Articles | Volume 19, issue 7
https://doi.org/10.5194/bg-19-2025-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2025-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil
Mika Korkiakoski
CORRESPONDING AUTHOR
Institute for Atmospheric and Earth System Research/Physics (INAR),
Faculty of Science, P.O. Box 68, 00014 University of Helsinki, Helsinki,
Finland
Tiia Määttä
Department of Geography, Faculty of Science, University of Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland
Krista Peltoniemi
Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790
Helsinki, Finland
Timo Penttilä
Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790
Helsinki, Finland
Annalea Lohila
Institute for Atmospheric and Earth System Research/Physics (INAR),
Faculty of Science, P.O. Box 68, 00014 University of Helsinki, Helsinki,
Finland
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki,
Finland
Related authors
Henri Kajasilta, Stephanie Gerin, Milla Niiranen, Miika Läpikivi, Maarit Liimatainen, David Kraus, Henriikka Vekuri, Mika Korkiakoski, Liisa Kulmala, Jari Liski, and Julius Vira
EGUsphere, https://doi.org/10.5194/egusphere-2025-4219, https://doi.org/10.5194/egusphere-2025-4219, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We modelled different water table scenarios in drained agricultural peatlands to investigate the impact of water management on greenhouse gas emissions. Our results show that raising the water table reduces emissions, even in fields with thinner peat layers and conservative water management practices. Carbon dioxide emissions were more affected than nitrous oxide emissions. This study sheds light on the role of peatlands in mitigating emissions. Simulations were run using a process-based model.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Laura Heimsch, Annalea Lohila, Juha-Pekka Tuovinen, Henriikka Vekuri, Jussi Heinonsalo, Olli Nevalainen, Mika Korkiakoski, Jari Liski, Tuomas Laurila, and Liisa Kulmala
Biogeosciences, 18, 3467–3483, https://doi.org/10.5194/bg-18-3467-2021, https://doi.org/10.5194/bg-18-3467-2021, 2021
Short summary
Short summary
CO2 and H2O fluxes were measured at a newly established eddy covariance site in southern Finland for 2 years from 2018 to 2020. This agricultural grassland site focuses on the conversion from intensive towards more sustainable agricultural management. The first summer experienced prolonged dry periods, and notably larger fluxes were observed in the second summer. The field acted as a net carbon sink during both study years.
Henri Kajasilta, Stephanie Gerin, Milla Niiranen, Miika Läpikivi, Maarit Liimatainen, David Kraus, Henriikka Vekuri, Mika Korkiakoski, Liisa Kulmala, Jari Liski, and Julius Vira
EGUsphere, https://doi.org/10.5194/egusphere-2025-4219, https://doi.org/10.5194/egusphere-2025-4219, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We modelled different water table scenarios in drained agricultural peatlands to investigate the impact of water management on greenhouse gas emissions. Our results show that raising the water table reduces emissions, even in fields with thinner peat layers and conservative water management practices. Carbon dioxide emissions were more affected than nitrous oxide emissions. This study sheds light on the role of peatlands in mitigating emissions. Simulations were run using a process-based model.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Laura Heimsch, Annalea Lohila, Juha-Pekka Tuovinen, Henriikka Vekuri, Jussi Heinonsalo, Olli Nevalainen, Mika Korkiakoski, Jari Liski, Tuomas Laurila, and Liisa Kulmala
Biogeosciences, 18, 3467–3483, https://doi.org/10.5194/bg-18-3467-2021, https://doi.org/10.5194/bg-18-3467-2021, 2021
Short summary
Short summary
CO2 and H2O fluxes were measured at a newly established eddy covariance site in southern Finland for 2 years from 2018 to 2020. This agricultural grassland site focuses on the conversion from intensive towards more sustainable agricultural management. The first summer experienced prolonged dry periods, and notably larger fluxes were observed in the second summer. The field acted as a net carbon sink during both study years.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Hui Zhang, Eeva-Stiina Tuittila, Aino Korrensalo, Aleksi Räsänen, Tarmo Virtanen, Mika Aurela, Timo Penttilä, Tuomas Laurila, Stephanie Gerin, Viivi Lindholm, and Annalea Lohila
Biogeosciences, 17, 6247–6270, https://doi.org/10.5194/bg-17-6247-2020, https://doi.org/10.5194/bg-17-6247-2020, 2020
Short summary
Short summary
We studied the impact of a stream on peatland microhabitats and CH4 emissions in a northern boreal fen. We found that there were higher water levels, lower peat temperatures, and greater oxygen concentrations close to the stream; these supported the highest biomass production but resulted in the lowest CH4 emissions. Further from the stream, the conditions were drier and CH4 emissions were also low. CH4 emissions were highest at an intermediate distance from the stream.
