Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-961-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-961-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane efflux from an American bison herd
Department of Biological Systems Engineering, University of Wisconsin–Madison,
Madison, WI, USA
Department of Atmospheric and Oceanic Sciences, University of
Wisconsin–Madison, Madison, WI, USA
Department of Forest and Wildlife Ecology, University of Wisconsin–Madison,
Madison, WI, USA
Adam A. Cook
Department of Land Resources and Environmental Sciences, Montana State
University, Bozeman, MT, USA
John E. Dore
Department of Land Resources and Environmental Sciences, Montana State
University, Bozeman, MT, USA
Montana Institute on Ecosystems, Montana State University, Bozeman,
MT, USA
Natascha Kljun
Centre for Environmental and Climate Science, Lund University, Lund,
Sweden
William Kleindl
Department of Land Resources and Environmental Sciences, Montana State
University, Bozeman, MT, USA
E. N. Jack Brookshire
Department of Land Resources and Environmental Sciences, Montana State
University, Bozeman, MT, USA
Tobias Gerken
Department of Meteorology and Atmospheric Science, The Pennsylvania
State University, University Park, PA, USA
School of Integrated Sciences, James Madison University, Harrisonburg,
VA, USA
Related authors
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Rainer Hilland, Josh Hashemi, Stavros Stagakis, Dominik Brunner, Lionel Constantin, Natascha Kljun, Betty Molinier, Samuel Hammer, Lukas Emmenegger, and Andreas Christen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1088, https://doi.org/10.5194/egusphere-2025-1088, 2025
Short summary
Short summary
We present a study of simultaneously measured fluxes of carbon dioxide (CO2) and co-emitted species in the city of Zurich. Flux measurements of CO2 alone can’t be attributed to specific emission sectors, such as road transport or residential heating. We present a model which uses the measured ratios of CO2 to carbon monoxide (CO) and nitrogen oxides (NOx) as well as sector-specific reference ratios, to attribute measured fluxes to their emission sectors.
Tobias Gerken, Kenneth J. Davis, Klaus Keller, and Sha Feng
EGUsphere, https://doi.org/10.5194/egusphere-2025-341, https://doi.org/10.5194/egusphere-2025-341, 2025
Short summary
Short summary
We apply the Patient Rule Induction Method (PRIM) technique to airborne CO2 and meteorological data to better understand atmospheric conditions and implications for carbon dioxide model-observation-mismatches. We found PRIM is capable of separating observations from different seasons and levels based on atmospheric conditions. Large magnitude carbon dioxide model-observation-differences were associated with non-typical atmospheric conditions, with implications for transport model evaluation.
Julia Kelly, Stefan H. Doerr, Johan Ekroos, Theresa S. Ibáñez, Md. Rafikul Islam, Cristina Santín, Margarida Soares, and Natascha Kljun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2016, https://doi.org/10.5194/egusphere-2024-2016, 2024
Preprint archived
Short summary
Short summary
We measured soil carbon fluxes during the first four years after a wildfire in the Swedish boreal forest. Soil CO2 emissions decreased substantially only when trees were killed by fire or by post-fire logging, but not when trees survived the fire and were left standing. Soil methane flux was not affected by fire. Logging trees already killed by fire had no additional impact on soil carbon fluxes. Post-fire forest management strategy impacted vegetation regrowth and carbon dynamics.
