Articles | Volume 19, issue 2
https://doi.org/10.5194/bg-19-313-2022
https://doi.org/10.5194/bg-19-313-2022
Research article
 | 
19 Jan 2022
Research article |  | 19 Jan 2022

Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes

Renée Hermans, Rebecca McKenzie, Roxane Andersen, Yit Arn Teh, Neil Cowie, and Jens-Arne Subke

Related authors

Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition
Andrew V. Bradley, Roxane Andersen, Chris Marshall, Andrew Sowter, and David J. Large
Earth Surf. Dynam., 10, 261–277, https://doi.org/10.5194/esurf-10-261-2022,https://doi.org/10.5194/esurf-10-261-2022, 2022
Short summary
Effects of peatland management on aquatic carbon concentrations and fluxes
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022,https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary

Cited articles

Andersen, R., Farrell, C., Graf, M., Muller, F., Calvar, E., Frankard, P., Caporn, S., and Anderson, P.: An overview of the progress and challenges of peatland restoration in Western Europe, Restor. Ecol., 25, 271–282, https://doi.org/10.1111/rec.12415, 2016. 
Anderson, R., Vasander, H., Geddes, N., Laine, A., Tolvanen, A., O'Sullivan, A., and Aapala, K.: Afforested and forestry-drained peatland restoration, in: Peatland restoration and ecosystem services – science, policy and practise, edited by: Bonn, A., Allott, T., Evans, M., Joosten, H., and Stoneman, R., 213–233, Cambridge University press, Cambridge, UK, https://doi.org/10.1017/CBO9781139177788.013, 2016. 
Barton, K.: MuMIn: Multi-Model Inference, R Package version 1.40.0, available at: https://cran.r-project.org/package=MuMIn (last access: May 2020), 2017. 
Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. 
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010. 
Download
Short summary
Peatlands are a significant global carbon store, which can be compromised by drainage and afforestation. We measured the peat decomposition under a 30-year-old drained forest plantation: 115 ± 16 g C m−2 yr−1, ca. 40 % of total soil respiration. Considering input of litter from trees, our results indicate that the soils in these 30-year-old drained and afforested peatlands are a net sink for C, since substantially more C enters the soil as organic matter than is decomposed heterotrophically.
Share
Altmetrics
Final-revised paper
Preprint