Articles | Volume 19, issue 2
https://doi.org/10.5194/bg-19-313-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-313-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes
Renée Hermans
CORRESPONDING AUTHOR
Department of Biological and Environmental Sciences, University of
Stirling, Stirling, UK
IUCN UK Peatland Programme, Edinburgh, UK
Rebecca McKenzie
Environmental Research Institute, University of the Highlands and
Islands, Thurso, UK
Geography Department, Loughborough University, Loughborough, UK
Roxane Andersen
Environmental Research Institute, University of the Highlands and
Islands, Thurso, UK
Yit Arn Teh
School of Natural and Environmental Sciences, Newcastle University,
Newcastle, UK
Neil Cowie
Centre for Conservation Science, Royal Society for the Protection of
Birds Scotland, Edinburgh, UK
Jens-Arne Subke
Department of Biological and Environmental Sciences, University of
Stirling, Stirling, UK
Related authors
No articles found.
Andrew V. Bradley, Roxane Andersen, Chris Marshall, Andrew Sowter, and David J. Large
Earth Surf. Dynam., 10, 261–277, https://doi.org/10.5194/esurf-10-261-2022, https://doi.org/10.5194/esurf-10-261-2022, 2022
Short summary
Short summary
The condition of peatland largely determines its capacity to store carbon, but peatland condition is not accurately known. Combining the knowledge of management, vegetation, and detecting differences in seasonal surface movement from satellite radar data, we map peat condition. In a blanket bog landscape we discovered the presence of wetter and dryer conditions, which could help guide restoration decisions, and we conclude that this approach could be transferred peat management worldwide.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Cited articles
Andersen, R., Farrell, C., Graf, M., Muller, F., Calvar, E., Frankard, P.,
Caporn, S., and Anderson, P.: An overview of the progress and challenges of
peatland restoration in Western Europe, Restor. Ecol., 25, 271–282,
https://doi.org/10.1111/rec.12415, 2016.
Anderson, R., Vasander, H., Geddes, N., Laine, A., Tolvanen, A., O'Sullivan,
A., and Aapala, K.: Afforested and forestry-drained peatland restoration, in:
Peatland restoration and ecosystem services – science, policy and practise,
edited by: Bonn, A., Allott, T., Evans, M., Joosten, H., and Stoneman, R., 213–233, Cambridge University press, Cambridge, UK, https://doi.org/10.1017/CBO9781139177788.013, 2016.
Barton, K.: MuMIn: Multi-Model Inference, R Package version 1.40.0,
available at: https://cran.r-project.org/package=MuMIn (last access: May 2020), 2017.
Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Burnham, K. P. and Anderson, D. R. (Eds.): Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach, 2nd Edn., Springer,
New York, USA, https://doi.org/10.1007/b97636, 2002.
Byrne, K. A. and Farrell, E. P.: The effect of afforestation on soil carbon
dioxide emissions in blanket peatland in Ireland, Forestry, 78, 217–227,
https://doi.org/10.1093/forestry/cpi020, 2005.
Cannell, M. G. R., Dewar, R. C., and Pyatt, D. G.: Conifer plantations on
drained peatlands in Britain: A net gain or loss of carbon?, Forestry,
66, 353–369, https://doi.org/10.1093/forestry/66.4.353, 1993.
Cooper, H. V., Evers, S., Aplin, P., Crout, N., Bin Dahalan, M. P., and
Sjogersten, S.: Greenhouse gas emissions resulting from conversion of peat
swamp forest to oil palm plantation, Nat. Commun., 11, 407,
https://doi.org/10.1038/s41467-020-14298-w, 2020.
Forestry Commission: Supplementary guidance to support the FC forests and
peatland habitats guideline note (2000), Scottish For. Publ., 1–5, 2016.
Friggens, N. L., Hester, A. J., Mitchell, R. J., Wookey, J. S. P. A., and
Parker, T. C.: Tree planting in organic soils does not result in net carbon
sequestration on decadal timescales, Glob. Change Biol., 26, 5178–5188,
https://doi.org/10.1111/gcb.15229, 2020.
Gaffney, P. P. J., Hancock, M. H., Taggart, M. A., and Andersen, R.: Restoration of afforested peatland: Immediate effects on aquatic carbon loss, Sci. Total Environ., 742, 140594, https://doi.org/10.1016/j.scitotenv.2020.140594, 2020.
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable
Responses to Climatic Warming, Ecol. Appl., 1, 182–195, 2010.
Hargreaves, K. J., Milne, R., and Cannell, M. G. R.: Carbon balance of
afforested peatland in Scotland, Forestry, 76, 299–317, 2003.
Hermans, R. and Subke, J.-A.: Dataset for Soil CO2 flux trenching study by Hermans et al., University of Stirling, Faculty of Natural Sciences [data set], http://hdl.handle.net/11667/187 (last access: 14 January 2022), 2021.
Hermans, R., Zahn, N., Andersen, R., Teh, Y. A., Cowie, N., and Subke, J. A.:
An incubation study of GHG flux responses to a changing water table linked
to biochemical parameters across a peatland restoration chronosequence,
Mires Peat, 23, 1–18, https://doi.org/10.19189/MaP.2018.DW.354, 2018.