Ross Petersen, Thomas Holst, Meelis Mölder, Natascha Kljun, and Janne Rinne
Atmos. Chem. Phys., 23, 7839–7858, https://doi.org/10.5194/acp-23-7839-2023, https://doi.org/10.5194/acp-23-7839-2023, 2023
Short summary
Short summary
We investigate variability in the vertical distribution of volatile organic compounds (VOCs) in boreal forest, determined through multiyear measurements at several heights in a boreal forest in Sweden. VOC source/sink seasonality in canopy was explored using these vertical profiles and with measurements from a collection of sonic anemometers on the station flux tower. Our results show seasonality in the source/sink distribution for several VOCs, such as monoterpenes and water-soluble compounds.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
László Haszpra, Zoltán Barcza, Zita Ferenczi, Roland Hollós, Anikó Kern, and Natascha Kljun
Atmos. Meas. Tech., 15, 5019–5031, https://doi.org/10.5194/amt-15-5019-2022, https://doi.org/10.5194/amt-15-5019-2022, 2022
Short summary
Short summary
A novel approach is used for the determination of greenhouse gas (GHG) emissions of small rural settlements, which may significantly differ from those of urban regions and have hardly been studied yet. Among other results, it turned out that wintertime nitrous oxide emission is significantly underestimated in the official emission inventories. Given the large number of such settlements, the underestimation may also distort the national total emission values reported to international databases.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Cited articles
Allred, B. W., Fuhlendorf, S. D., and Hamilton, R. G.: The role of herbivores
in Great Plains conservation: comparative ecology of bison and cattle,
Ecosphere 2, 1–17, 2011.
Andreas, E. L., Jordan, R. E., Guest, P. S., Persson, O. G., Grachev, A. A.,
and Fairall, C. W.: Roughness lengths over snow, 18th Conference on
Hydrology of the American Meteorological Society, Seattle, WA, 11–15
January, 2004.
ASAE D321.2 MAR1985 (R2015) Dimensions of Livestock and Poultry, available at: https://www.asabe.org/Publications-Standards/Standards-Development/National-Standards/Published-Standards (last access: 20 February 2020), 2015.
Baldocchi, D. D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A.,
Silver, W., and Kelley, N. M.: The challenges of measuring methane fluxes and
concentrations over a peatland pasture, Agr. Forest Meteorol. 153, 177–187, 2012.
Baum, K. A., Ham, J. M., Brunsell, N. A., and Coyne, P. I.: Surface boundary
layer of cattle feedlots: Implications for air emissions measurement. Agr.
Forest. Meteorol. 148, 1882–1893, 2008.
Beauchemin, K. A., Kreuzer, M., O'Mara, F., and McAllister, T. A.:
Nutritional management for enteric methane abatement: a review, Aust. J.
Exp. Agric., 48, 21–27, 2008.
Boadi, D. A. and Wittenberg, K. M.: Methane production from dairy and beef
heifers fed forages differing in nutrient density using the sulphur
hexafluoride (SF6) tracer gas technique, Can. J. Anim. Sci., 82,
201–206, 2002.
Bowling, D. R. and Massman, W. J.: Persistent wind-induced enhancement of
diffusive CO2 transport in a mountain forest snowpack, J. Geophys. Res.
116, 1–15, 2011.
Brutsaert, W.: Evaporation into the Atmosphere: Theory, History, and
Applications, Kluwer, Dordrecht, 1982.
Chappellaz, J. A., Fung, I. Y., and Thompson A. M.: The atmospheric CH4
increase since the Last Glacial Maximum, Tellus B, 45, 228–241, 1993.
Chaves, A. V., Thompson, L., C., Iwaasa, A., D., Scott, S., L., Olson, M.
E., Benchaar, C., Veira, D., M., and McAllister, T., A.: Effect of pasture
type (alfalfa vs. grass) on methane and carbon dioxide production by
yearling beef heifers, Can. J. Anim. Sci., 86, 409–418, 2006.
Coates, T., W., Benvenutti, M. A., Flisch, T. K., Charmley, E., McGinn, S.
M., and Chen D.: Applicability of eddy covariance to estimate methane
emissions from grazing cattle, J. Environ. Qual. 47, 54-61, 2017.
Collins, S. L. and Steinauer, E. M.: Disturbance, diversity and species
interactions in tallgrass prairie, in: Grassland Dynamics: Long-Term Ecological Research in Tallgrass Prairie, edited by: Knapp, A. K., Briggs, J. M., Hartnett, D. C. and Collins, S. C., Oxford University Press, Oxford, 140–156, 1998.
