Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-787-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-787-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Low meteorological influence found in 2019 Amazonia fires
Douglas I. Kelley
CORRESPONDING AUTHOR
UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
Chantelle Burton
CORRESPONDING AUTHOR
Met Office Hadley Centre, Fitzroy Road, Exeter, EX1 3PB, UK
Chris Huntingford
UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
Megan A. J. Brown
UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
DISCnet Centre for Doctoral Training, School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
Rhys Whitley
Natural Perils Pricing, Commercial and Consumer Portfolio and Product, Suncorp Group, Sydney, Australia
Ning Dong
Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
Related authors
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550, https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce BuRNN, a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models. However, the model tends to underestimate burned area in parts of Africa and Australia. We identify the extent of bare ground, the presence of grasses, and fire weather conditions (long periods of warm and dry weather) as key regional drivers of fire activity in BuRNN.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Joao C. M. Teixeira, Chantelle Burton, Douglas I. Kelley, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-3066, https://doi.org/10.5194/egusphere-2025-3066, 2025
Short summary
Short summary
Burnt areas produced by wildfires around the world are decreasing, especially in tropical regions, but many climate models fail to show this trend. Our study looks at whether adding a measure of human development to a fire model could improve its representation of these processes. We found that including these factors helped the model better match observations in many regions. This shows that human activity plays a key role in shaping fire trends.
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025, https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
Short summary
As fire seasons in Brazil become increasingly severe, confidently understanding the factors driving fires is more critical than ever. To address this challenge, we developed FLAME (Fire Landscape Analysis using Maximum Entropy), a new model designed to predict fires and to analyse the spatial influence of both environmental and human factors while accounting for uncertainties. By adapting the model to different regions, we can enhance fire management strategies, making FLAME a powerful tool for protecting landscapes in Brazil and beyond.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Inika Taylor, Douglas I. Kelley, Camilla Mathison, Karina E. Williams, Andrew J. Hartley, Richard A. Betts, and Chantelle Burton
EGUsphere, https://doi.org/10.5194/egusphere-2025-720, https://doi.org/10.5194/egusphere-2025-720, 2025
Short summary
Short summary
Climate change is reshaping fire seasons worldwide and, in many places, increasing fire weather risk. We use climate model simulations to project future changes in fire danger at different levels of global warming, focusing on Australia, Brazil, and the USA. Keeping warming below 2 °C significantly limits the increase in fire risk, but even at 1.5 °C, fire seasons lengthen, with more extreme conditions. However, low-fire weather periods remain, offering critical windows for fire management.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Renata Moura da Veiga, Celso von Randow, Chantelle Burton, Douglas Kelley, Manoel Cardoso, and Fabiano Morelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2348, https://doi.org/10.5194/egusphere-2024-2348, 2024
Short summary
Short summary
We systematically reviewed 69 papers on fire emissions from the Brazilian Cerrado biome to provide insights into its placement in the atmospheric carbon budget and support future improved estimation. We find that estimating fire emissions in the Cerrado requires a comprehensive approach, combining quantitative and qualitative aspects of fire. A pathway towards this is the inclusion of fire management representation in land surface models and the integration of observational and modelling data.
Lee de Mora, Ranjini Swaminathan, Richard P. Allan, Jerry C. Blackford, Douglas I. Kelley, Phil Harris, Chris D. Jones, Colin G. Jones, Spencer Liddicoat, Robert J. Parker, Tristan Quaife, Jeremy Walton, and Andrew Yool
Earth Syst. Dynam., 14, 1295–1315, https://doi.org/10.5194/esd-14-1295-2023, https://doi.org/10.5194/esd-14-1295-2023, 2023
Short summary
Short summary
We investigate the flux of carbon from the atmosphere into the land surface and ocean for multiple models and over a range of future scenarios. We did this by comparing simulations after the same change in the global-mean near-surface temperature. Using this method, we show that the choice of scenario can impact the carbon allocation to the land, ocean, and atmosphere. Scenarios with higher emissions reach the same warming levels sooner, but also with relatively more carbon in the atmosphere.
