Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3897-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3897-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Christiane Schmidt
CORRESPONDING AUTHOR
Laboratoire de Planétologie et Géosciences, LPG, Univ
Angers, Nantes Université, Le Mans Univ CNRS, LPG, SFR QUASAV, Angers,
49000, France
Centre for Arctic Gas Hydrate, CAGE, Environment and Climate, UiT, The
Arctic University of Norway, Tromsø, 9010, Norway
Geology Department, Leibniz Centre for Tropical Marine Research, ZMT, Bremen, 28359,
Germany
Emmanuelle Geslin
Laboratoire de Planétologie et Géosciences, LPG, Univ
Angers, Nantes Université, Le Mans Univ CNRS, LPG, SFR QUASAV, Angers,
49000, France
Joan M. Bernhard
Geology & Geophysics
Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
Charlotte LeKieffre
Laboratoire de Planétologie et Géosciences, LPG, Univ
Angers, Nantes Université, Le Mans Univ CNRS, LPG, SFR QUASAV, Angers,
49000, France
Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIG,
Université Grenoble Alpes, Grenoble, 38054, France
Mette Marianne Svenning
Centre for Arctic Gas Hydrate, CAGE, Environment and Climate, UiT, The
Arctic University of Norway, Tromsø, 9010, Norway
Department of Arctic and Marine Biology, UiT, The Arctic University of
Norway, Tromsø, 9037, Norway
Helene Roberge
Laboratoire de Planétologie et Géosciences, LPG, Univ
Angers, Nantes Université, Le Mans Univ CNRS, LPG, SFR QUASAV, Angers,
49000, France
Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes, 44000, France
Magali Schweizer
Laboratoire de Planétologie et Géosciences, LPG, Univ
Angers, Nantes Université, Le Mans Univ CNRS, LPG, SFR QUASAV, Angers,
49000, France
Giuliana Panieri
Centre for Arctic Gas Hydrate, CAGE, Environment and Climate, UiT, The
Arctic University of Norway, Tromsø, 9010, Norway
Related authors
No articles found.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Bruno Jesus, Antoine Prins, Emilie Houliez, Magali Schweizer, Thierry Jauffrais, Éric Bénéteau, and Aurélia Mouret
J. Micropalaeontol., 45, 51–72, https://doi.org/10.5194/jm-45-51-2026, https://doi.org/10.5194/jm-45-51-2026, 2026
Short summary
Short summary
We studied how tiny shelled organisms called foraminifera living in coastal mudflats respond to changes in their microscopic algae food. By monitoring a French mudflat every month for 3 years, we showed that seasonal environmental changes strongly shape both algae and foraminifera. Using simple algae traits such as size and shape explained feeding patterns better than identifying algae species, offering a clearer way to predict ecosystem responses to environmental change.
Irina Polovodova Asteman, Emilie Jaffré, Agata Olejnik, Maria Holzmann, Mary McGann, Kjell Nordberg, Jean-Charles Pavard, Delia Rösel, and Magali Schweizer
J. Micropalaeontol., 44, 119–143, https://doi.org/10.5194/jm-44-119-2025, https://doi.org/10.5194/jm-44-119-2025, 2025
Short summary
Short summary
Small boat harbours are suggested to cause pollution and alien species introductions. Here we analysed surface sediments in Hinsholmskilen harbour (Sweden) for benthic foraminifera and potentially toxic elements. Molecular and morphological analyses of foraminifera show the presence of two alien species, Trochammina hadai and Ammonia confertitesta, whilst pollution is mostly low for Cd, Co, Ni, and Pb. In contrast, As, Zn, Cu, Hg, and Cr have high levels due to the use of these elements in boat paints.