Cóndor, R. D., Valli, L., De Rosa, G., Di Francia, A., and De Lauretis,
R: Estimation of the methane emission factor for the Italian Mediterranean
buffalo, Animal, 2, 1247–1253, 2008.
Coppedge, B. R. and Shaw, J. H.: Bison grazing patterns on seasonally burned
tallgrass prairie, J. Range Manage., 51, 258–264, 1998.
Crutzen, P. J., Aselmann, I., and Seiler, W.: Methane production by domestic
animals, wild ruminants, other herbivorous fauna, and humans, Tellus B, 38,
271–284, 1985.
Dengel, S., Levy, P. E., Grace, J., Jones, S. K., and Skiba, U. M.: Methane
emissions from sheep pasture, measured with an open-path eddy covariance
system, Glob. Change Biol., 17, 3524–3533, 2011.
DeRamus, H. A., Clement, T. C., Giampola, D. D., and Dickison, P. C.: Methane
emissions of beef cattle on forages, J. Environ. Qual., 32, 269–277,
2003.
Detto, M. and Katul, G. G.: Simplified expressions for adjusting
higher-order turbulent statistics obtained from open path gas analyzers,
Bound.-Lay. Meteorol., 122, 205–216, 2006.
Detto, M., Verfaillie, J., Anderson, F., Xu, L., and Baldocchi, D.: Comparing
laser-based open- and closed-path gas analyzers to measure methane fluxes
using the eddy covariance method, Agr. Forest Meteorol., 151,
1312–1324, 2011.
FAO: Global Livestock Environmental Assessment Model (GLEAM), Rome, available at: http://www.fao.org/fileadmin/user_upload/gleam/docs/GLEAM_2.0_Model_description.pdf (last access: 22 January 2020), 2017.
Deventer, M. J., Deventer, M., Griffis, T. J., Roman, D., Kolka, R. K.,
Wood, J. D., Erickson, M., Baker, J. M., and Millet, D. B.: Error
characterization of methane fluxes and budgets derived from a long-term
comparison of open- and closed-path eddy covariance systems, Agr. Forest
Meteorol., 278, 107638, https://doi.org/10.1016/j.agrformet.2019.107638, 2019.
Dumortier, P., Aubinet, M., Lebeau, F., Naiken, A., and Heinesch, B.: Point
source emission estimation using eddy covariance: Validation using an
artificial source experiment, Agr. Forest Meteorol., 266–267, 148–156, 2019.
Felber, R., Münger, A., Neftel, A., and Ammann, C.: Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources, Biogeosciences, 12, 3925–3940, https://doi.org/10.5194/bg-12-3925-2015, 2015.
Flores D: Bison ecology and bison diplomacy: The southern plains from 1800
to 1850, J. Am. Hist., 78, 465–485, 1991.
Fortin, D., Fryxell, J. M., O'Brodovich, L., and Frandsen, D.: Foraging
ecology of bison at the landscape and plant community levels: the
applicability of energy maximization principles, Oecologia, 134,
219–227, 2003.
Galbraith, J. K., Mathison, G. W., Hudson, R. J., McAllister, T. A., and
Cheng, K.-J.: Intake, digestibility, methane and heat production in bison,
wapiti and white-tailed deer, Can. J. Anim. Sci., 78, 681–691, 1998.
Foken T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger W.:
Post-field data quality control, in:
Handbook of micrometeorology: A guide for surface flux measurement and
analysis, edited by: Lee, X., Massman, W. J., and Law, B., Kluwer, Dordrecht, The Netherlands, 2004.
Gao, Z., Yuan, H., Ma, W., Liu, X., and Desjardins, R. L.: Methane emissions
from a dairy feedlot during the fall and winter seasons in Northern China,
Environ. Pollut. 159, 1183–1189, 2011.
Gates, C. C., Freese, C. H., Gogan, P. J., and Kotzman, M.: American
bison: status survey and conservation guidelies 2010, IUCN, 2010.
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman,
J., Falcucci, A., and Tempio, G.: Tackling climate change through livestock -
A global assessment of emissions and mitigation opportunities, Food and
Agriculture Organization of the United Nations (FAO), Rome, 2013.