Joao Carlos Martins Teixeira, Chantelle Burton, Douglas I. Kelly, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-136, https://doi.org/10.5194/bg-2023-136, 2023
Revised manuscript not accepted
Short summary
Short summary
Representing socio-economic impacts on fires is crucial to underpin the confidence in global fire models. Introducing these into INFERNO, reduces biases and improves the modelled burnt area (BA) trends when compared to observations. Including socio-economic factors in the representation of fires in Earth System Models is important for realistically simulating BA, quantifying trends in the recent past, and for understanding the main drivers of those at regional scales.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Anastasios Rovithakis, Eleanor Burke, Chantelle Burton, Matthew Kasoar, Manolis G. Grillakis, Konstantinos D. Seiradakis, and Apostolos Voulgarakis
Nat. Hazards Earth Syst. Sci., 25, 3185–3200, https://doi.org/10.5194/nhess-25-3185-2025, https://doi.org/10.5194/nhess-25-3185-2025, 2025
Short summary
Short summary
We used a land surface computer model to forecast how climate change will impact wildfires in Greece. Our results show a significant increase in future burnt area due to hotter, drier climate. Allowing vegetation to change with the climate lessens this increase overall, since fire is no longer igniting in areas already burnt, and it even led to projected decreases in the agricultural areas in the north of the country.
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550, https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce BuRNN, a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models. However, the model tends to underestimate burned area in parts of Africa and Australia. We identify the extent of bare ground, the presence of grasses, and fire weather conditions (long periods of warm and dry weather) as key regional drivers of fire activity in BuRNN.
Joseph Clarke, Chris Huntingford, Paul David Longden Ritchie, Rebecca Varney, Mark Williamson, and Peter Cox
EGUsphere, https://doi.org/10.5194/egusphere-2025-3703, https://doi.org/10.5194/egusphere-2025-3703, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
An increase in CO2 in the atmosphere warms the climate through the greenhouse effect, but also leads to uptake of CO2 by the land and ocean. However, the warming is also expected to suppress carbon uptake. If this suppression were strong enough, it could overwhelm the uptake of carbon, leading to a runaway feedback loop causing severe global warming. We find it is possible that this runaway could be relevant in complex climate models and even at the end of the last ice age.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Megan A. J. Brown, Nicola J . Warwick, Nathan Luke Abraham, Paul T. Griffiths, Steve T. Rumbold, Gerd A. Folberth, Fiona M. O'Connor, and Alex T. Archibald
EGUsphere, https://doi.org/10.5194/egusphere-2025-2676, https://doi.org/10.5194/egusphere-2025-2676, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Hydrogen (H2) is an indirect greenhouse gas by increasing methane (CH4) lifetime. Interaction between H2 and CH4 is important for hydrogen’s global warming potential (GWP). Global models do not represent this interaction well; H2 or CH4 are prescribed at the surface. We implement an interactive H2 scheme into a global model coupled with interactive CH4. We simulate scenarios demonstrating its capability, improving model performance and more accurately representing H2-CH4 interaction.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Joao C. M. Teixeira, Chantelle Burton, Douglas I. Kelley, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-3066, https://doi.org/10.5194/egusphere-2025-3066, 2025
Short summary
Short summary
Burnt areas produced by wildfires around the world are decreasing, especially in tropical regions, but many climate models fail to show this trend. Our study looks at whether adding a measure of human development to a fire model could improve its representation of these processes. We found that including these factors helped the model better match observations in many regions. This shows that human activity plays a key role in shaping fire trends.
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025, https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
Short summary
As fire seasons in Brazil become increasingly severe, confidently understanding the factors driving fires is more critical than ever. To address this challenge, we developed FLAME (Fire Landscape Analysis using Maximum Entropy), a new model designed to predict fires and to analyse the spatial influence of both environmental and human factors while accounting for uncertainties. By adapting the model to different regions, we can enhance fire management strategies, making FLAME a powerful tool for protecting landscapes in Brazil and beyond.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Chris Huntingford, Andrew J. Nicoll, Cornelia Klein, and Jawairia A. Ahmad
Earth Syst. Dynam., 16, 475–495, https://doi.org/10.5194/esd-16-475-2025, https://doi.org/10.5194/esd-16-475-2025, 2025
Short summary
Short summary
AI is impacting science, providing key data insights, but most algorithms are statistical requiring cautious "out-of-sample" extrapolation. Yet climate research concerns predicting future climatic states. We consider a new method of AI-led equation discovery. Equations offer process interpretation and more robust predictions. We recommend this method for climate analysis, suggesting illustrative application to atmospheric convection, land–atmosphere CO2 flux, and global ocean circulation models.