Cited articles
Allison, S. D. and Treseder, K. K.: Warming and drying suppress microbial
activity and carbon cycling in boreal forest soils, Glob. Change Biol.,
14, 2898–2909, https://doi.org/10.1111/j.1365-2486.2008.01716.x, 2008.
Angel, R., Claus, P., and Conrad, R.: Methanogenic archaea are globally
ubiquitous in aerated soils and become active under wet anoxic conditions,
ISME J., 6, 847–862, https://doi.org/10.1038/ismej.2011.141, 2012.
Aurela, M., Lohila, A., Tuovinen, J. P., Hatakka, J., Penttilä, T., and
Laurila, T.: Carbon dioxide and energy flux measurements in four
northern-boreal ecosystems at Pallas, Boreal Environ. Res., 20, 455–473,
2015.
Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Beier, C., Beierkuhnlein, C., Wohlgemuth, T., Penuelas, J., Emmett, B.,
Körner, C., de Boeck, H., Christensen, J. H., Leuzinger, S., Janssens,
I. A., and Hansen, K.: Precipitation manipulation experiments – challenges
and recommendations for the future, Ecol. Lett., 15, 899–911,
https://doi.org/10.1111/j.1461-0248.2012.01793.x, 2012.
Billings, S. A., Richter, D. D., and Yarie, J.: Sensitivity of soil methane
fluxes to reduced precipitation in boreal forest soils, Soil Biol. Biochem.,
32, 1431–1441, https://doi.org/10.1016/S0038-0717(00)00061-4, 2000.
Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D.
A., Prigent, C., Van Der Werf, G. R., Peylin, P., Brunke, E. G., Carouge,
C., Langenfelds, R. L., Lathière, J., Papa, F., Ramonet, M., Schmidt,
M., Steele, L. P., Tyler, S. C., and White, J.: Contribution of anthropogenic
and natural sources to atmospheric methane variability, Nature, 443,
439–443, https://doi.org/10.1038/nature05132, 2006.
Bradford, M. A., Ineson, P., Wookey, P. A., and Lappin-Scott, H. M.: Role of
CH4 oxidation, production and transport in forest soil CH4 flux, Soil Biol.
Biochem., 33, 1625–1631, https://doi.org/10.1016/S0038-0717(01)00078-5, 2001.
Brzezińska, M., Nosalewicz, M., Pasztelan, M., and Wodarczyk, T.: Methane
production and consumption in loess soil at different slope position, Sci.
World J., 2012, 620270, https://doi.org/10.1100/2012/620270, 2012.
Cajander, A.: The theory of forest types, Acta For. Fenn., 29, 7193,
https://doi.org/10.14214/aff.7193, 1926.
Chai, X., Tonjes, D. J., and Mahajan, D.: Methane emissions as energy
reservoir: Context, scope, causes and mitigation strategies, Prog. Energ.
Combust., 56, 33–70, https://doi.org/10.1016/j.pecs.2016.05.001, 2016.
Christiansen, J. R., Vesterdal, L., and Gundersen, P.: Nitrous oxide and
methane exchange in two small temperate forest catchments-effects of
hydrological gradients and implications for global warming potentials of
forest soils, Biogeochemistry, 107, 437–454,
https://doi.org/10.1007/s10533-010-9563-x, 2012.
Crill, P. M. and Thornton, B. F.: Whither methane in the IPCC process?, Nat.
Clim. Change, 7, 678–680, https://doi.org/10.1038/nclimate3403, 2017.
Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry, D.: Global
atmospheric methane: Budget, changes and dangers, Philos. T. R. Soc. A, 369, 2058–2072, https://doi.org/10.1098/rsta.2010.0341,
2011.
Dörr, H., Katruff, L., and Levin, I.: Soil texture parameterization of
the methane uptake in aerated soils, Chemosphere, 26, 697–713,
https://doi.org/10.1016/0045-6535(93)90454-D, 1993.
Ebrahimi, A. and Or, D.: Dynamics of soil biogeochemical gas emissions
shaped by remolded aggregate sizes and carbon configurations under hydration
cycles, Glob. Change Biol., 24, e378–e392, https://doi.org/10.1111/gcb.13938, 2018.
Fischer, H., Behrens, M., Bock, M., Richter, U., Schmitt, J., Loulergue, L.,
Chappellaz, J., Spahni, R., Blunier, T., Leuenberger, M., and Stocker, T. F.:
Changing boreal methane sources and constant biomass burning during the last
termination, Nature, 452, 864–867, https://doi.org/10.1038/nature06825, 2008.
Girkin, N. T., Turner, B. L., Ostle, N., Craigon, J., and Sjögersten, S.:
Root exudate analogues accelerate CO2 and CH4 production in tropical peat,
Soil Biol. Biochem., 117, 48–55,
https://doi.org/10.1016/j.soilbio.2017.11.008, 2018.
Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane
fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems,
3, 269–282, https://doi.org/10.1007/s100210000025, 2000.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev.,
60, 439–471, https://doi.org/10.1128/mmbr.60.2.439-471.1996, 1996.
Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General
Parametric Models, Biometrical J., 50, 346–363, 2008.
Jylhä, K., Ruosteenoja, K., Räisänen, J., Venäläinen,
A., Tuomenvirta, H., Ruokolainen, L., Saku, S., and Seitola, T.: Changing
climate in Finland: estimates for adaptation studies, ACCLIM project
report, Finnish Meteorological Institute,
ISBN 978-951-697-700-6, 2009.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots, R package
version 0.4.0, https://CRAN.R-project.org/package=ggpubr (last access: 8 April 2022), 2020.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L.,
Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., O'doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.,
Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa,
S., Van Der Werf, G. R., Voulgarakis, A., Van Weele, M., Weiss, R. F.,
Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.
Knief, C., Lipski, A., and Dunfield, P. F.: Diversity and Activity of
Methanotrophic Bacteria in Different Upland Soils, Appl. Environ.
Microb., 69, 6703–6714, https://doi.org/10.1128/AEM.69.11.6703-6714.2003, 2003.
Koh, H. S., Ochs, C. A., and Yu, K.: Hydrologic gradient and vegetation
controls on CH4 and CO2 fluxes in a spring-fed forested wetland,
Hydrobiologia, 630, 271–286, https://doi.org/10.1007/s10750-009-9821-x, 2009.
Kolb, S.: The quest for atmospheric methane oxidizers in forest soils,
Env. Microbiol. Rep., 1, 336–346,
https://doi.org/10.1111/j.1758-2229.2009.00047.x, 2009.
Korkiakoski, M., Tuovinen, J.-P., Aurela, M., Koskinen, M., Minkkinen, K., Ojanen, P., Penttilä, T., Rainne, J., Laurila, T., and Lohila, A.: Methane exchange at the peatland forest floor – automatic chamber system exposes the dynamics of small fluxes, Biogeosciences, 14, 1947–1967, https://doi.org/10.5194/bg-14-1947-2017, 2017.
Korkiakoski, M., Määttä, T., Peltoniemi, K., Penttilä, T., and Lohila, A.: Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.5153347, 2021.
Lehtonen, I., Ruosteenoja, K., and Jylhä, K.: Projected changes in
European extreme precipitation indices on the basis of global and regional
climate model ensembles, Int. J. Climatol., 34, 1208–1222,
https://doi.org/10.1002/joc.3758, 2014.
