal Patterns and
Phenology of Tropical Vegetation Solar-Induced Chlorophyll Fluorescence
across Brazilian Biomes Using Satellite Observations, Remote Sens., 11, 1746,
https://doi.org/10.3390/rs11151746, 2019.
Merrick, T., Jorge, M. L. S. P., Silva, T. S. F., Pau, S., Rausch, J.,
Broadbent, E. N., and Bennartz, R.: Characterization of chlorophyll
fluorescence, absorbed photosynthetically active radiation, and
reflectance-based vegetation index spectroradiometer measurements,
Int. J. Remote Sens., 41, 6755–6782,
https://doi.org/10.1080/01431161.2020.1750731, 2020.
Mitchard, E. T. A.: The tropical forest carbon cycle and climate change,
Nature, 559, 527–534, https://doi.org/10.1038/s41586-018-0300-2, 2018.
Monteith, J. L.: Climate and the efficiency of crop production in Britain,
Philos. T. R. Soc. Land., 281, 277–294, 1977.
Morton, D. C., Rubio, J., Cook, B. D., Gastellu-Etchegorry, J.-P., Longo, M., Choi, H., Hunter, M., and Keller, M.: Amazon forest structure generates diurnal and seasonal variability in light utilization, Biogeosciences, 13, 2195–2206, https://doi.org/10.5194/bg-13-2195-2016, 2016.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook,
B. D., Vermote, E. F., Harding, D. J., and North, P. R.: Amazon forests
maintain consistent canopy structure and greenness during the dry season,
Nature, 506, 221–224, https://doi.org/10.1038/nature13006, 2014.
Moya, I., Camenen, L., Evain, S., Goulas, Y., Cerovic, Z. G., Latouche, G.,
Flexas, J., and Ounis, A.: A new instrument for passive remote sensing1.
Measurements of sunlight-induced chlorophyll fluorescence, Remote Sens.
Environ., 91, 186–197, https://doi.org/10.1016/j.rse.2004.02.012, 2004.
Plascyk, J. A.: The MK II Fraunhofer Line Discriminator (FLD-II) for
Airborne and Orbital Remote Sensing of Solar-Stimulated Luminescense,
Opt. Eng., 14, 144339, https://doi.org/10.1117/12.7971842, 1975.
Porcar-Castell, A., Tyystjarvi, E., Atherton, J., van der Tol, C., Flexas,
J., Pfundel, E. E., Moreno, J., Frankenberg, C., and Berry, J. A.: Linking
chlorophyll a fluorescence to photosynthesis for remote sensing
applications: mechanisms and challenges, J. Exp. Bot., 65,
4065–4095, https://doi.org/10.1093/jxb/eru191, 2014.
R Development Core Team: R: A language and environment for statistical
computing, R Foundation for Statistical Computing [code], available at: https://www.r-project.org/ (last access: 6 June 2021),
2010.
Rocha, A. V., Appel, R., Bret-Harte, M. S., Euskirchen, E. S., Salmon, V.,
and Shaver, G.: Solar position confounds the relationship between ecosystem
function and vegetation indices derived from solar and photosynthetically
active radiation fluxes, Agr. Forest Meteorol., 298, 108291,
https://doi.org/10.1016/j.agrformet.2020.108291, 2021.
Rouse Jr., J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Paper A 20,
hird Earth Resources Technology Satellite-1 Symposium: The Proceedings of a
Symposium Goddard Space Flight Center at Washington, DC 309, 1974.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and
Hashimoto, H.: A Continuous Satellite-Derived Measure of Global Terrestrial
Primary Production, BioScience, 54, 547–551, 2004.
Ryu, Y., Jiang, C., Kobayashi, H., and Detto, M.: MODIS-derived global land
products of shortwave radiation and diffuse and total photosynthetically
active radiation at 5 km resolution from 2000, Remote Sens.
Environ., 204, 812–825, https://doi.org/10.1016/j.rse.2017.09.021, 2018.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., A., E. T., Mitchare,
W. S., Zutta, B. R., Buerman, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl.
Acad. Sci. USA, 108, 9899–9905, 2010.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl.
Acad. Sci. USA, 108, 9899–9904,
https://doi.org/10.1073/pnas.1019576108, 2011.
Samanta, A., Ganguly, S., and Myneni, R.: MODIS Enhanced Vegetation Index
data do not show greening of Amazon forests during the 2005 drought, New
Phytol., 189, 11–15, 2010.
Schickling, A., Matveeva, M., Damm, A., Schween, J., Wahner, A., Graf, A.,
Crewell, S., and Rascher, U.: Combining Sun-Induced Chlorophyll Fluorescence
and Photochemical Reflectance Index Improves Diurnal Modeling of Gross
Primary Productivity, Remote Sens., 8, 574, https://doi.org/10.3390/rs8070574, 2016.
