Articles | Volume 19, issue 18
https://doi.org/10.5194/bg-19-4459-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4459-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting
Jeremy N. Bentley
Department of Geology, Saint Mary's University, Halifax, Nova
Scotia B3H 3C3, Canada
Gregory T. Ventura
CORRESPONDING AUTHOR
Department of Geology, Saint Mary's University, Halifax, Nova
Scotia B3H 3C3, Canada
Clifford C. Walters
Bureau of Economic Geology, University of Texas at Austin, Austin, Texas, USA
Stefan M. Sievert
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
Jeffrey S. Seewald
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
Related authors
No articles found.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Narges Ahangarian, Unyime Umoh, Natasha MacAdam, Adam MacDonald, Patricia Granados, Jeremy N. Bentley, Elish Redshaw, Martin G. Fowler, Venus Baghalabadi, and G. Todd Ventura
EGUsphere, https://doi.org/10.5194/egusphere-2025-1228, https://doi.org/10.5194/egusphere-2025-1228, 2025
Short summary
Short summary
This study documents previously unknown, shallow sediment stratigraphic archaeal zones that extend over a large section of the Scotian Slope of Northeastern Canada. These zones appear to be geochemically and not lithologically controlled. They are also not detectable by using traditional lipid biomarker ratios. They indicate subsurface microbial community structures to be more complex and tractable over large expanses of the continental margins.
Bella J. Duncan, Robert McKay, Richard Levy, Joseph G. Prebble, Timothy Naish, Osamu Seki, Christoph Kraus, Heiko Moossen, G. Todd Ventura, Denise K. Kulhanek, and James Bendle
EGUsphere, https://doi.org/10.5194/egusphere-2024-4021, https://doi.org/10.5194/egusphere-2024-4021, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We use plant wax compound specific stable isotopes to investigate how ancient Antarctic vegetation adapted to glacial conditions 23 million years ago. We find plants became less water efficient to prioritise photosynthesis during short, harsh growing seasons. Ecosystem changes also included enhanced aridity, and a shift to a stunted, low elevation vegetation. This shows the adaptability of ancient Antarctic vegetation under atmospheric CO2 conditions comparable to modern.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Cited articles
Bentley, J. N., Ventura, G. T., Dalzell, C. J., Walters, C. C., Peters, C.
A., Mennito, A. S., Nelson, R. K., Reddy, C. M., Walters, C. J., Seewald, J., and Sievert, S. M.: Archaeal
lipid diversity, alteration, preservation at Cathedral Hill, Guaymas Basin,
and its link to the deep time preservation paradox, Org. Geochem., 163,
104302, https://doi.org/10.1016/j.orggeochem.2021.104302, 2022.
Besseling, M. A., Hopmans, E. C., Bale, N. J., Schouten, S., Sinninghe
Damsté, J. S., and Villanueva, L.: The absence of intact polar
lipid-derived GDGTs in marine waters dominated by Marine Group II:
Implications for lipid biosynthesis in Archaea, Sci. Rep., 10, 294, https://doi.org/10.1038/s41598-019-57035-0, 2020.
Besseling, M., Hopmans, E. C., Koenen, M., van der Meer, M. T. J.,
Vreugdenhil, S., Schouten, S., Sinninghe Damsté, J. S., and Villanueva, L.: Depth-related differences
in archaeal populations impact the isoprenoid tetraether lipid composition
of the Mediterranean Sea water column, Org. Geochem., 135, 16–31,
https://doi.org/10.1016/j.orggeochem.2019.06.008, 2019.
Biddle, J. F., Cardman, Z., Mendlovitz, H., Albert, D. B., Lloyd, K. G.,
Boetius, A., and Teske, A.: Anaerobic oxidation of methane at different temperature regimes in Guaymas
Basin hydrothermal sediments, ISME J., 6, 1018–1031,
https://doi.org/10.1038/ismej.2011.164, 2012.
Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D, Widdel, F., Gieseke,
A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.: A marine
microbial consortium apparently mediating anaerobic oxidation of methane,
Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Boyd, E., Hamilton, T., Wang, J., He, L., and Zhang, C.: The role of
tetraether lipid composition in the adaptation of thermophilic archaea to
acidity, Front. Microbiol., 4, 62, https://doi.org/10.3389/fmicb.2013.00062,
2013.
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein, M.:
Molecular stratigraphy: a new tool for climatic assessment, Nature, 320,
129–133, https://doi.org/10.1038/320129a0, 1986.
Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P.:
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota, Nat. Rev.
Microbiol., 6, 245–252, https://doi.org/10.1038/nrmicro1852, 2008.
Carr, S. A., Schubotz, F., Dunbar, R. B., Mills, C. T., Dias, R., Summons,
R. E., and Mandernack, K. W.: Acetoclastic Methanosaeta are dominant
methanogens in organic-rich Antarctic marine sediments, ISME J., 12,
330–342, https://doi.org/10.1038/ismej.2017.150, 2018.
Dalzell, C. J., Ventura, G. T., Nelson, R. K., Reddy, C. M., Walters, C. J.,
Seewald, J., and Sievert, S. M.: Resolution of multi-molecular hydrocarbon
transformation in petroleum-bearing sediments from the Cathedral Hill
hydrothermal vent complex at Guaymas Basin, Gulf of California by
comprehensive two-dimensional gas chromatography and chemometric analyses,
Org. Geochem., 152, 104173, https://doi.org/10.1016/j.orggeochem.2020.104173, 2021.
De Rosa, M. and Gambacorta, A.: The lipids of archaebacteria, Pro. Lipid
Res., 27, 153–175, https://doi.org/10.1016/0163-7827(88)90011-2, 1988.
Elling, F. J., Könneke, M., Lipp, J. S., Becker, K. W., Gagen, E. J., and
Hinrichs, K.-U.: Effects of growth phase on the membrane lipid composition
of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid
distributions in the marine environment, Geochim. Cosmochim. Ac., 141,
579–597, https://doi.org/10.1016/j.gca.2014.07.005, 2014.
Elling, F. J., Könneke, M., Mußmann, M., Greve, A., and Hinrichs, K.
U.: Influence of temperature, pH, and salinity on membrane lipid composition
and TEX86 of marine planktonic thaumarchaeal isolates, Geochim. Cosmochim. Ac., 171, 238–255, https://doi.org/10.1016/j.gca.2015.09.004,
2015.
Gieskes, J. M., Simoneit, B. R., Brown, T., Shaw, T. J., Wang, Y. C., and
Magenheim, A.: Hydrothermal fluids and petroleum in surface sediments of
Guaymas Basin, Gulf of California: a case study, Can. Mineral., 26,
589–602, 1988.
Gliozzi, A., Paoli, G., De Rosa, M., and Gambacorta, A.: Effect of
isoprenoid cyclization on the transition temperature of lipids in
thermophilic archaebacteria, Biochim. Biophys. Acta (BBA)-Biomembranes, 735,
234–242, https://doi.org/10.1016/0005-2736(83)90298-5, 1983.
Herfort, L., Schouten, S., Boon, J. P., and Sinninghe Damsté, J. S.:
Application of the TEX86 temperature proxy to the southern North Sea, Org.
Geochem., 37, 1715–26, https://doi.org/10.1016/j.orggeochem.2006.07.021,
2006.
Herrera-Cervantes, H., Lluch-Cota, D. B., Lluch-Cota, S. E., and
Gutiérrez-de-Velasco, S. G.: The ENSO signature in sea-surface
temperature in the Gulf of California, J. Mar. Res., 65, 589–605,
https://doi.org/10.1357/002224007783649529, 2007.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M.,
Creech, J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J. S., Gibbs, S., Pearson, P. N., and
Zachos, J. C. Early Paleogene temperature history of the Southwest Pacific
Ocean: Reconciling proxies and models, Earth Planetary Sci. Lett., 349–350,
53–66, https://doi.org/10.1016/j.epsl.2012.06.024, 2012.