Maxime Daviray, Emmanuelle Geslin, Nils Risgaard-Petersen, Vincent V. Scholz, Marie Fouet, and Edouard Metzger
Biogeosciences, 21, 911–928, https://doi.org/10.5194/bg-21-911-2024, https://doi.org/10.5194/bg-21-911-2024, 2024
Short summary
Short summary
Coastal marine sediments are subject to major acidification processes because of climate change and human activities, but these processes can also result from biotic activity. We studied the sediment acidifcation effect on benthic calcareous foraminifera in intertidal mudflats. The strong pH decrease in sediments probably caused by cable bacteria led to calcareous test dissolution of living and dead foraminifera, threatening the test preservation and their robustness as environmental proxies.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Mathew Stiller-Reeve, Claudio Argentino, Kate Alyse Waghorn, Sunil Vadakkepuliyambatta, Dimitri Kalenitchenko, and Giuliana Panieri
Geosci. Commun., 6, 1–9, https://doi.org/10.5194/gc-6-1-2023, https://doi.org/10.5194/gc-6-1-2023, 2023
Short summary
Short summary
In this paper, we describe a process in which geoscientists corresponded with school classes in three different countries using handwritten letters and Polaroid photo albums. The stories they told were based on their experiences during a research expedition in the Arctic. We evaluated the process and show some of the benefits the students experienced from their correspondence with the scientists in this way.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Claudio Argentino, Kate Alyse Waghorn, Stefan Bünz, and Giuliana Panieri
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-58, https://doi.org/10.5194/bg-2021-58, 2021
Preprint withdrawn
Short summary
Short summary
We investigated sulfate and methane cycling in sediments of the SW Barents Sea associated with a shallow gas accumulation. The depth of the sulfate-methane transition zone ranges between 3.5 m and 29.2 m, and all methane is consumed within the sediment. Results from this study are important to better understand the dynamic of the sulfate-methane transition and to predict its response to future scenarios of increasing methane fluxes in Arctic continental shelves affected by ocean warming.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Cited articles
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z.,
Miller, W., and Lipman, D. J.: Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs, Nucl. Acid. Res., 25, 3389–3402,
https://doi.org/10.1093/nar/25.17.3389, 1997.
Barnes, R. O. and Goldberg, E. D.: Methane production and consumption in
anoxic marine sediments, Geology, 4, 297–300, https://doi.org/10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2, 1976.
Bé, A. W. H., Spero, H. J., and Anderson, O. R.: Effects of symbiont
elimination and reinfection on the life processes of the planktonic
foraminifer Globigerinoides sacculifer, Mar. Biol., 70, 73–86,
https://doi.org/10.1007/BF00397298, 1982.
Bernhard, J. M. and Bowser, S. S.: Benthic foraminifera of dysoxic
sediments: chloroplast sequestration and functional morphology, Earth-Sci.
Rev., 46, 149–165, https://doi.org/10.1016/s0012-8252(99)00017-3, 1999.
Bernhard, J. M. and Panieri, G.: Keystone Arctic paleoceanographic proxy
association with putative methanotrophic bacteria, Sci. Rep.-Uk, 8, 10610,
https://doi.org/10.1038/s41598-018-28871-3, 2018.
Bernhard, J. M., Goldstein, S. T., and Bowser, S. S.: An ectobiont-bearing
foraminiferan, Bolivina pacifica, that inhabits microxic pore waters:
cell-biological and paleoceanographic insights, Environ. Microbiol.,
12, 2107–2119, https://doi.org/10.1111/j.1462-2920.2009.02073.x, 2010.
Carrier, V., Svenning, M. M., Gründger, F., Niemann, H., Dessandier,
P.-A., Panieri, G., and Kalenitchenko, D.: The Impact of Methane on
Microbial Communities at Marine Arctic Gas Hydrate Bearing Sediment,
Front. Microbiol., 24, 11, https://doi.org/10.3389/fmicb.2020.01932, 2020.
Cedhagen, T.: Retention of chloroplasts and bathymetric distribution in the
sublittoral foraminiferan Nonionellina labradorica, Ophelia, 33, 17–30,
https://doi.org/10.1080/00785326.1991.10429739, 1991.
