Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-743-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-743-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Neogene evolution of modern deep-dwelling plankton
Flavia Boscolo-Galazzo
CORRESPONDING AUTHOR
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
now at: Department of Earth Science, Bergen University, Bergen, Norway
now at: Bjerknes Center for Climate Research, Bergen, Norway
Amy Jones
School of Geography, Earth and Environmental Sciences, Birmingham University, Birmingham, UK
Tom Dunkley Jones
School of Geography, Earth and Environmental Sciences, Birmingham University, Birmingham, UK
Katherine A. Crichton
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
now at: Department of Geography, Exeter University, Exeter, UK
Bridget S. Wade
Department of Earth Sciences, University College London, London, UK
Paul N. Pearson
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
Related authors
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Flavia Boscolo-Galazzo, David Evans, Elaine M. Mawbey, William R. Gray, Paul N. Pearson, and Bridget S. Wade
Biogeosciences, 22, 1095–1113, https://doi.org/10.5194/bg-22-1095-2025, https://doi.org/10.5194/bg-22-1095-2025, 2025
Short summary
Short summary
Here we compare the Mg / Ca and oxygen isotope signatures for 57 recent to fossil species of planktonic foraminifera for the last 15 Myr. We find the occurrence of lineage-specific offsets in Mg / Ca conservative between ancestor-descendent species. Taking into account species kinship significantly improves temperature reconstructions, and we suggest that the occurrence of Mg / Ca offsets in modern species results from their evolution when ocean properties were different from today's.
Alessio Fabbrini, Paul N. Pearson, Anieke Brombacher, Francesco Iacoviello, Thomas H. G. Ezard, and Bridget S. Wade
J. Micropalaeontol., 44, 213–235, https://doi.org/10.5194/jm-44-213-2025, https://doi.org/10.5194/jm-44-213-2025, 2025
Short summary
Short summary
Pulleniatina is a genus of planktonic foraminifera used in biostratigraphy. Here, we illustrate typical specimens of Pulleniatina and the likely ancestor Neogloboquadrina acostaensis from International Ocean Discovery Program Site U1488. We present a novel integration of high-definition light microscopy images, X-ray microcomputed tomography data, and scanning electron microscope images to compare the six Pulleniatina species, supporting an evolutionary model with two diverging lineages.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Flavia Boscolo-Galazzo, David Evans, Elaine M. Mawbey, William R. Gray, Paul N. Pearson, and Bridget S. Wade
Biogeosciences, 22, 1095–1113, https://doi.org/10.5194/bg-22-1095-2025, https://doi.org/10.5194/bg-22-1095-2025, 2025
Short summary
Short summary
Here we compare the Mg / Ca and oxygen isotope signatures for 57 recent to fossil species of planktonic foraminifera for the last 15 Myr. We find the occurrence of lineage-specific offsets in Mg / Ca conservative between ancestor-descendent species. Taking into account species kinship significantly improves temperature reconstructions, and we suggest that the occurrence of Mg / Ca offsets in modern species results from their evolution when ocean properties were different from today's.
Tirza Maria Weitkamp, Mohammad Javad Razmjooei, Paul Nicholas Pearson, and Helen Katherine Coxall
J. Micropalaeontol., 44, 1–78, https://doi.org/10.5194/jm-44-1-2025, https://doi.org/10.5194/jm-44-1-2025, 2025
Short summary
Short summary
Deep Sea Drilling Project Site 407, near Iceland, offers a valuable 25-million-year record of planktonic foraminifera evolution from the Late Cenozoic. Species counts and ranges, assemblage changes, and biostratigraphic zones were identified. Key findings include the shifts in species dominance and diversity. Challenges include sediment gaps and missing biozone markers. We aim to enhance the Neogene–Quaternary Middle Atlas and improve the North Atlantic palaeoceanography and biostratigraphy.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Jakub Witkowski, Karolina Bryłka, Steven M. Bohaty, Elżbieta Mydłowska, Donald E. Penman, and Bridget S. Wade
Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, https://doi.org/10.5194/cp-17-1937-2021, 2021
Short summary
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Cited articles
Ando, A., Huber, B. T., and MacLeod, K. G.:
Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary,
Paleobiology,
36, 357–373, 2010.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.:
A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data,
Biol. Rev.,
86, 900–927, 2011.
Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot, F., and Labeyrie, L.: Insolation cycles as a major control of equatorial Indian Ocean primary production, Science, 278, 1451–1454, 1997.
Bergen, J. A., de Kaenel, E., Blair, S. A., Boesiger, T. M., and Browning, E.:
Oligocene–Pliocene taxonomy and stratigraphy of the genus Sphenolithus in the circum North Atlantic Basin: Gulf of Mexico and ODP Leg 154,
J. Nannoplankton Res.,
37, 77–112, 2017.
Berggren, W. A.:
Late Neogene planktonic foraminiferal biostratigraphy of the Rio Grande Rise (South Atlantic),
Mar. Micropaleontol.,
2, 265–313, 1977.
Berggren, W. A.:
Neogene planktonic foraminifer magnetostratigraphy of the southern Kerguelen Plateau (Sites 747, 748, 751),
in: Proceedings of the Ocean Drilling Program, Scientific Results (Ocean Drilling Program),
edited by: Wise Jr., S. W., Palmer Julson, A. A., Schlich, R., and Thomas, E.,
Ocean Drilling Program, College Station, TX, 120, 631–647, https://doi.org/10.2973/odp.proc.sr.120.1992, 1992.