Sims, D., Rahman, A., Cordova, V., Elmasri, B., Baldocchi, D., Bolstad, P.,
Flanagan, L., Goldstein, A., Hollinger, D., and Misson, L.: A new model of
gross primary productivity for North American ecosystems based solely on the
enhanced vegetation index and land surface temperature from MODIS, Remote
Sens. Environ., 112, 1633–1646, https://doi.org/10.1016/j.rse.2007.08.004, 2008.
Springer, K., Wang, R., and Gamon, J. A.: Parallel Seasonal Patterns of
Photosynthesis, Fluorescence, and Reflectance Indices in Boreal Trees,
Remote Sens., 9, 1–18, https://doi.org/10.3390/rs9070691, 2017.
Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter,
L., Drewry, D. T., Verma, M., Porcar-Castell, A., Griffis, T. J., Gu, L.,
Magney, T. S., Kohler, P., Evans, B., and Yuen, K.: OCO-2 advances
photosynthesis observation from space via solar-induced chlorophyll
fluorescence, Science, 358, eaam5747, https://doi.org/10.1126/science.aam5747, 2017.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis,
Bull. Am. Meteorol. Soc., 79, 61–79, 1998.
Tucker, C.: Red and photographic infrared linear combinations for vegetation
monitoring, Remote Sens. Environ., 8, 127–150, 1979.
Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Zhao, M., Running,
S. W., Wofsy, S. C., Urbanski, S., Dunn, A. L., and Munger, J. W.: Scaling
Gross Primary Production (GPP) over boreal and deciduous forest landscapes
in support of MODIS GPP product validation, Remote Sens. Environ.,
88, 256–270, https://doi.org/10.1016/j.rse.2003.06.005, 2003.
Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J., and Samson, R.:
Bidirectional sun-induced chlorophyll fluorescence emission is influenced by
leaf structure and light scattering properties – A bottom-up approach,
Remote Sens. Environ., 158, 169–179, https://doi.org/10.1016/j.rse.2014.11.012,
2015.
Van Wittenberghe, S., Alonso, L., Verrelst, J., Hermans, I., Delegido, J.,
Veroustraete, F., Valcke, R., Moreno, J., and Samson, R.: Upward and
downward solar-induced chlorophyll fluorescence yield indices of four tree
species as indicators of traffic pollution in Valencia, Environ.
Pollut., 173, 29–37, https://doi.org/10.1016/j.envpol.2012.10.003, 2013.
Wang, C., Beringer, J., Hutley, L. B., Cleverly, J., Li, J., Liu, Q., and
Sun, Y.: Phenology Dynamics of Dryland Ecosystems Along the North Australian
Tropical Transect Revealed by Satellite Solar-Induced Chlorophyll
Fluorescence, Geophys. Res. Lett., 46, 5294–5302,
https://doi.org/10.1029/2019gl082716, 2019.
Wang, S., Zhang, Y., Ju, W., Qiu, B., and Zhang, Z.: Tracking the seasonal
and inter-annual variations of global gross primary production during last
four decades using satellite near-infrared reflectance data, Sci.
Total Environ., 755, 142569, https://doi.org/10.1016/j.scitotenv.2020.142569, 2020.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag
[code], available at: https://cran.r-project.org/web/packages/ggplot2/index.html
(last access: 5 June 2021), 2016.
Wickham, H.: tidyverse: Easily Install and Load the “Tidyverse” (R package
version 1.2.1) [code], available at: https://cran.r-project.org/web/packages/tidyverse/index.html (last access: 5 June 2021), 2017.
Wickham, H., François, R., Henry, L., and Müller, K.: dplyr: A
Grammar of Data Manipulation (R package version 0.7.8) [code], available at: https://cran.r-project.org/web/packages/dplyr/index.html (last access: 5 June 2021), 2018.
Wright, S. J.: The future of tropical forests, Ann. N. Y. Acad. Sci., 1195, 1–27,
https://doi.org/10.1111/j.1749-6632.2010.05455.x, 2010.
Wu, G., Guan, K., Jiang, C., Peng, B., Kimm, H., Chen, M., Yang, X., Wang,
S., Suyker, A. E., Bernacchi, C. J., Moore, C. E., Zeng, Y., Berry, J. A.,
and Cendrero-Mateo, M. P.: Radiance-based NIRv as a proxy for GPP of corn
and soybean, Environ. Res. Lett., 15, 034009, https://doi.org/10.1088/1748-9326/ab65cc,
2020.
Xu, L., Saatchi, S. S., Yang, Y., Myneni, R. B., Frankenberg, C., Chowdhury,
D., and Bi, J.: Satellite observation of tropical forest seasonality:
spatial patterns of carbon exchange in Amazonia, Environ. Res.
Lett., 10, 084005, https://doi.org/10.1088/1748-9326/10/8/084005, 2015.
Yang, H., Yang, X., Zhang, Y., Heskel, M. A., Lu, X., Munger, J. W., Sun,
S., and Tang, J.: Chlorophyll fluorescence tracks seasonal variations of
photosynthesis from leaf to canopy in a temperate forest, Glob. Change Biol.,
23, 2874–2886, https://doi.org/10.1111/gcb.13590, 2017.