Lohila, A., Penttilä, T., Jortikka, S., Aalto, T., Anttila, P., Asmi,
E., Aurela, M., Hatakka, J., Hellén, H., Henttonen, H., Hänninen,
P., Kilkki, J., Kyllönen, K., Laurila, T., Lepistö, A., Lihavainen,
H., Makkonen, U., Paatero, J., Rask, M., Sutinen, R., Tuovinen, J. P.,
Vuorenmaa, J., and Viisanen, Y.: Preface to the special issue on integrated
research of atmosphere, ecosystems and environment at Pallas, Boreal
Environ. Res., 20, 431–454, 2015.
Lohila, A., Aalto, T., Aurela, M., Hatakka, J., Tuovinen, J.-P., Kilkki, J.,
Penttilä, T., Vuorenmaa, J., Hänninen, P., Sutinen, R., Viisanen, Y.,
and Laurila, T.: Large contribution of boreal upland forest soils to a
catchment-scale CH4 balance in a wet year, Geophys. Res. Lett., 43,
2946–2953, https://doi.org/10.1002/2016GL067718, 2016.
Megonigal, J. P. and Guenther, A. B.: Methane emissions from upland forest
soils and vegetation, Tree Physiol., 28, 491–498,
https://doi.org/10.1093/treephys/28.4.491, 2008.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of
methane by soils: A review, Eur. J. Soil Biol., 37, 25–50,
https://doi.org/10.1016/S1164-5563(01)01067-6, 2001.
Niinistö, S. M., Silvola, J., and Kellomäki, S.: Soil CO2 efflux in a
boreal pine forest under atmospheric CO2 enrichment and air warming, Glob.
Change Biol., 10, 1363–1376, https://doi.org/10.1111/j.1365-2486.2004.00799.x, 2004.
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S.:
Greenhouse gas emissions from soils – A review, Chem. Erde, 76,
327–352, https://doi.org/10.1016/j.chemer.2016.04.002, 2016.
Olefeldt, D., Turetsky, M. R., Crill, P. M. and Mcguire, A. D.:
Environmental and physical controls on northern terrestrial methane
emissions across permafrost zones, Glob. Change Biol., 19, 589–603,
https://doi.org/10.1111/gcb.12071, 2013.
Orata, F. D., Meier-Kolthoff, J. P., Sauvageau, D., and Stein, L. Y.:
Phylogenomic analysis of the gammaproteobacterial methanotrophs (order
methylococcales) calls for the reclassification of members at the genus and
species levels, Front. Microbiol., 9, 1–17,
https://doi.org/10.3389/fmicb.2018.03162, 2018.
Peter Mayer, H. and Conrad, R.: Factors influencing the population of
methanogenic bacteria and the initiation of methane production upon flooding
of paddy soil, FEMS Microbiol. Ecol., 73, 103–112,
https://doi.org/10.1016/0378-1097(90)90656-B, 1990.
Pirinen, P., Simola, H., Aalto, J., Kaukoranta, J.-P., Karlsson, P., and
Ruuhela, R.: Climatological statistics of Finland 1981–2010, Reports, 2,
Finnish Meteorological Institute, Helsinki, Finland, ISBN 978-951-697-766-2, 2012.
Praeg, N., Wagner, A. O., and Illmer, P.: Effects of fertilisation,
temperature and water content on microbial properties and methane production
and methane oxidation in subalpine soils, Eur. J. Soil Biol., 65, 96–106,
https://doi.org/10.1016/j.ejsobi.2014.10.002, 2014.
R Core Team: R: A language and Environment for Statistical Computing,
https://www.r-project.org (last access: 8 April 2022), 2021.
Saari, A., Heiskanen, J., and Martikainen, P. J.: Effect of the organic
horizon on methane oxidation and uptake in soil of a boreal Scots pine
forest, FEMS Microbiol. Ecol., 26, 245–255,
https://doi.org/10.1016/S0168-6496(98)00040-3, 1998.
Savage, K. and Moore, T. R.: Methane and carbon dioxide exchanges between
the atmosphere and northern boreal forest soils, J. Geophys. Res., 102,
279–288, https://doi.org/10.1029/97JD02233, 1997.
Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665, https://doi.org/10.5194/bg-8-1643-2011, 2011.