Inika Taylor, Douglas I. Kelley, Camilla Mathison, Karina E. Williams, Andrew J. Hartley, Richard A. Betts, and Chantelle Burton
EGUsphere, https://doi.org/10.5194/egusphere-2025-720, https://doi.org/10.5194/egusphere-2025-720, 2025
Short summary
Short summary
Climate change is reshaping fire seasons worldwide and, in many places, increasing fire weather risk. We use climate model simulations to project future changes in fire danger at different levels of global warming, focusing on Australia, Brazil, and the USA. Keeping warming below 2 °C significantly limits the increase in fire risk, but even at 1.5 °C, fire seasons lengthen, with more extreme conditions. However, low-fire weather periods remain, offering critical windows for fire management.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Paul David Longden Ritchie, Chris Huntingford, and Peter Cox
EGUsphere, https://doi.org/10.5194/egusphere-2024-3023, https://doi.org/10.5194/egusphere-2024-3023, 2024
Short summary
Short summary
Climate Tipping Points are not instantaneous upon crossing critical thresholds in global warming, as is often assumed. Instead, it is possible to temporarily overshoot a threshold without causing tipping, provided the duration of the overshoot is short. In this Idea, we demonstrate that restricting the time over 1.5 °C would considerably reduce tipping point risks.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Renata Moura da Veiga, Celso von Randow, Chantelle Burton, Douglas Kelley, Manoel Cardoso, and Fabiano Morelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2348, https://doi.org/10.5194/egusphere-2024-2348, 2024
Short summary
Short summary
We systematically reviewed 69 papers on fire emissions from the Brazilian Cerrado biome to provide insights into its placement in the atmospheric carbon budget and support future improved estimation. We find that estimating fire emissions in the Cerrado requires a comprehensive approach, combining quantitative and qualitative aspects of fire. A pathway towards this is the inclusion of fire management representation in land surface models and the integration of observational and modelling data.
Mark S. Williamson, Peter M. Cox, Chris Huntingford, and Femke J. M. M. Nijsse
Earth Syst. Dynam., 15, 829–852, https://doi.org/10.5194/esd-15-829-2024, https://doi.org/10.5194/esd-15-829-2024, 2024
Short summary
Short summary
Emergent constraints on equilibrium climate sensitivity (ECS) have generally got statistically weaker in the latest set of state-of-the-art climate models (CMIP6) compared to past sets (CMIP5). We look at why this weakening happened for one particular study (Cox et al, 2018) and attribute it to an assumption made in the theory that when corrected for restores there is a stronger relationship between predictor and ECS.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Lee de Mora, Ranjini Swaminathan, Richard P. Allan, Jerry C. Blackford, Douglas I. Kelley, Phil Harris, Chris D. Jones, Colin G. Jones, Spencer Liddicoat, Robert J. Parker, Tristan Quaife, Jeremy Walton, and Andrew Yool
Earth Syst. Dynam., 14, 1295–1315, https://doi.org/10.5194/esd-14-1295-2023, https://doi.org/10.5194/esd-14-1295-2023, 2023
Short summary
Short summary
We investigate the flux of carbon from the atmosphere into the land surface and ocean for multiple models and over a range of future scenarios. We did this by comparing simulations after the same change in the global-mean near-surface temperature. Using this method, we show that the choice of scenario can impact the carbon allocation to the land, ocean, and atmosphere. Scenarios with higher emissions reach the same warming levels sooner, but also with relatively more carbon in the atmosphere.
Emma L. Robinson, Chris Huntingford, Valyaveetil Shamsudheen Semeena, and James M. Bullock
Earth Syst. Sci. Data, 15, 5371–5401, https://doi.org/10.5194/essd-15-5371-2023, https://doi.org/10.5194/essd-15-5371-2023, 2023
Short summary
Short summary
CHESS-SCAPE is a suite of high-resolution climate projections for the UK to 2080, derived from United Kingdom Climate Projections 2018 (UKCP18), designed to support climate impact modelling. It contains four realisations of four scenarios of future greenhouse gas levels (RCP2.6, 4.5, 6.0 and 8.5), with and without bias correction to historical data. The variables are available at 1 km resolution and a daily time step, with monthly, seasonal and annual means and 20-year mean-monthly time slices.