Yang, J., Tian, H., Pan, S., Chen, G., Zhang, B., and Dangal, S.: Amazon
droughts and forest responses: Largely reduced forest photosynthesis but
slightly increased canopy greenness during the extreme drought of 2015/2016,
Glob. Change Biol., 24, 1919–1934, https://doi.org/10.1111/gcb.14056, 2018a.
Yang, K., Ryu, Y., Dechant, B., Berry, J. A., Hwang, Y., Jiang, C., Kang,
M., Kim, J., Kimm, H., Kornfeld, A., and Yang, X.: Sun-induced chlorophyll
fluorescence is more strongly related to absorbed light than to
photosynthesis at half-hourly resolution in a rice paddy, Remote Sens.
Environ., 216, 658–673, https://doi.org/10.1016/j.rse.2018.07.008, 2018b.
Yang, P., van der Tol, C., Campbell, P. K. E., and Middleton, E. M.:
Fluorescence Correction Vegetation Index (FCVI): A physically based
reflectance index to separate physiological and non-physiological
information in far-red sun-induced chlorophyll fluorescence, Remote Sens. Environ., 240, 111676, https://doi.org/10.1016/j.rse.2020.111676, 2020.
Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold, L., Law,
B., Arain, A., Beringer, J., Bernhofer, C., Black, A., Blanken, P. D.,
Cescatti, A., Chen, Y., Francois, L., Gianelle, D., Janssens, I. A., Jung,
M., Kato, T., Kiely, G., Liu, D., Marcolla, B., Montagnani, L., Raschi, A.,
Roupsard, O., Varlagin, A., and Wohlfahrt, G.: Global comparison of light
use efficiency models for simulating terrestrial vegetation gross primary
production based on the LaThuile database, Agr. Forest
Meteorol., 192/193, 108–120,
https://doi.org/10.1016/j.agrformet.2014.03.007, 2014.
Zarco-Tejada, P. J., González-Dugo, V., and Berni, J. A. J.:
Fluorescence, temperature and narrow-band indices acquired from a UAV
platform for water stress detection using a micro-hyperspectral imager and a
thermal camera, Remote Sens. Environ., 117, 322–337,
https://doi.org/10.1016/j.rse.2011.10.007, 2012.
Zarco-Tejada, P. J., Morales, A., Testi, L., and Villalobos, F. J.:
Spatio-temporal patterns of chlorophyll fluorescence and physiological and
structural indices acquired from hyperspectral imagery as compared with
carbon fluxes measured with eddy covariance, Remote Sens. Environ.,
133, 102–115, https://doi.org/10.1016/j.rse.2013.02.003, 2013.
Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., and
Sampson, P. H.: Estimation of chlorophyll fluorescence under natural
illumination from hyperspectral data, Int. J. Appl. Earth
Obs, 3, 321–327, 2001.
Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., and Berry, J. A.: A
practical approach for estimating the escape ratio of near-infrared
solar-induced chlorophyll fluorescence, Remote Sens. Environ., 232, 111209,
https://doi.org/10.1016/j.rse.2019.05.028, 2019.
Zhang, Z., Zhang, Y., Zhang, Q., Chen, J. M., Porcar-Castell, A., Guanter,
L., Wu, Y., Zhang, X., Wang, H., Ding, D., and Li, Z.: Assessing
bi-directional effects on the diurnal cycle of measured solar-induced
chlorophyll fluorescence in crop canopies, Agr. Forest
Meteorol., 295, 108147, https://doi.org/10.1016/j.agrformet.2020.108147, 2020.
Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., and
Li, Z.: The potential of satellite FPAR product for GPP estimation: An
indirect evaluation using solar-induced chlorophyll fluorescence, Remote
Sens. Environ., 240, 111686, https://doi.org/10.1016/j.rse.2020.111686, 2020.
Zhao, M., Running, S., Heinsch, F. A., and Nemani, R.: MODIS-Derived
Terrestrial Primary Production, in: Land Remote Sensing and Global Environmental Change, Springer, New York, NY, 11, 635–660,
https://doi.org/10.1007/978-1-4419-6749-7_28, 2010.
Zhu, X. and Liu, D.: Improving forest aboveground biomass estimation using
seasonal Landsat NDVI time-series, ISPRS J. Photogramm.
Remote Sens., 102, 222–231, https://doi.org/10.1016/j.isprsjprs.2014.08.014, 2015.
Short summary
Remote sensing measurements of forest structure promise to improve monitoring of tropical forest health. We investigated drone-based vegetation measurements' abilities to capture different structural and functional elements of a tropical forest. We found that emerging vegetation indices captured greater variability than traditional indices and one new index trends with daily change in carbon flux. These new tools can help improve understanding of tropical forest structure and function.
Remote sensing measurements of forest structure promise to improve monitoring of tropical forest...
Altmetrics
Final-revised paper
Preprint