Striegl, R. G.: Diffusional limits to the consumption of atmospheric methane
by soils, Chemosphere, 26, 715–720, https://doi.org/10.1016/0045-6535(93)90455-E,
1993.
Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W., and Hedderich, R.:
Methanogenic archaea: Ecologically relevant differences in energy
conservation, Nat. Rev. Microbiol., 6, 579–591, https://doi.org/10.1038/nrmicro1931,
2008.
Vainio, E., Peltola, O., Kasurinen, V., Kieloaho, A.-J., Tuittila, E.-S., and Pihlatie, M.: Topography-based statistical modelling reveals high spatial variability and seasonal emission patches in forest floor methane flux, Biogeosciences, 18, 2003–2025, https://doi.org/10.5194/bg-18-2003-2021, 2021.
Van Den Pol-van Dasselaar, A., Van Beusichem, M. L., and Oenema, O.: Effects
of soil moisture content and temperature on methane uptake by grasslands on
sandy soils, Plant Soil, 204, 213–222, https://doi.org/10.1023/A:1004371309361,
1998.
Wang, Z. P. and Ineson, P.: Methane oxidation in a temperate coniferous
forest soil: Effects of inorganic N, Soil Biol. Biochem., 35, 427–433,
https://doi.org/10.1016/S0038-0717(02)00294-8, 2003.
Watanabe, T., Wang, G., Lee, C. G., Murase, J., Asakawa, S., and Kimura, M.:
Assimilation of glucose-derived carbon into methanogenic archaea in soil
under unflooded condition, Appl. Soil Ecol., 48, 201–209,
https://doi.org/10.1016/j.apsoil.2011.03.005, 2011.
Whalen, S. C.: Natural Wetlands and the Atmosphere, Environ. Eng. Sci.,
22, 73–94, https://doi.org/10.1089/ees.2005.22.73, 2005.
Whalen, S. C., Reeburgh, W. S., and Kizer, K. S.: Methane consumption and
emission by taiga, Global Biogeochem. Cy., 5, 261–273,
https://doi.org/10.1029/91gb01303, 1991.
Wilke, C. O.: cowplot: Streamlined Plot Theme and Plot Annotations for
“ggplot2”, R package version 1.1.0., https://CRAN.R-project.org/package=cowplot, 2020.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.:
Responses of terrestrial ecosystems to temperature and precipitation change:
A meta-analysis of experimental manipulation, Glob. Change Biol., 17,
927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Wuebbles, D. J. and Hayhoe, K.: Atmospheric methane and global change,
Earth-Sci. Rev., 57, 177–210, https://doi.org/10.1016/S0012-8252(01)00062-9,
2002.
Yavitt, J. B., Downey, D. M., Lang, G. E. and Sexston, A. J.: Methane
consumption in two temperate forest soils, Biogeochemistry, 9, 39–52,
https://doi.org/10.1007/BF00002716, 1990.
Yavitt, J. B., Fahey, T. J., and Simmons, J. A.: Methane and Carbon Dioxide
Dynamics in a Northern Hardwood Ecosystem, Soil Sci. Soc. Am. J., 59,
796–804, https://doi.org/10.2136/sssaj1995.03615995005900030023x, 1995.
Ylläsjärvi, I. and Kuuluvainen, T.: How homogeneous is the boreal
forest? Characteristics and variability of old-growth forest on a
hylocomium-myrtillus site type in the Pallas-Yllästunturi national park,
northern Finland, Ann. Bot. Fenn., 46, 263–279,
https://doi.org/10.5735/085.046.0403, 2009.
Short summary
We measured CH4 fluxes and production and oxidation potentials from irrigated and non-irrigated podzolic soil in a boreal forest. CH4 sink was smaller at the irrigated site but did not cause CH4 emission, with one exception. We also showed that under laboratory conditions, not only wet conditions, but also fresh carbon, are needed to make podzolic soil into a CH4 source. Our study provides important data for improving the process models describing the upland soil CH4 dynamics.
We measured CH4 fluxes and production and oxidation potentials from irrigated and non-irrigated...
Altmetrics
Final-revised paper
Preprint