Geremia, C., Merkle, J. A., Eaker, D. R., Wallen, R. L., White, P. J.,
Hebblewhite, M., and Kaufman, M. J.: Migrating bison engineer the green wave,
P. Natl. Acad. Sci. USA, 116, 25707–25713, 2019.
Gregorini, P.: Diurnal grazing pattern: its physiological basis and strategic
management, Anim. Prod. Sci., 52, 416–430, 2012.
Göckede, M., Kittler, F., and Schaller, C.: Quantifying the impact of emission outbursts and non-stationary flow on eddy-covariance CH4 flux measurements using wavelet techniques, Biogeosciences, 16, 3113–3131, https://doi.org/10.5194/bg-16-3113-2019, 2019.
Goopy, J. P., Korir D., Pelster, D., Ali, A. I. M., Wassie, S. E., Schlecht,
E., Dickenhoefer, U., Merbold, L., and Butterbach-Bahl, K.: Severe
below-maintenance feed intake increases methane yield from enteric
fermentation in cattle, Br. J. Nutr., 123, 1239–1246, 2020.
Gourlez de la Motte, L., Dumortier, P., Beckers, Y., Bodson, B., Heinesch,
B., and Aubinet, M.: Herd position habits can bias net CO2 ecosystem
exchange estimates in free range grazed pastures, Agr. Forest Meteorol. 268,
156–168, 2019.
Hammond, K. J., Jones, A. K., Humphries, D. J., Crompton, L. A., and Reynolds, C. K.: Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques, J. Dairy Sci. 99, 7904–7917, 2016.
Hanson, J. R.: Bison ecology in the Northern Plains and a reconstruction of
bison patterns for the North Dakota region, Plains Anthropol., 29, 93–113,
1984.
Hartnett, D. C., Hickman, K. R., and Fischer, W. L. E.: Effects of bison grazing, fire, and topography on floristic diversity in tallgrass prairie, J. Range Manage., 49, 413–420, 1996.
Hedrick, P. W.: Conservation genetics and North American bison (Bison bison), J. Hered., 100, 411–420, 2009.
Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T.,
Smith, P., Wirsenius, S., Hristov, A. N., Gerber, P., Gill, M., Butterbach-Bahl, K., Valin, H., Garnett, T., and Stehfest, E.:
Greenhouse gas mitigation potentials in the livestock sector, Nat. Clim.
Change, 6, 452–461, https://doi.org/10.1038/nclimate2925, 2016.
Heidbach, K., Schmid, H.-P., and Mauder, M.: Experimental evaluation of flux
footprint models, Agr. Forest Meteorol., 246, 142–153, 2017.
Hristov, A. N.: Historic, pre-European settlement, and present-day
contribution of wild ruminants to enteric methane emissions in the United
States, J. Animal Sci., 90, 1371–1375, 2012.
Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn,
G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J.,
Henderson, B., and Tricarico, J. M.: Special topics – Mitigation of methane
and nitrous oxide emissions from animal operations: I. A review of enteric
methane mitigation options, J. Animal Sci., 91, 5045–5069,
https://doi.org/10.2527/jas.2013-6583, 2013.
Hsieh, C.-I., Katul, G., and Chi, T.-W.: An approximate analytical model for
footprint estimation of scalar fluxes in thermally stratified atmospheric
flows, Adv. Water Resour., 23, 765–772, 2000.
Isenberg, A. C.: The Destruction of the Bison: An Environmental History,
1750–1920, Cambridge Univ. Press, Cambridge, UK, 2000.
Jégo, G., Bélanger, G., Tremblay, G. F., Jing, Q., and Baron, V. S.:
Calibration and performance evaluation of the STICS crop model for
simulating timothy growth and nutritive value, Field Crops Res., 151,
65–77, 2013.
Jiao, H., Yan, T., Wills, D. A., Carson, A. F., and McDowell, D. A.:
Development of prediction models for quantification of total methane
emission from enteric fermentation of young Holstein cattle at various ages,
Agr. Ecosyst. Environ., 183, 160–166, 2014.