Ho, S. L. and Laepple, T.: Flat meridional temperature gradient in the early
Eocene in the subsurface rather than surface ocean, Nat. Geosci., 9,
606–610, https://doi.org/10.1038/ngeo2763, 2016.
Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether
lipids, Earth Planetary Sci. Lett., 224, 107–116,
https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Huguet, C., Cartes, J. E., Sinninghe Damsté, J. S., and Schouten, S.:
Marine crenarchaeotal membrane lipids in decapods: Implications for the
TEX86 paleothermometer, Geochem. Geophys. Geosyst., 7, Q11010, https://doi.org/10.1029/2006GC001305, 2006.
Huguet, C., Schimmelmann, A., Thunell, R., Lourens, L. J., Sinninghe
Damsté, J. S., and Schouten, S.: A study of the TEX86
paleothermometer in the water column and sediments of the Santa Barbara
Basin, California, Paleoceanography, 22, PA3203, https://doi.org/10.1029/2006PA001310,
2007.
Huguet, C., Martrat, B., Grimalt, J. O., Sinninghe Damsté, J. S., and
Schouten, S.: Coherent millennial-scale patterns in U and TEX temperature records during the
penultimate interglacial-to-glacial cycle in the western Mediterranean,
Paleoceanography, 22, PA2218, https://doi.org/10.1029/2010PA002048, 2011.
Hurley, S. J., Elling, F. J., Könneke, M., Buchwald, C., Wankel, S. D.,
Santoro, A. E., Lipp, J. S., Hinrichs, K.-U., and Pearson, A.: Influence of ammonia oxidation rate on thaumarchaeal
lipid composition and the TEX86 temperature proxy, P. Natl. Acad.
Sci. USA., 113, 7762–7767, https://doi.org/10.1073/pnas.1518534113, 2016.
Kallmeyer, J. and Boetius, A.: Effects of temperature and pressure on
sulfate reduction and anaerobic oxidation of methane in hydrothermal
sediments of Guaymas Basin, Appl. Environ. Microbiol., 70, 1231–1233,
https://doi.org/10.1128/AEM.70.2.1231-1233.2004, 2004.
Karner, M. B., DeLong, E. F., and Karl, D. M.: Archaeal dominance in the
mesopelagic zone of the Pacific Ocean, Nature, 25, 507–510, https://doi.org/10.1038/35054051, 2001.
Kashefi, K. and Lovley, D. R.: Extending the upper temperature limit for
life, Science, 301, 934–934, https://doi.org/10.1126/science.1086823, 2003.
Kim, J. H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe
Damsté, J. S.: Global sediment core-top calibration of the TEX86
paleothermometer in the ocean, Geochim. Cosmochim. Ac., 72, 1154–1173,
https://doi.org/10.1016/j.gca.2007.12.010, 2008.
Kim, J. H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.:
New indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kim, J.-H., Romero, O. E., Lohmann, G., Donner, B., Laepple, T., Haam, E., and
Sinninghe Damsté, J. S.: Pronounced subsurface cooling of North Atlantic
waters off Northwest Africa during Dansgaard-Oeschger interstadials, Earth
Planetary Sci. Lett., 339–340, 95–102, https://doi.org/10.1016/j.epsl.2012.05.018, 2012a.
Kim, J.-H., Crosta, X., Willmott, V., Renssen, H., Bonnin, J., Helmke, P.,
Schouten, S., and Sinninghe Damsté, J. S.: Holocene subsurface
temperature variability in the eastern Antarctic continental
margin, Geophys. Res. Lett., 39, L06705, https://doi.org/10.1029/2012GL051157, 2012b.