Joao Carlos Martins Teixeira, Chantelle Burton, Douglas I. Kelly, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-136, https://doi.org/10.5194/bg-2023-136, 2023
Revised manuscript not accepted
Short summary
Short summary
Representing socio-economic impacts on fires is crucial to underpin the confidence in global fire models. Introducing these into INFERNO, reduces biases and improves the modelled burnt area (BA) trends when compared to observations. Including socio-economic factors in the representation of fires in Earth System Models is important for realistically simulating BA, quantifying trends in the recent past, and for understanding the main drivers of those at regional scales.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023, https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Short summary
Emergent constraints (ECs) reduce the spread of projections between climate models. ECs estimate changes to climate features impacting adaptation policy, and with this high profile, the method is under scrutiny. Asking
What is an EC?, we suggest they are often the discovery of parameters that characterise hidden large-scale equations that climate models solve implicitly. We present this conceptually via two examples. Our analysis implies possible new paths to link ECs and physical processes.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
Louise J. Slater, Chris Huntingford, Richard F. Pywell, John W. Redhead, and Elizabeth J. Kendon
Earth Syst. Dynam., 13, 1377–1396, https://doi.org/10.5194/esd-13-1377-2022, https://doi.org/10.5194/esd-13-1377-2022, 2022
Short summary
Short summary
This work considers how wheat yields are affected by weather conditions during the three main wheat growth stages in the UK. Impacts are strongest in years with compound weather extremes across multiple growth stages. Future climate projections are beneficial for wheat yields, on average, but indicate a high risk of unseen weather conditions which farmers may struggle to adapt to and mitigate against.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.:
The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present),
J. Hydrometeorol.,
4, 1147–1167, 2003.
Aldersley, A., Murray, S. J., and Cornell, S. E.:
Global and regional analysis of climate and human drivers of wildfire,
Sci. Total Environ.,
409, 3472–3481, 2011.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.:
A human-driven decline in global burned area,
Science,
356, 1356–1362, 2017.
Anon:
2020 Incident Archive, CAL FIRE,
available at: https://www.fire.ca.gov/incidents/2020/ (last access: 10 April 2019), 2020.
Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V. J., Silva Junior, C. H. L., Arai, E., Aguiar, A. P., Barlow, J., Berenguer, E., Deeter, M. N., Domingues, L. G., Gatti, L., Gloor, M., Malhi, Y., Marengo, J. A., Miller, J. B., Phillips, O. L., and Saatchi, S.:
21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions,
Nat. Commun.,
9, 536, https://doi.org/10.1038/s41467-017-02771-y, 2018.
Arruda, D., Candido, H. G., and Fonseca, R.:
Amazon fires threaten Brazil's agribusiness,
Science,
365, 1387, https://doi.org/10.1126/science.aaz2198, 2019.
BBC news:
Amazon fires: Brazil bans land clearance blazes for 60 days,
BBC news,
available at: https://www.bbc.co.uk/news/world-latin-america-49507405 (last access: 3 November 2020), 2019.
Bivand, R., Keitt, T., and Rowlingson, B.:
rgdal: Bindings for the Geospatial Data Abstraction Library,
available at: http://CRAN.R-project.org/package=rgdal, last access: 10 November 2016.
Boer, M. M., de Dios, V. R., and Bradstock, R. A.:
Unprecedented burn area of Australian mega forest fires,
Nat. Clim. Change,
10, 171–172, 2020.
Brando, P. M., Balch, J. K., and Nepstad, D. C.:
Abrupt increases in Amazonian tree mortality due to drought–fire interactions,
P. Natl. Acad. Sci. USA, 111, 6347–6352, https://doi.org/10.1073/pnas.1305499111, 2014.
Burton, C., Betts, R. A., and Jones, C. D.:
Will fire danger be reduced by using Solar Radiation Management to limit global warming to 1.5 ∘C compared to 2.0 ∘C?,
Geophys. Res. Lett., 45, 3644–3652, https://doi.org/10.1002/2018GL077848, 2018.
Butler, R.:
Calculating deforestation figures for the Amazon,
Rio de Janeiro, available at: https://rainforests.mongabay.com/amazon/deforestation_calculations.html (last access: 29 February 2020), 2017.