Johnson, K. A. and Johnson, D. E.: Methane emissions from cattle, J. Anim.
Sci., 73, 2483–2491, 1995.
Johnson, D. E. and Ward, G. M.: Estimates of animal methane emissions.
Environ. Monit. Assess., 42, 133–141, 1996.
Katul, G., Goltz, S. M., Hsieh, C. I., Cheng, Y., Mowry, F., and Sigmon, J.:
Estimation of surface heat and momentum fluxes using the flux-variance
method above uniform and non-uniform terrain, Bound.-Lay. Meteorol., 74,
237–260, 1995.
Kelliher, F. M. and Clark, H.: Methane emissions from bison – An historic
herd estimate for the North American Great Plains, Agr. Forest Meteorol.,
150, 473–477, 2010.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources
and sinks, Nat. Geosci., 6, 813–823, 2013.
Kljun, N., Rotach, M. W., and Schmid, H. P.: A 3D Backward Lagrangian Footprint Model for a Wide Range of Boundary Layer Stratifications, Bound.-Lay. Meteorol., 103, 205–226, 2002.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Knapp, A. K., Blair, J. M., Briggs, J. M., Collins, S. L., Hartnett, D. C.,
Johnson, L. C., and Towne, G. E.: The keystone role of bison in North
American tallgrass prairie, Bioscience, 49, 39–50, 1999.
Kormann, R. and Meixner F. X.: An analytical footprint model for non-neutral
stratification, Bound.-Lay. Meteorol., 99, 207–224, 2001.
Lassey, K. R., Ulyatt, M. J., Martin, R. J., Walker, C. F., and Shelton, I.,
D.: Methane emissions measured directly from grazing livestock in New
Zealand, Atmos. Environ.: 31, 2905–2914, 1997.
Lee, M. A., Davis, A. P., Chagunda, M. G. G., and Manning, P.: Forage quality declines with rising temperatures, with implications for livestock production and methane emissions, Biogeosciences, 14, 1403–1417, https://doi.org/10.5194/bg-14-1403-2017, 2017.
Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S.,
Ström, L., Tamstorf, M. P., and Christensen, T. R.: Large
tundra methane burst during onset of freezing, Nature, 456, 628–631, 2008.
Mauder, M. and Foken, T.: Documentation and instruction manual of the
eddy-covariance software package TK3, available at: https://epub.uni-bayreuth.de/342/1/ARBERG046.pdf (last access: 15 January 2020), 2011.
McLain, J. E. and Martens, D. A.: Moisture controls on trace gas fluxes in
semiarid riparian soils, Soil Sci. Soc. Am. J., 70, 367–377, 2006.
Merbold, L., Steinlin, C., and Hagedorn, F.: Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland, Biogeosciences, 10, 3185–3203, https://doi.org/10.5194/bg-10-3185-2013, 2013.
Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Trancón y Widemann, B., Neidl, F., Schäfer, K., Wieneke, S., Zheng, X. H., Schmid, H. P., and Foken, T.: Spatially explicit regionalization of airborne flux measurements using environmental response functions, Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, 2013.
Merkle, J. A. and Fortin D.: Likelihood-based photograph identification:
Application with photographs of free-ranging bison, Wildlife Soc. B., 38,
196–204, 2014.
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
detrending, and filtering of eddy covariance time series, in: Handbook of Micrometeorology, edited by: Lee, X., Massman, W. J., and Law, B., Springer, Dordrecht, 7–31, 2004.
Moncrieff, J. B., Massheder, J. M., De Bruin, H., Elbers, J., Friborg, T.,
Heusinkveld, B., Kabat, P., Scott, S., Søgaard, H., and Verhoef, A.: A
system to measure surface fluxes of momentum, sensible heat, water vapour
and carbon dioxide. J. Hydrology, 188, 589–611, 1997.