Kim J.-H., Schouten, S., Rodrigo-Gamiz, M., Rampen, S., Marino, G., Huguet,
C., Helmke, P., Buscail, R., Hopmans, E. C., Pross, J., Sangiorgi, F.,
Middelburg, J. B. M., and Sinninghe Damsté, J. S.: Influence of
deep-water derived isoprenoid tetraether lipids on the paleothermometer in
the Mediterranean Sea, Geochim. Cosmochim. Ac., 150, 125–141,
https://doi.org/10.1016/j.gca.2014.11.017, 2015.
Knappy, C. S., Chong, J. P., and Keely, B. J.: Rapid discrimination of
archaeal tetraether lipid cores by liquid chromatography-tandem mass
spectrometry, J. Am. Soc. Mass Spectr., 20,
51–59, https://doi.org/10.1016/j.jasms.2008.09.015, 2009.
Lawrence, K. T., Pearson, A., Castaneda, I. S., Ladlow, C., Peterson, L. C.,
and Lawrence, G. E.: Comparison of Late Neogene U and
TEX86 Paleotemperature records from the eastern equatorial Pacific at
orbital resolution, Paleoceanogr. Paleoclimatol., 35, 1–16,
https://doi.org/10.1029/2020PA003858, 2020.
Lengger, S. K., Hopmans, E. C., Reichart, G.-J., Nierop, K. G. J.,
Sinninghe Damsté, J. S., and Schouten, S.: Intact polar and core
glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen
minimum zone. Part II: Selective preservation and degradation in sediments
and consequences for the TEX86, Geochim. Cosmochim. Ac., 98, 244–258,
https://doi.org/10.1016/j.gca.2012.05.003, 2012.
Lengger, S. K., Hopmans, E. C., Sinninghe Damsté, J. S., and Schouten,
S.: Fossilization and degradation of archaeal intact polar tetraether lipids
in deeply buried marine sediments (Peru Margin), Geobiology, 12, 212–220,
https://doi.org/10.1111/gbi.12081, 2014.
Lipp, J. S. and Hinrichs, K. U.: Structural diversity and fate of intact
polar lipids in marine sediments, Geochim. Cosmochim. Ac., 73, 6816–6833,
https://doi.org/10.1016/j.gca.2009.08.003, 2009.
Liu, X. L., Leider, A., Gillespie, A., Gröger, J., Versteegh, G. J., and
Hinrichs, K. U.: Identification of polar lipid precursors of the ubiquitous
branched GDGT orphan lipids in a peat bog in Northern Germany, Org.
Geochem., 41, 653–660, https://doi.org/10.1016/j.orggeochem.2010.04.004,
2010.
Liu, X. L., Russell, D. A., Bonfio, C., and Summons, R. E.: Glycerol
configurations of environmental GDGTs investigated using a selective sn2
ether cleavage protocol, Org. Geochem., 128, 57–62,
https://doi.org/10.1016/j.orggeochem.2018.12.003, 2018.
Lopes dos Santos, R. A., Prange, M., Castañeda, I. S., Schefuß, E.,
Mulitza, S., Schulz, M., Niedermeyer, E. M., Sinninghe Damsté, J. S., and
Schouten S.: Glacial–interglacial variability in Atlantic meridional
overturning circulation and thermocline adjustments in the tropical North
Atlantic, Earth Planetary Sci. Lett., 300, 407–414,
https://doi.org/10.1016/j.epsl.2010.10.030, 2010.
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J.,
Dowsett, H. J., and Loptson, C. A.: On the causes of mid-Pliocene warmth and
polar amplification, Earth Planetary Sci. Lett., 321–322, 128–138, https://doi.org/10.1016/j.epsl.2011.12.042, 2012.
Macalady, J. L., Vestling, M. M., Baumler, D., Boekelheide, N., Kaspar, C.
W., and Banfield, J. F.: Tetraether-linked membrane monolayers in
Ferroplasma spp: a key to survival in acid, Extremophiles, 8, 411–419,
https://doi.org/10.1007/s00792-004-0404-5, 2004.