Cochrane, M. A. and Schulze, M. D.:
Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon: Effects on Forest Structure, Biomass, and Species Composition1,
Biotropica,
31, 2–16, 1999.
De Groot, W. J., Goldammer, J. G., Justice, C. O., and Lynham, T. J.:
Implementing a global early warning system for wildland fire,
in: Proc. Virchow. Pirquet. Med. Soc., University of Coimbra, Coimbra, Portugal, 15–18,
2010.
de Groot, W. J., Wotton, B. M., and Flannigan, M. D.:
Chapter 11 – Wildland Fire Danger Rating and Early Warning Systems,
in: Wildfire Hazards, Risks and Disasters,
edited by:
Shroder, J. F. and Paton, D.,
Elsevier, Oxford, 207–228, 2015.
de Oliveira Andrade, R.:
Alarming surge in Amazon fires prompts global outcry,
Nature,
https://doi.org/10.1038/d41586-019-02537-0, 2019.
Dimiceli, C., Carroll, M., Sohlberg, R., Kim, D. H., Kelly, M., and Townshend, J. R. G.:
MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MOD44B.006, 2015.
Escobar, H.:
Amazon fires clearly linked to deforestation, scientists say,
Science,
365, 853, https://doi.org/10.1126/science.365.6456.853, 2019.
Fisher, R. A. and Koven, C. D.:
Perspectives on the future of Land Surface Models and the challenges of representing complex terrestrial systems,
J. Adv. Model. Earth Sy., 12,
e2018MS001453, https://doi.org/10.1029/2018MS001453, 2020.
Fonseca, M. G., Alves, L. M., Aguiar, A. P. D., Arai, E., Anderson, L. O., Rosan, T. M., Shimabukuro, Y. E., and Aragão, L. E. O. C.:
Effects of climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon,
Glob. Change Biol.,
25, 2931–2946, 2019.
Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D.,
Neigh, C., and Reichstein, M.: Trend Change
Detection in NDVI Time Series: Effects of Inter-Annual Variability
and Methodology, Remote Sensing, 5, 2113–2144, 2013.
Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., and Carvalhais, N.:
Co-dominant water control on global inter-annual variability
and trends in land surface phenology and greenness, Glob. Change
Biol., 21, 3414–3435, 2015.
Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., and Thonicke, K.: A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1), Geosci. Model Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017, 2017.
GDAL/OGR contributors:
GDAL/OGR Geospatial Data Abstraction software Library,
Open Source Geospatial Foundation, Version 3.2,
available at: http://gdal.org (last access: March 2020), 2018.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product,
Remote Sens. Environ.,
217, 72–85, 2018.
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.: The status and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, 2016.
Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., and Yue, C.: Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project, Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, 2020.
Hijmans, R. J. and van Etten, J.:
raster: Geographic data analysis and modeling, R package version, available at: http://CRAN.R-project.org/package=raster
(last access: 15 March 2018), 2014.
INPE:
INPE Fire Count Data,
available at: http://queimadas.dgi.inpe.br/queimadas/portal-static/estatisticas_paises/, last access: 29 February 2019.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M. J. S.:
Climate-induced variations in global wildfire danger from 1979 to 2013,
Nat. Commun.,
6, 7537, https://doi.org/10.1038/ncomms8537, 2015.
Jones, M. W., Smith, A., Betts, R., Canadell, J. G., Prentice, I. C., and Le Queìreì, C.:
Climate change increases the risk of wildfires,
ScienceBrief Review, available at: https://ueaeprints.uea.ac.uk/id/eprint/77982/, last access: 29 February 2020.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.:
The NCEP/NCAR 40-Year Reanalysis Project,
B. Am. Meteorol. Soc.,
77, 437–472, 1996.
Kelley, D. I.:
Modelling Australian fire regimes,
PhD thesis, Macquarie, University, Ryde, NSW, Australia, 2014.
Kelley, D. I. and Harrison, S. P.:
Enhanced Australian carbon sink despite increased wildfire during the 21st century,
Environ. Res. Lett.,
9, 104015, https://doi.org/10.1088/1748-9326/9/10/104015, 2014.
Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and Willis, K. O.: A comprehensive benchmarking system for evaluating global vegetation models, Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, 2013.