Moraes, L. E., Strathe, A. B., Fadel, J. G., Casper, D. P., and Kebreab, E.:
Prediction of enteric methane emissions from cattle, Glob. Change Biol., 20,
2140–2148, 2014.
Moe, P. W. and Tyrrell, H. F.: Methane production in dairy cows, J. Dairy
Sci., 62, 1583–1586, 1979.
Moss, A. R., Jouany, J.-P., and Newbold, J.: Methane production by ruminants:
its contribution to global warming, Ann. Zootech., 49, 231–253, 2000.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Lund Myhre, C., Platt, S. M., Allen, G., Bousquet, P.,
Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones,
A. E., Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H.,
Warwick, N. J., and White, J. W. C.: Very strong atmospheric methane growth
in the 4 Years 2014–2017: Implications for the Paris Agreement, Global
Biogeochem. Cy., 33, 318–342, 2019.
Pereira, D.: Wind Rose, available at: https://www.mathworks.com/matlabcentral/fileexchange/47248-wind-rose,
MATLAB Central File Exchange, last access: 27 May 2020.
Plumb, G. E. and Dodd J. L.: Foraging ecology of bison and cattle on a mixed
prairie: implications for natural area management, Ecol. App., 3, 631–643,
1993.
Prajapati, P. and Santos, E. A.: Estimating methane emissions from beef
cattle in a feedlot using the eddy covariance technique and footprint
analysis, Agr. Forest Meteorol., 258, 18–28, 2018.
Prajapati, P. and Santos, E. A.: Estimating Herd‐Scale Methane Emissions from Cattle in a Feedlot Using Eddy Covariance Measurements and the Carbon Dioxide Tracer Method, J. Environ. Qual., 48.5, 1427–1434, 2019.
Rains, F. A., Stoy, P. C., Welch, C. M., Montagne, C., and McGlynn, B. L.: A
comparison of methods reveals that enhanced diffusion helps explain
cold-season soil CO2 efflux in a lodgepole pine ecosystem, Cold Reg.
Sci. Technol., 121, 16–24, 2016.
Raupach, M. R.: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Bound.-Lay. Meteorol., 71.1, 211–216, 1994.
Reisinger, A. and Clark, H.: How much do direct livestock emissions actually
contribute to global warming?, Glob. Change Biol., 24, 1749–1761, 2018.
Sanderson, E. W., Redford, K. H., Weber, B., Aune, K., Baldes, D., Berger, J., Carter, D., Curtin, C., Derr, J., Bodrott, S., Fearn, E., Fleener, C.,
Forrest, S., Gerlach, C., Gates, C. C.m Gross, J. E., Gogan, P., Grassel, S.,
Hilty, J. A., Jensen, M., Kunkel, K., Lammers, D., List, R., Minowski, K.,
Olson, T., Pague, C., Robertson, P., and Stephenson, B.: The ecological
future of the North American Bison: Conceiving long-term, large-scale
conservation of wildlife, Cons. Biol., 22, 252–266, 2008.
Schmid, H. P.: Experimental design for flux measurements: matching scales of
observations and fluxes. Agr. Forest Meteorol., 87, 179–200, 1997.
Smith, F. A., Hammond, J. I., Balk, M. A., Elliott, S., M., Lyons, S., K.,
Pardi, M., I., Tomé, C. P., Wagner, P. J. and Westover, M., L.:
Exploring the influence of ancient and historic megaherbivore extirpations
on the global methane budget, P. Natl. Acad. Sci. USA, 113, 874–879, 2016.
Smits, D. D.: The frontier army and the destruction of the buffalo:
1865–1883, West. Hist. Q., 25, 313–338, 1994.
Steed Jr., J. and Hashimoto, A. G.: Methane emissions from typical manure
management systems, Bioresource Technol., 50, 123–130, 1994.
Steuter, A. A. and Hidinger, L.: Comparative ecology of bison and cattle on
mixed-grass prairie, Gt. Plains Res. 9, 329–342, 1999.
Subak, S.: Methane from the House of Tudor and the Ming Dynasty:
Anthropogenic emissions in the sixteenth century, Chemosphere, 29,
843–854, 1994.