McClymont, E. L., Ganeshram, R. S., Pichevin, L. E., Talbot, H. M., van
Dongen, B. E., Thunell, R. C., Haywood, A. M., Singarayer, J. S., and Valdes,
P. J.: Sea-surface temperature records of Termination 1 in the Gulf of
California: Challenges for seasonal and interannual analogues of tropical
Pacific climate change, Paleoceanography, 27, PA2202, https://doi.org/10.1029/2011PA002226, 2012.
McKay, L. J., MacGregor, B. J., Biddle, J. F., Albert, D. B., Mendlovitz, H.
P., Hoer, D. R., Lipp, J. S., Lloyd, K. G., and Teske, A. P.: Spatial
heterogeneity and underlying geochemistry of phylogenetically diverse orange
and white Beggiatoa mats in Guaymas Basin hydrothermal sediments, Deep-Sea Res. Pt. I, 67, 21–31, https://doi.org/10.1016/j.dsr.2012.04.011,
2012.
Meyer, S., Wegener, G., Lloyd, K. G., Teske, A., Boetius, A., and Ramette,
A.: Microbial habitat connectivity across spatial scales and hydrothermal
temperature gradients at Guaymas Basin, Front. Microbiol., 4, 207,
https://doi.org/10.3389/fmicb.2013.00207, 2013.
Naafs, B. D. A., Rohrssen, M., Inglis, G. N., Lähteenoja, O., Feakins,
S. J., Collinson, M. E., Kennedy, E. M., Singh, P. K., Singh, M. P., Lunt, D. J., and Pancost, R. D.: High
temperatures in the terrestrial mid-latitudes during the early Palaeogene,
Nat. Geosci., 11, 766–771, https://doi.org/10.1038/s41561-018-0199-0, 2018.
O'Brien, C. L., Robinson, S. A. Pancost, R. D., Sinninghe Damste, J. S.,
Schouten, S., Lunt, D. J., Alsenz, H., Bomemann, A., Bottini, C., Brassell,
S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H.
C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J.,
Naafs, B. D. A., Puttmann, W., Sluijs, A., van Helmond, N. A. G. M.,
Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface
temperature evolution: Constraints from TEX86 and planktonic
foraminiferal oxygen isotopes, Earth Sci. Rev., 172, 224–247,
https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
Pearson, A. and Ingalls, A. E.: Assessing the use of archaeal lipids as
marine environmental proxies, Annu. Rev. Earth Planet. Sci., 41, 359–384,
https://doi.org/10.1146/annurev-earth-050212-123947, 2013.
Pearson, A., Huang, Z., Ingalls, A. E., Romanek, C. S., Wiegel, J., Freeman,
K. H., Smittenberg, R. H., and Zhang, C. L.: Nonmarine crenarchaeol in Nevada
hot springs, Appl. Environ. Microbiol., 70, 5229–5237,
https://doi.org/10.1128/AEM.70.9.5229-5237.2004, 2004.
Petrick, B., Reuning, L., and Martinez-Garcia: Distribution of Glycerol
Dialkyl Glycerol Tetraethers (GDGTs) in Microbial Mats from Holocene and
Miocene Sabkha Sediments, Front. Earth Sci., 7, 310,
https://doi.org/10.3389/feart.2019.00310, 2019.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W.,
Stahl, D. A., and Ingalls, A. E.: Confounding effects of oxygen and
temperature on the TEX86 signature of marine Thaumarchaeota, P.
Natl. Acad. Sci. USA., 112, 10,979–10,984.
https://doi.org/10.1073/pnas.1501568112, 2015.
Rommerskirchen, F., Condon, T., Mollenhauer, G., Dupont, L. M., and
Schefuß, E.: Miocene to Pliocene development of surface and subsurface temperatures in the Benguela
Current system, Paleoceanography, 26, 1–15, https://doi.org/10.1029/2010PA002074, 2011.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J.
S.: Distributional variations in marine crenarchaeotal membrane lipids: a
new tool for reconstructing ancient sea water temperatures?, Earth Planetary
Sci. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2,
2002.