Kelley, D. I., Harrison, S. P., and Prentice, I. C.: Improved simulation of fire–vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1), Geosci. Model Dev., 7, 2411–2433, https://doi.org/10.5194/gmd-7-2411-2014, 2014.
Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., and Dong, N.:
How contemporary bioclimatic and human controls change global fire regimes,
Nat. Clim. Change,
9, 690–696, 2019.
Kelley, D. I., Whitley, R., Brown, M. A. J., and Burton, C.: Scripts used in the submission of “Low Climatic Influence found in 2019 Amazonia Fires”, Zenodo, https://doi.org/10.5281/zenodo.4298760, 2020a.
Kelley, D. I., Whitley, R., Burton, C., Brown, M. A. J., Huntingford, C., and Dong, N.: ConFire Model input/output for South America, Zenodo, https://doi.org/10.5281/zenodo.4298902, 2020b.
Klein Goldewijk, K., Goldewijk, K. K., Beusen, A., Van Drecht, G., and De Vos, M.:
The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years,
Global Ecol. Biogeogr.,
20, 73–86, 2010.
Krawchuk, M. A. and Moritz, M. A.:
Burning issues: statistical analyses of global fire data to inform assessments of environmental change,
Environmetrics,
25, 472–481, 2014.
Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S., and Kloster, S.:
Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback,
Geophys. Res. Lett.,
43, 6324–6331, 2016.
Lenihan, J. M., Daly, C., Bachelet, D., and Neilson, R. P.:
Simulating broad-scale fire severity in a dynamic global vegetation model,
Northwest Sci.,
72, 91–101, 1998.
Lizundia-Loiola, J., Pettinari, M. L., and Chuvieco, E.:
Temporal Anomalies in Burned Area Trends: Satellite Estimations of the Amazonian 2019 Fire Crisis,
Remote Sens.-Basel,
12, 151, https://doi.org/10.3390/rs12010151, 2020.
Lovejoy, T. E. and Nobre, C.:
Amazon tipping point: Last chance for action,
Sci. Adv.,
5, eaba2949, https://doi.org/10.1126/sciadv.aba2949, 2019.
Marengo, J. A. and Espinoza, J. C.:
Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts: EXTREMES IN AMAZONIA,
Int. J. Climatol.,
36, 1033–1050, 2016.
Marengo, J. A., Souza, C. A., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., and Soares, W. R.:
Changes in climate and land use over the Amazon Region: current and future variability and trends,
Front Earth Sci. Chin.,
6, 228, https://doi.org/10.3389/feart.2018.00228, 2018.
Met Office: Iris:
A Python library for analysing and visualising meteorological and oceanographic data sets, v1.2 edn., Exeter, Devon,
available at: http://scitools.org.uk/ (last access: 8 October 2019), 2013.
Morton, D. C., Defries, R. S., Randerson, J. T., Giglio, L., Schroeder, W., and Van Der Werf, G. R.:
Agricultural intensification increases deforestation fire activity in Amazonia,
Glob. Change Biol.,
14, 2262–2275, 2008.
NASA:
Uptick in Amazon Fire Activity in 2019,
NASA Earth Observatory,
available at: https://www.earthobservatory.nasa.gov/images/145498/uptick-in-amazon-fire-activity-in-2019 (last access: 3 November 2020), 2019.
Nauslar, N. J., Brown, T. J., McEvoy, D. J., and Lareau, N. P.:
Record-setting 2018 California wildfires,
in: State of the Climate 2018,
edited by: Blunden, J. A. D. S. A.,
Special Supplement to the Bulletin of the American Meteorological Society Vol. 100, No. 9, September 2019, p. 195, 2019.
Patel, K.:
Arctic Fires Fill the Skies with Soot,
NASA Earth Observatory,
available at: https://earthobservatory.nasa.gov/images/145380/arctic-fires-fill-the-skies-with-soot, last access: 1 December 2019.
Pellegrini, A. F. A., Anderegg, W. R. L., Paine, C. E. T., Hoffmann, W. A., Kartzinel, T., Rabin, S. S., Sheil, D., Franco, A. C., and Pacala, S. W.:
Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change,
Ecol. Lett.,
20, 307–316, 2017.