Charrieau, L. M., Ljung, K., Schenk, F., Daewel, U., Kritzberg, E., and Filipsson, H. L.: Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance, Biogeosciences, 16, 3835–3852, https://doi.org/10.5194/bg-16-3835-2019, 2019.
Choquel, C., Geslin, E., Metzger, E., Filipsson, H. L., Risgaard-Petersen, N., Launeau, P., Giraud, M., Jauffrais, T., Jesus, B., and Mouret, A.: Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment, Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, 2021.
Chronopoulou, P.-M., Salonen, I., Bird, C., Reichart, G.-J., and Koho, K.
A.: Metabarcoding insights into the trophic behavior and identity of
intertidal benthic foraminifera, Front. Microbiol., 10, 1169,
https://doi.org/10.3389/fmicb.2019.01169, 2019.
Consolaro, C., Rasmussen, T. L., Panieri, G., Mienert, J., Bünz, S., and Sztybor, K.: Carbon isotope (Δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic, Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, 2015.
Darling, K. F., Schweizer, M., Knudsen, K. L., Evans, K. M., Bird, C.,
Roberts, A., Filipsson, H. L., Kim, J.-H., Gudmundsson, G., Wade, C. M.,
Sayer, M. D. J., and Austin, W. E. N.: The genetic diversity, phylogeography
and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic, Mar.
Micropaleontol., 129, 1–23, https://doi.org/10.1016/j.marmicro.2016.09.001, 2016.
Dessandier, P.-A., Borrelli, C., Kalenitchenko, D., and Panieri, G.: Benthic
Foraminifera in Arctic Methane Hydrate Bearing Sediments, Front.
Mar. Sci., 6, 765, https://doi.org/10.3389/fmars.2019.00765,
2019.
Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.:
Global diffusive fluxes of methane in marine sediments, Nat. Geosci.,
11, 421–425, https://doi.org/10.1038/s41561-018-0122-8, 2018.
Fossile, E., Nardelli, M. P., Jouini, A., Lansard, B., Pusceddu, A., Moccia, D., Michel, E., Péron, O., Howa, H., and Mojtahid, M.: Benthic foraminifera as tracers of brine production in the Storfjorden “sea ice factory”, Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, 2020.
Frail-Gauthier, J. L., Mudie, P. J., Simpson, A. G. B., and Scott, D. B.:
Mesocosm and Microcosm Experiments On the Feeding of Temperate Salt Marsh
Foraminifera, J. Foraminifer. Res., 49, 259–274, https://doi.org/10.2113/gsjfr.49.3.259, 2019.
Goldstein, S. T. and Corliss, B. H.: Deposit feeding in selected deep-sea
and shallow-water benthic foraminifera, Deep Sea Res. Pt. I, 41, 229–241, https://doi.org/10.1016/0967-0637(94)90001-9, 1994.
Gouy, M., Guindon, S., and Gascuel, O.: SeaView version 4: a multiplatform
graphical user interface for sequence alignment and phylogenetic tree
building, Mol. Biol. Evol., 27, 221–224, https://doi.org/10.1093/molbev/msp259, 2010.
Hald, M. and Korsun, S.: Distribution of modern benthic foraminifera from
fjords of Svalbard, European Arctic, J. Foramin. Res.,
27, 101–122, https://doi.org/10.2113/gsjfr.27.2.101, 1997.
Heinz, P., Geslin, E., and Hemleben, C.: Laboratory observations of benthic
foraminiferal cysts, Mar. Biol. Res., 1, 149–159, 2005.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic foraminifera , Springer, Berlin, 363 pp., https://doi.org/10.1007/978-1-4612-3544-6, 1989.
Herguera, J. C., Paull, C. K., Perez, E., Ussler Iii, W., and Peltzer, E.:
Limits to the sensitivity of living benthic foraminifera to pore water
carbon isotope anomalies in methane vent environments, Paleoceanography, 29,
273–289, https://doi.org/10.1002/2013PA002457, 2014.