Janssens, I. A. and Ceulemans, R.: Spatial variability in forest soil
CO2 efflux assessed with a calibrated soda lime technique, Ecol. Lett.,
1, 95–98, 1998.
Jovani-Sancho, A. J., Cummins, T., and Byrne, K. A.: Soil respiration
partitioning in afforested temperate peatlands, Biogeochemistry, 141,
1–21, https://doi.org/10.1007/s10533-018-0496-0, 2018.
Kuyper, T. W.: Carbon and Energy Sources of Mycorrhizal Fungi: Obligate
Symbionts or Latent Saprotrophs?, in: Mycorrhizal Mediation of Soil:
Fertility, Structure, and Carbon Storage, edited by: Collins Johnson, N., Gehring, and Jansa, J., 357–374, Elsevier Inc., https://doi.org/10.1016/B978-0-12-804312-7.00020-6, 2017.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest: Tests
in Linear Mixed Effects Models, R Package version 2.0-33, available
at: https://cran.r-project.org/package=lmerTest (last access: May 2020), 2016.
Kuzyakov, Y.: Sources of CO2 efflux from soil and review of
partitioning methods, Soil Biol. Biochem., 38, 425–448,
https://doi.org/10.1016/j.soilbio.2005.08.020, 2006.
Laiho, R. and Laine, J.: Tree stand biomass and carbon content in an age
sequence of drained pine mires in southern Finland, Forest Ecol. Manage.,
93, 161–169, https://doi.org/10.1016/S0378-1127(96)03916-3, 1997.
Liski, J., Perruchoud, D., and Karjalainen, T.: Increasing carbon stocks in
the forest soils of western Europe, Forest Ecol. Manage., 169, 159–175,
https://doi.org/10.1016/S0378-1127(02)00306-7, 2002.
Mäkiranta, P., Minkkinen, K., Hytönen, J., and Laine, J.: Factors
causing temporal and spatial variation in heterotrophic and rhizospheric
components of soil respiration in afforested organic soil croplands in
Finland, Soil Biol. Biochem., 40, 1592–1600,
https://doi.org/10.1016/j.soilbio.2008.01.009, 2008.
Mathews, G.: The carbon content of trees, Forestry Commission Technical
Paper, 4, 21, ISBN 0-85538-317-8, 1993.
Mayer, M., Prescott, C. E., Abaker, W. E. A., Augusto, L., Cécillon, L.,
Ferreira, G. W. D., James, J., Jandl, R., Katzensteiner, K., Laclau, J. P.,
Laganière, J., Nouvellon, Y., Paré, D., Stanturf, J. A., Vanguelova,
E. I., and Vesterdal, L.: Influence of forest management activities on soil
organic carbon stocks: A knowledge synthesis, Forest Ecol. Manage., 466,
118127, https://doi.org/10.1016/j.foreco.2020.118127, 2020.
Mazzola, V., Perks, M. P., Smith, J., Yeluripati, J., and Xenakis, G.:
Seasonal patterns of greenhouse gas emissions from a forest-to-bog restored
site in northern Scotland: Influence of microtopography and vegetation on
carbon dioxide and methane dynamics, Eur. J. Soil Sci., 72, 1332–1353,
https://doi.org/10.1111/ejss.13050, 2021.
McCalmont, J., Kho, L. K., Teh, Y. A., Lewis, K., Chocholek, M., Rumpang, E.,
and Hill, T.: Short- and long-term carbon emissions from oil palm
plantations converted from logged tropical peat swamp forest, Glob. Change
Biol., 27, 2361–2376, https://doi.org/10.1111/gcb.15544, 2021.
Met Office: Kinbrace climate, available at:
https://www.metoffice.gov.uk/public/weather/climate/gfm5qbgxz, last access: 20
July 2018.
Minkkinen, K., Ojanen, P., Penttilä, T., Aurela, M., Laurila, T., Tuovinen, J.-P., and Lohila, A.: Persistent carbon sink at a boreal drained bog forest, Biogeosciences, 15, 3603–3624, https://doi.org/10.5194/bg-15-3603-2018, 2018.
Morison, J., Matthews, R., Miller, G., Perks, M., Randle, T., Vanguelova,
E., White, M., and Yamulki, S.: Understanding the carbon and greenhouse gas
balance of forests in Britain, Res. Rep.-For. Comm. UK, ISBN 978-0-85538-855-3, 2012.
Nakagawa, S. and Schielzeth, H.: Repeatability for Gaussian and non-Gaussian
data: A practical guide for biologists, Biol. Rev., 85, 935–956,
https://doi.org/10.1111/j.1469-185X.2010.00141.x, 2010.
Ojanen, P., Minkkinen, K., Alm, J., and Penttilä, T.: Soil–atmosphere
CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands,
Forest Ecol. Manage., 260, 411–421, https://doi.org/10.1016/j.foreco.2010.04.036,
2010.
Ojanen, P., Minkkinen, K., and Penttilä, T.: The current greenhouse gas
impact of forestry-drained boreal peatlands, Forest Ecol. Manage., 289,
201–208, https://doi.org/10.1016/j.foreco.2012.10.008, 2013.