Sun, K., Tao, L., Miller, D. J., Zondlo, M. A., Shonkwiler, K. B., Nash, C.,
and Ham, J. M.: Open-path eddy covariance measurements of ammonia fluxes
from a beef cattle feedlot, Agr. Forest Meteorol., 213, 193–202, 2015.
Tallec, T., Klumpp, K., Hensen, A., Rochette, Y., and Soussana, J.-F.: Methane emission measurements in a cattle grazed pasture: a comparison of four methods, Biogeosciences Discuss., 9, 14407–14436, https://doi.org/10.5194/bgd-9-14407-2012, 2012.
Taylor, A. M., Amiro, B. D., Tenuta, M., and Gervais, M.: Direct whole-farm
greenhouse gas flux measurements from a beef cattle operation, Agr. Ecosyst.
Environ., 239, 65–79, 2017.
Thompson, A. M., Chappellaz, J. A., Fung, I. Y., and Kucsera, T. L.: The
atmospheric CH4 increase since the Last Glacial Maximum, Tellus B, 45, 242–257, 1993.
Tikhonov, A. N. and Arsenin, V. Y.: Solutions of ill-posed problems, Winston,
Washington, D. C., 1977.
Thornton, P. K. and Herrero, M.: Potential for reduced methane and carbon
dioxide emissions from livestock and pasture management in the tropics,
P. Natl. Acad. Sci. USA, 107, 19667–19672, 2010.
Todd, R. W., Altman, M. B., Cole, N. A., and Waldrip, H. M.: Methane
emissions from a beef cattle feedyard during winter and summer on the
Southern High Plains of Texas, J. Environ. Qual., 43, 1125–1130, 2014.
Towne, E. G., Hartnett, D. C., Cochran, R. C.: Vegetation trends in tallgrass
prairie from bison and cattle grazing, Ecol. Appl., 15, 1550–1559, 2005.
Verhoef, A., McNaughton, K. G., and Jacobs, A. F. G.: A parameterization of momentum roughness length and displacement height for a wide range of canopy densities, Hydrol. Earth Syst. Sci., 1, 81–91, https://doi.org/10.5194/hess-1-81-1997, 1997.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for
tower and aircraft data, J. Atmos. Ocean. Technol., 14, 512–526, 1997.
Vinton, M. A., Hartnett, D. C., Finck, E. J., and Briggs, J. M.: Interactive
effects of fire, bison (Bison bison) grazing and plant community composition in tallgrass prairie, Am. Midl. Nat., 129, 10–18, 1993.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements
for density effects due to heat and water vapour transfer, Q. J. R.
Meteorol. Soc., 106, 85–100, 1980.
Wieringa, J.: Updating the Davenport roughness classification, J. Wind Eng.
Ind., 41, 357–368, 1992.
Wolf, J., Asrar, G. R., and West, T. O.: Revised methane emissions factors
and spatially distributed annual carbon fluxes for global livestock, Carbon
Balance Manag., 12, 16, https://doi.org/10.1186/s13021-017-0084-y, 2017.
Xu, K., Metzger, S., and Desai, A. R.: Upscaling tower-observed turbulent
exchange at fine spatio-temporal resolution using environmental response
functions, Agr. Forest Meteorol., 232, 10–22, 2017.
Zontek, K.: Buffalo Nation: American Indian Efforts to Restore the Bison,
Bison Books, University of Nebraska Press, Lincoln, NE, USA, 2007.
Short summary
The reintroduction of American bison creates multiple environmental benefits. Ruminants like bison also emit methane – a potent greenhouse gas – to the atmosphere, which has not been measured to date in a field setting. We measured methane efflux from an American bison herd during winter using eddy covariance. Automated cameras were used to approximate their location to calculate per-animal flux. From the measurements, bison do not emit more methane than the cattle they often replace.
The reintroduction of American bison creates multiple environmental benefits. Ruminants like...
Altmetrics
Final-revised paper
Preprint