Hinrichs, K.-U., Hmelo, L. R., and Sylva, S. P.: Molecular fossil record of
elevated methane levels in late Pleistocene coastal waters, Science, 299,
1214–1217, https://doi.org/10.1126/science.1079601, 2003.
Hill, R., Schreiber, U., Gademann, R., Larkum, A. W. D., Kuhl, M., and
Ralph, P. J.: Spatial heterogeneity of photosynthesis and the effect of
temperature-induced bleaching conditions in three species of corals, Mar. Biol., 144, 633–640, https://doi.org/10.1007/s00227-003-1226-1, 2004a.
Hill, T. M., Kennett, J. P., and Valentine, D. L.: Isotopic evidence for the
incorporation of methane-derived carbon into foraminifera from modern
methane seeps, Hydrate Ridge, Northeast Pacific, Geochim. Cosmochim.
Acta, 68, 4619–4627, https://doi.org/10.1016/j.gca.2004.07.012,
2004b.
Holzmann, M. and Pawlowski, J.: An updated classification of rotaliid
foraminifera based on ribosomal DNA phylogeny, Mar. Micropaleontol., 132,
18–34, https://doi.org/10.1016/j.marmicro.2017.04.002, 2017.
Hong, W.-L., Torres, M. E., Carroll, J., Crémière, A., Panieri, G.,
Yao, H., and Serov, P.: Seepage from an arctic shallow marine gas hydrate
reservoir is insensitive to momentary ocean warming, Nat. Commun., 8, 15745,
https://doi.org/10.1038/ncomms15745, 2017.
Hong, W. L., Torres, M. E., Portnov, A., Waage, M., Haley, B., and Lepland,
A.: Variations in gas and water pulses at an Arctic seep: fluid sources and
methane transport, Geophys. Res. Lett., 45, 4153–4162, https://doi.org/10.1029/2018GL077309, 2018.
Iversen, N. and Jørgensen, B. B.: Diffusion coefficients of sulfate and
methane in marine sediments: Influence of porosity, Geochim.
Cosmochim. Acta, 57, 571–578,
https://doi.org/10.1016/0016-7037(93)90368-7, 1993.
Jauffrais, T., LeKieffre, C., Schweizer, M., Geslin, E., Metzger, E.,
Bernhard, J. M., Jesus, B., Filipsson, H. L., Maire, O., and Meibom, A.:
Kleptoplastidic benthic foraminifera from aphotic habitats: insights into
assimilation of inorganic C, N and S studied with sub-cellular resolution,
Environ. Microbiol., 21, 125–141, https://doi.org/10.1111/1462-2920.14433, 2019b.
Lee, J. J. and Muller, W. A.: Trophic dynamics and niches of salt marsh
foraminifera, Am. Zool., 13, 215–223, 1973.
Lee, J. J., McEnery, M., Pierce, S., Freudenthal, H., and Muller, W.: Tracer
experiments in feeding littoral foraminifera, J. Protozool.,
13, 659–670, 1966.
LeKieffre, C., Bernhard, J. M., Mabilleau, G., Filipsson, H. L., Meibom, A.,
and Geslin, E.: An overview of cellular ultrastructure in benthic
foraminifera: New observations of rotalid species in the context of existing
literature, Mar. Micropaleontol., 138, 12–32, https://doi.org/10.1016/j.marmicro.2017.10.005, 2018.
Leutenegger, S. and Hansen, H. J.: Ultrastructural and radiotracer studies
of pore function in foraminifera, Mar. Biol., 54, 11–16,
https://doi.org/10.1007/BF00387046, 1979.
Lipps, J. H.: Biotic Interactions in Benthic Foraminifera, in: Biotic
Interactions in Recent and Fossil Benthic Communities, edited by: Tevesz, M.
J. S. and McCall, P. L., Springer US, Boston, MA, 331–376,
https://doi.org/10.1007/978-1-4757-0740-3_8, 1983.
Mackensen, A.: On the use of benthic foraminiferal δ13C in
palaeoceanography: constraints from primary proxy relationships, Geological
Society, London, Special Publications, 303, 121–133, https://doi.org/10.1144/SP303.9, 2008.