Perry, J. J., Cook, G. D., Graham, E., Meyer, C. P. M., Murphy, H. T., and VanDerWal, J.:
Regional seasonality of fire size and fire weather conditions across Australia's northern savanna,
Int. J. Wildland Fire,
29, 1–10, 2020.
Prentice, I. C., Harrison, S. P., and Bartlein, P. J.:
Global vegetation and terrestrial carbon cycle changes after the last ice age,
New Phytol.,
189, 988–998, 2011a.
Prentice, I. C., Kelley, D. I., Foster, P. N., Friedlingstein, P., Harrison, S. P., and Bartlein, P. J.:
Modeling fire and the terrestrial carbon balance,
Global Biogeochem. Cy.,
25, GB3005, https://doi.org/10.1029/2010gb003906, 2011b.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
R Core Team:
R: A Language and Environment for Statistical Computing,
available at: http://www.R-project.org/, last access: 16 April 2015.
RFS: New South Wales Rural Fire Service,
available at: https://www.rfs.nsw.gov.au/fire-information/fires-near-me, last access: 29 February 2019.
Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.:
Probabilistic programming in Python using PyMC3,
PeerJ. Comput. Sci.,
2, e55, https://doi.org/10.7717/peerj-cs.55, 2016.
Sanderson, B. M. and Fisher, R. A.:
A fiery wake-up call for climate science,
Nat. Clim. Change,
10, 175–177, 2020.
Staver, A. C., Brando, P. M., Barlow, J., Morton, D. C., Paine, C. E. T., Malhi, Y., Araujo Murakami, A., and Del Aguila Pasquel, J.:
Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire,
Ecol. Lett.,
23, 99–106, 2020.
Tollefson, J.:
ECOLOGY Huge wildfires defy explanation,
Nature,
561, 16–17, 2018.
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., and Dolman, A. J.:
Climate controls on the variability of fires in the tropics and subtropics,
Global Biogeochem. Cy.,
22, GB3028, https://doi.org/10.1029/2007GB003122, 2008.
van Oldenborgh, G. J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R., van Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R. P., van Aalst, M. K., Philip, S. Y., Vautard, R., and Otto, F. E. L.: Attribution of the Australian bushfire risk to anthropogenic climate change, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2020-69, in review, 2020.
Venevsky, S., Thonicke, K., Sitch, S., and Cramer, W.:
Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study,
Glob. Change Biol.,
8, 984–998, 2002.
Williams, A. P. and Abatzoglou, J. T.:
Recent Advances and Remaining Uncertainties in Resolving Past and Future Climate Effects on Global Fire Activity,
Current Climate Change Reports,
2, 1–14, 2016.
Wiltshire, J., Hekman, J., and Milan, B. F.:
Carbon loss and economic impacts of a peatland wildfire in north-east Sutherland, Scotland, in: Report on impact of wildfire on the peatland and
released carbon from the peatland,
12–17 May 2019, Ricardo Energy &
Environment for WWF-UK, 2019.
Witze, A.:
The Arctic is burning like never before – and that's bad news for climate change,
Nature,
585, 336–337, 2020.
Zeppel, M. J. B., Harrison, S. P., Adams, H. D., Kelley, D. I., Li, G., Tissue, D. T., Dawson, T. E., Fensham, R., Medlyn, B. E., Palmer, A., West, A. G., and McDowell, N. G.:
Drought and resprouting plants,
New Phytol.,
206, 583–589, 2015.
Zhang, K., de Almeida Castanho, A. D., Galbraith, D. R., Moghim, S., Levine, N. M., Bras, R. L., Coe, M. T., Costa, M. H., Malhi, Y., Longo, M., Knox, R. G., McKnight, S., Wang, J., and Moorcroft, P. R.:
The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use,
Glob. Change Biol.,
21, 2569–2587, https://doi.org/10.1111/gcb.12903, 2015.
Short summary
Initial evidence suggests human ignitions or landscape changes caused most Amazon fires during August 2019. However, confirmation is needed that meteorological conditions did not have a substantial role. Assessing the influence of historical weather on burning in an uncertainty framework, we find that 2019 meteorological conditions alone should have resulted in much less fire than observed. We conclude socio-economic factors likely had a strong role in the high recorded 2019 fire activity.
Initial evidence suggests human ignitions or landscape changes caused most Amazon fires during...
Altmetrics
Final-revised paper
Preprint