Ojanen, P., Lehtonen, A., Heikkinen, J., Penttilä, T., and Minkkinen, K.:
Soil CO2 balance and its uncertainty in forestry-drained peatlands in
Finland, Forest Ecol. Manage., 325, 60–73, https://doi.org/10.1016/j.foreco.2014.03.049,
2014.
Paterson, E., Sim, A., Davidson, J., and Daniell, T. J.: Arbuscular
mycorrhizal hyphae promote priming of native soil organic matter
mineralisation, Plant Soil, 408, 243–254,
https://doi.org/10.1007/s11104-016-2928-8, 2016.
Prananto, J. A., Minasny, B., Comeau, L.-P., Rudiyanto, R., and Grace, P.:
Drainage increases CO2 and N2O emissions from tropical peat soils,
Glob. Change Biol., 26, 4583–4600,
https://doi.org/10.1111/gcb.15147, 2020.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 14 January 2022), 2016.
Richards, S. A.: Testing ecological theory using the information-theoretic
approach: examples and cautionary results, Ecology, 86, 2805–2814,
2005.
Simola, H., Pitkänen, A., and Turunen, J.: Carbon loss in drained
forestry peatlands in Finland, estimated by re-sampling peatlands surveyed
in the 1980s, Eur. J. Soil Sci., 63, 798–807,
https://doi.org/10.1111/j.1365-2389.2012.01499.x, 2012.
Sloan, T. J., Payne, R. J., Anderson, A. R., Bain, C., Chapman, S., Cowie,
N., Gilbert, P., Lindsay, R., Mauquoy, D., Newton, A. J., and Andersen, R.:
Peatland afforestation in the UK and consequences for carbon storage, Mires
Peat, 23, 1–17, https://doi.org/10.19189/MaP.2017.OMB.315, 2018.
Smith, T. and Hancock, M.: Interim report on monitoring of forest to bog
restoration, Dyke and Forsinain forests: baseline forest characteristics and
vegetation, report, 2016.
Smith, T., Hancock, M., and Stagg, P.: The RSPB Forest to Bog Restoration
Project Forsinard Flows Interim Report – July 2012–Sep 2013, report,
2014.
Subke, J.-A., Hahn, V., Battipaglia, G., Linder, S., Buchmann, N., and
Cotrufo, M. F.: Feedback interactions between needle litter decomposition
and rhizosphere activity, Oecologia, 139, 551–559,
https://doi.org/10.1007/s00442-004-1540-4, 2004.
Subke, J.-A., Inglima, I., and Cotrufo, M. F.: Trends and methodological
impacts in soil CO2 efflux partitioning: A metaanalytical review, Glob.
Change Biol., 12, 921–943, https://doi.org/10.1111/j.1365-2486.2006.01117.x, 2006.
Subke, J.-A., Voke, N. R., Leronni, V., Garnett, M. H., and Ineson, P.: Dynamics and
pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest
girdling, J. Ecol., 99, 186–193, https://doi.org/10.1111/j.1365-2745.2010.01740.x,
2011.
Tolvanen, A., Tarvainen, O., and Laine, A. M.: Soil and water nutrients in
stem-only and whole-tree harvest treatments in restored boreal peatlands,
Restor. Ecol., 28, 1357–1364, 2020.
Vanguelova, E. I., Crow, P., Benham, S., Pitman, R., Forster, J., Eaton, E.
L., and Morison, J. I. L.: Impact of Sitka spruce (Picea sitchensis (Bong.)
Carr.) afforestation on the carbon stocks of peaty gley soils – A
chronosequence study in the north of England, Forestry, 92, 242–252,
https://doi.org/10.1093/forestry/cpz013, 2019.
Walker, T. N., Garnett, M. H., Ward, S. E., Oakley, S., Bardgett, R. D., and
Ostle, N. J.: Vascular plants promote ancient peatland carbon loss with
climate warming, Glob. Change Biol., 22, 1880–1889,
https://doi.org/10.1111/gcb.13213, 2016.
Yamulki, S., Anderson, R., Peace, A., and Morison, J. I. L.: Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration, Biogeosciences, 10, 1051–1065, https://doi.org/10.5194/bg-10-1051-2013, 2013.
Zerva, A. and Mencuccini, M.: Carbon stock changes in a peaty gley soil
profile after afforestation with Sitka spruce (Picea sitchensis), Ann. Forest
Sci., 62, 873–880, https://doi.org/10.1051/forest:2005078, 2005.
Short summary
Peatlands are a significant global carbon store, which can be compromised by drainage and afforestation. We measured the peat decomposition under a 30-year-old drained forest plantation: 115 ± 16 g C m−2 yr−1, ca. 40 % of total soil respiration. Considering input of litter from trees, our results indicate that the soils in these 30-year-old drained and afforested peatlands are a net sink for C, since substantially more C enters the soil as organic matter than is decomposed heterotrophically.
Peatlands are a significant global carbon store, which can be compromised by drainage and...
Altmetrics
Final-revised paper
Preprint