McCorkle, D., Keigwin, L., Corliss, B. H., and Emerson, S. R.: The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera, Paleoceanography, 5, 161–185, https://doi.org/10.1029/PA005i002p00161, 1990.
Mojtahid, M., Zubkov, M. V., Hartmann, M., and Gooday, A. J.: Grazing of
intertidal benthic foraminifera on bacteria: Assessment using pulse-chase
radiotracing, J. Exp. Mar. Biol. Ecol., 399, 25–34,
https://doi.org/10.1016/j.jembe.2011.01.011, 2011.
Muller, W. A. and Lee, J. J.: Apparent Indispensability of Bacteria in
Foraminiferan Nutrition, J. Protozool., 16, 471–478,
https://doi.org/10.1111/j.1550-7408.1969.tb02303.x, 1969.
Nomaki, H., Heinz, P., Nakatsuka, T., Shimanaga, M., and Kitazato, H.:
Species-specific ingestion of organic carbon by deep-sea benthic
foraminifera and meiobenthos: In situ tracer experiments, Limnol. Oceanogr.,
50, 134–146, https://doi.org/10.4319/lo.2005.50.1.0134, 2005.
Nomaki, H., Heinz, P., Nakatsuka, T., Shimanaga, M., Ohkouchi, N., Ogawa, N.
O., Kogure, K., Ikemoto, E., and Kitazato, H.: Different ingestion patterns
of C-13-labeled bacteria and algae by deep-sea benthic foraminifera, Mar.
Ecol. Prog. Ser., 310, 95–108, https://doi.org/10.3354/meps310095, 2006.
Nomaki, H., Bernhard, J. M., Ishida, A., Tsuchiya, M., Uematsu, K., Tame,
A., Kitahashi, T., Takahata, N., Sano, Y., and Toyofuku, T.: Intracellular
Isotope Localization in Ammonia sp. (Foraminifera) of Oxygen-Depleted
Environments: Results of Nitrate and Sulfate Labeling Experiments, Front. Microbiol., 7, 163, https://doi.org/10.3389/fmicb.2016.00163,
2016.
Panieri, G.: Foraminiferal response to an active methane seep environment: A
case study from the Adriatic Sea, Mar. Micropaleontol., 61, 116–130,
https://doi.org/10.1016/j.marmicro.2006.05.008, 2006.
Panieri, G., James, R. H., Camerlenghi, A., Westbrook, G. K., Consolaro, C.,
Cacho, I., Cesari, V., and Cervera, C. S.: Record of methane emissions from
the West Svalbard continental margin during the last 23.500yrs revealed by
δ13C of benthic foraminifera, Global Planet. Change, 122,
151–160, https://doi.org/10.1016/j.gloplacha.2014.08.014, 2014.
Panieri, G., Lepland, A., Whitehouse, M. J., Wirth, R., Raanes, M. P.,
James, R. H., Graves, C. A., Crémière, A., and Schneider, A.:
Diagenetic Mg-calcite overgrowths on foraminiferal tests in the vicinity of
methane seeps, Earth Planet. Sci. Lett., 458, 203–212, https://doi.org/10.1016/j.epsl.2016.10.024, 2017.
Pascal, P.-Y., Dupuy, C., Richard, P., and Niquil, N.: Bacterivory in the
common foraminifer Ammonia tepida: Isotope tracer experiment and the
controlling factors, J. Exp. Mar. Biol. Ecol., 359, 55–61, https://doi.org/10.1016/j.jembe.2008.02.018, 2008.
Pawlowski, J.: Introduction to the molecular systematics of foraminifera,
Micropaleontology, 46, 1–12, 2000.
Rathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C.,
Gieskes, J., Ziebis, W., Williams, D., and Bahls, A.: Relationships between
the distribution and stable isotopic composition of living benthic
foraminifera and cold methane seep biogeochemistry in Monterey Bay,
California, Geochem. Geophy. Geosy., 4, 1220, https://doi.org/10.1029/2003GC000595, 2003.