Schouten S., Wakeham S. G., Hopmans E. C., and Sinninghe Damsté, J. S.:
Biogeochemical Evidence that Thermophilic Archaea Mediate the Anaerobic
Oxidation of Methane, Appl. Environ. Microbiol., 69, 1680–1686,
https://doi.org/10.1128/AEM.69.3.1680-1686.2003, 2003.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The effect of
maturity and depositional redox conditions on archaeal tetraether lipid
palaeothermometry, Org. Geochem., 35, 567–571,
https://doi.org/10.1016/j.orggeochem.2004.01.012, 2004.
Schouten, S., Middelburg, J. J., Hopmans, E. C., and Sinninghe Damsté, J. S.: Fossilization and degradation of intact polar lipids in deep subsurface sediments: a theoretical approach, Geochim. Cosmochim. Ac., 74, 3806–3814, https://doi.org/10.1016/j.gca.2010.03.029, 2010.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org.
Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006,
2013.
Seki, O., Schmidt, D. N., Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S., and Pancost, R. D.: Paleoceanographic changes in the Eastern Equatorial Pacific over the last 10 Myr., Paleoceanography, 27, PA3224, https://doi.org/10.1029/2011PA002158, 2012.
Seki, O., Bendle, J. A., Haranda, N., Kobayashi, M., Sawada, K., Moossen,
H., Inglis, G. N., Nagao, S., and Sakamoto, T.: Assessment and calibration
of TEX86 paleothermometry in the Sea of Okhotsk and sub-polar North
Pacific region: Implications for paleoceanography, Prog. Oceanogr., 126,
254–266, https://doi.org/10.1016/j.pocean.2014.04.013, 2014.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., den Uijl,
M. J., Weijers, J. W. H., and Schouten S.: The enigmatic structure of the
crenarchaeol isomer, Org. Geochem., 124, 22–28,
https://doi.org/10.1016/j.orggeochem.2018.06.005, 2018.
Stadnitskaia, A., Nadezhkin, D., Abbas, B., Blinova, V., Ivanov, M. K., and
Sinninghe Damsté, J. S.: Carbonate formation by anaerobic oxidation of
methane: evidence from lipid biomarker and fossil 16S rDNA, Geochim. Cosmochim. Ac., 72, 1824–1836, https://doi.org/10.1016/j.gca.2008.01.020,
2008.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K. U.:
Intact polar membrane lipids in prokaryotes and sediments deciphered by
high-performance liquid chromatography/electrospray ionization multistage
mass spectrometry – new biomarkers for biogeochemistry and microbial
ecology, Rapid Commun. Mass Spectrom., 18, 617–628,
https://doi.org/10.1002/rcm.1378, 2004.
Teske, A., De Beer, D., McKay, L. J., Tivey, M. K., Biddle, J. F., Hoer, D.,
Lloyd, K. G., Lever, M. A., Røy, H., Albert, D. B., and MacGregor, B. J.:
The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and
microbial mats: Complex seafloor expressions of subsurface hydrothermal
circulation, Front. Microbiol., 7, 75,
https://doi.org/10.3389/fmicb.2016.00075, 2016.
Tierney, J. E.: Biomarker-based inferences of past climate: the TEX86
paleotemperature proxy, in: Treatise on Geochemistry, 2nd edn., edited
by: Holland, H. D. and Turekian, K. K., Geochemistry, 2nd edn., Elsevier, vol. 12, 379–939,
https://doi.org/10.1016/B978-0-08-095975-7.01032-9, 2014.
Uda, I., Sugai, A., Itoh, Y. H., and Itoh, T.: Variation in molecular
species of polar lipids from Thermoplasma acidophilum depends on growth temperature, Lipids, 36,
103–105, https://doi.org/10.1007/s11745-001-0914-2, 2001.
Umoh, U., Li, L., Luckge, A., Schwartz-Schampera, U., and Naafs, D.:
Influence of hydrothermal vent activity on GDGT pool in marine sediments
might be less than previously thought, Org. Geochem., 149, 104102,
https://doi.org/10.1016/j.orggeochem.2020.104102, 2020.
Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S., and Sinninghe
Damsté, J. S.: Archaea mediate anaerobic oxidation of methane in deep
euxinic waters of the Black Sea, Geochim. Cosmochim. Ac., 67, 1359–1374,
https://doi.org/10.1016/S0016-7037(02)01220-6, 1359–1374, 2003.
Weijers, J. W., Schouten, S., van den Donker, J. C., Hopmans, E. C., and
Sinninghe Damsté, J. S.: Environmental controls on bacterial tetraether
membrane lipid distribution in soils, Geochim. Cosmochim. Ac., 71, 703–713, https://doi.org/10.1016/j.gca.2006.10.003, 703–713, 2007.
Weijers, J. W., Schefuß, E., Kim, J. H., Sinninghe Damsté, J. S.,
and Schouten, S.: Constraints on the sources of branched tetraether membrane
lipids in distal marine sediments, Org. Geochem., 72, 14–22,
https://doi.org/10.1016/j.orggeochem.2014.04.011, 2014.
Wuchter, C., Schouten, S., Wakeham, S. G., and Sinninghe Damsté, J. S.:
Temporal and spatial variation in tetraether membrane lipids of marine
Crenarchaeota in particulate organic matter: Implications for TEX86
paleothermometry, Paleoceanography, 20, PA3013, https://doi.org/10.1029/2004PA001110,
2005.
Wuchter, C., Schouten, S., Wakeham, S. G., and Sinninghe Damsté, J. S.:
Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and
the Arabian Sea: implications for TEX86 paleothermometry,
Paleoceanography, 21, PA4208, https://doi.org/10.1029/2006PA001279, 2006.
Xie, S., Lipp, J. S., Wegener, G., Ferdelman, T. G., and Hinrichs, K.-U.:
Turnover of microbial lipids in the deep biosphere and growth of benthic
archaeal populations, P. Natl. Acad. Sci, USA, 110,
6010–6014, https://doi.org/10.1073/pnas.1218569110, 2013.
Yoshinaga, M. Y., Kellermann, M. Y., Rossel, P. E., Schubotz, F., Lipp, J.
S., and Hinrichs, K. U.: Systematic fragmentation patterns of archaeal intact polar lipids by
high-performance liquid chromatography/electrospray ionization ion-trap mass
spectrometry, Rap. Commun. Mass Spectrom., 25, 3563–3574,
https://doi.org/10.1002/rcm.5251, 2011.
Zeng, Z., Liu, X. L., Farley, K. R., Wei, J. H., Metcalf, W. W., Summons, R.
E., Zhang, Y. G., Pagani, M., and Wang, Z.: Ring Index: A new strategy to
evaluate the integrity of TEX86 paleothermometry, Paleoceanogr.
Paleoclimatol., 31, 220–232, https://doi.org/10.1002/2015PA002848, 2016.
Zhang, Y. G., Zhang, C. L., Liu, X. L., Li, L., Hinrichs, K. U., and Noakes,
J. E.: Methane Index: A tetraether archaeal lipid biomarker indicator for
detecting the instability of marine gas hydrates, Earth Planetary Sci.
Lett., 307, 525–534, https://doi.org/10.1016/j.epsl.2011.05.031, 2011.
Zhang, Y. G., Pagani, M., and Wang, Z.: Ring Index: A new strategy to
evaluate the integrity of TEX86 paleotherm, Paleoceanograph. Paleoclim., 31, 220–232,
https://doi.org/10.1002/2015PA002848, 2016.
Zhu, C., Lipp, J. S., Wörmer, L., Becker, K. W., Schröder, J., and
Hinrichs, K. U.: Comprehensive glycerol ether lipid fingerprints through a
novel reversed phase liquid chromatography-mass spectrometry protocol, Org.
Geochem., 65, 53–62, https://doi.org/10.1016/j.orggeochem.2013.09.012, 2013.
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become...
Altmetrics
Final-revised paper
Preprint