Reynolds, E. S.: The use of lead citrate at high pH as an electron-opague stain in electron microscopy, J. Cell Biol., 17, 208–212, https://doi.org/10.1083/jcb.17.1.208, 1963.
Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C.,
Jetten, M. S. M., Op den Camp, H. J. M., Derksen, J. W. M., Piña-Ochoa,
E., Eriksson, S. P., Peter Nielsen, L., Peter Revsbech, N., Cedhagen, T.,
and van der Zwaan, G. J.: Evidence for complete denitrification in a benthic
foraminifer, Nature, 443, 93, https://doi.org/10.1038/nature05070, 2006.
Salonen, I. S., Chronopoulou, P.-M., Bird, C., Reichart, G.-J., and Koho, K.
A.: Enrichment of intracellular sulphur cycle–associated bacteria in
intertidal benthic foraminifera revealed by 16S and aprA gene analysis, Sci.
Rep.-Uk, 9, 1–12, https://doi.org/10.1038/s41598-019-48166-5,
2019.
Schmidt, C., Geslin, E., Bernhard, J. M., LeKieffre, C., Svenning, M. M., Roberge, H., Schweizer, M., and Panieri, G.: Dataset of publication: Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph, Zenodo [data set], https://doi.org/10.5281/zenodo.6941739, 2022.
Schneider, A., Crémière, A., Panieri, G., Lepland, A., and Knies,
J.: Diagenetic alteration of benthic foraminifera from a methane seep site
on Vestnesa Ridge (NW Svalbard), Deep Sea Res. Pt. I, 123, 22–34, https://doi.org/10.1016/j.dsr.2017.03.001, 2017.
Serov, P., Vadakkepuliyambatta, S., Mienert, J., Patton, H., Portnov, A.,
Silyakova, A., Panieri, G., Carroll, M. L., Carroll, J., Andreassen, K., and
Hubbard, A.: Postglacial response of Arctic Ocean gas hydrates to climatic
amelioration, P. Natl. Acad. Sci., 114,
6215–6220, https://doi.org/10.1073/pnas.1619288114, 2017.
Shetye, S., Mohan, R., Shukla, S. K., Maruthadu, S., and Ravindra, R.:
Variability of Nonionellina labradorica Dawson in Surface Sediments from
Kongsfjorden, West Spitsbergen, Acta Geologica Sinica – English Edition, 85,
549–558, https://doi.org/10.1111/j.1755-6724.2011.00450.x,
2011.
Tavormina, P. L., Hatzenpichler, R., McGlynn, S., Chadwick, G., Dawson, K.
S., Connon, S. A., and Orphan, V. J.: Methyloprofundus sedimenti gen. nov.,
sp. nov., an obligate methanotroph from ocean sediment belonging to the
`deep sea-1'clade of marine methanotrophs, Int. J. Syst. Evol. Microbiol.,
65, 251–259, https://doi.org/10.1099/ijs.0.062927-0, 2015.
Torres, M. E., Martin, R. A., Klinkhammer, G. P., and Nesbitt, E. A.: Post
depositional alteration of foraminiferal shells in cold seep settings: New
insights from flow-through time-resolved analyses of biogenic and inorganic
seep carbonates, Earth Planet. Sci. Lett., 299, 10–22, https://doi.org/10.1016/j.epsl.2010.07.048, 2010.
Wefer, G., Heinze, P. M., and Berger, W. H.: Clues to ancient methane
release, Nature, 369, 282, https://doi.org/10.1038/369282a0,
1994.
Wollenburg, J. E., Raitzsch, M., and Tiedemann, R.: Novel high-pressure
culture experiments on deep-sea benthic foraminifera – Evidence for methane
seepage-related δ13C of Cibicides wuellerstorfi, Mar.
Micropaleontol., 117, 47–64, 2015.
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella...
Altmetrics
Final-revised paper
Preprint