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D., and O'Regan, M.:
Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals,
Mar. Micropaleontol.,
101, 127–145, 2013.
Blair, S. A., Bergen, J. A., de Kaenel, E., Browning, E., and Boesiger, T. M.:
Upper Miocene–Lower Pliocene taxonomy and stratigraphy in the circum North Atlantic Basin: radiation and extinction of Amauroliths, Ceratoliths and the D. quinqueramus lineage,
J. Nannoplankton Res.,
37, 113–144, 2017.
Boesiger, T. M., de Kaenel, E., Bergen, J. A., Browning, E., and Blair, S. A.:
Oligocene to Pleistocene taxonomy and stratigraphy of the genus Helicosphaera and other placolith taxa in the circum North Atlantic Basin,
J. Nannoplankton Res..
37, 145–175, 2017.
Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K.:
Plankton Stratigraphy: Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids,
Cambridge University Press, 599 pp., ISBN 978-05-2136-719-6, 1989.
Boscolo-Galazzo, F., Crichton, K. A., Ridgwell, A., Mawbey, E. M., Wade, B. S., and Pearson P. N.:
Temperature controls carbon cycling and biological evolution in the ocean twilight zone,
Science,
371, 1148–1152, 2021.
Bown, P. R. and Young, J. R.:
Techniques,
in: Calcareous Nannofossil Biostratigraphy,
editewd by: Bown, P. R.,
British Micropalaeontological Society Publications Series/Kluwer Academic, London, 16–28 pp., 1998.
Bown, P. R., Lees, J. A., and Young, J. R.:
Calcareous nannoplankton evolution and diversity through time,
in: Coccolithophores: From Molecular Processes to Global Impact,
edited by: Thierstein, H. R. and Young, J. R.,
Springer, Berlin, 481–508, 2004.
Brombacher, A., Wilson, P. A., Bailey, I., and Ezard, T. H.:
The Dynamics of Diachronous Extinction Associated with Climatic Deterioration near the Neogene/Quaternary Boundary,
Paleoceanography and Paleoclimatology,
36, e2020PA004205, https://doi.org/10.1029/2020PA004205, 2021.
Browning, E., de Kaenel, E., Bergen, J. A., Blair, S. A., and Boesiger, T. M.:
Oligocene-Pliocene taxonomy and stratigraphy of the genus Sphenolithus in the circum North Atlantic Basin: Gulf of Mexico and ODP Leg 154,
J. Nannoplankton Res.,
37, 77–112, 2017.
Ciummelli, M., Raffi, I., and Backman, J.: Biostratigraphy and evolution of Miocene Discoaster spp. from IODP Site U1338 in the equatorial Pacific Ocean, J. Micropalaeontol., 36, 137–152, https://doi.org/10.1144/jmpaleo2015-034, 2016.
Coxall, H. K., Wilson, P. A., Pearson, P. N., and Sexton, P. F.:
Iterative evolution of digitate planktonic foraminifera,
Paleobiology,
33, 495–516, 2007.
Cramer, B. S., Miller, K. G., Barrett P. J., and Wright, J. D.:
Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and ) with sea level history,
J. Geophys. Res.,
116, C12023, https://doi.org/10.1029/2011JC007255, 2011.
Crichton, K. A., Ridgwell, A., Lunt, D. J., Farnsworth, A., and Pearson, P. N.: Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model, Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, 2021a.
Crichton, K. A., Wilson, J. D., Ridgwell, A., and Pearson, P. N.: Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model, Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, 2021b.
Darling, K. F., Christopher, M. W., Stewart, I. A., Kroon, D., Dinglek, R., and Leigh Brown A. J.:
Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers,
Nature,
405, 43–47, 2000.
Davis, C. V., Wishner, K., Renema, W., and Hull, P. M.: Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations, Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021, 2021.
De Kaenel, E., Bergen, J. A., Browning, E., Blair, S. A., and Boesiger, T. M.:
Uppermost Oligocene to Middle Miocene Discoaster and Catinaster taxonomy and stratigraphy in the circum North Atlantic Basin: Gulf of Mexico and ODP Leg 154,
J. Nannoplankton Res.,
37, 77–112, 2017.
De Vargas, C., Renaud, S., Hilbrecht, H., and Pawlowski, J.:
Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence,
Paleobiology,
27, 104–125, 2001.
Dowsett, H. J.:
Diachrony of late Neogene microfossils in the Southwest Pacific Ocean: application of the graphic correlation method,
Paleoceanography,
3, 209–222, 1988.
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A.:
Interplay Between Changing Climate and Species' Ecology Drives Macroevolutionary Dynamics,
Science,
332, 349–351, 2011.
Fox, L. R. and Wade, B. S.:
Systematic taxonomy of early–middle Miocene planktonic foraminifera from the equatorial Pacific Ocean: Integrated Ocean Drilling Program, Site U1338,
J. Foramin. Res.,
43, 374–405, 2013.
Fraass, A. J., Kelly, D. C., and Peters, S. E.:
Macroevolutionary History of the Planktic Foraminifera,
Annu. Rev. Earth Pl. Sc.,
431, 39–66, 2015.
Gibbs, S. J., Bown, P. R., Ward, B. A., Alvarez, S. A., Kim, H., Archontikis, O. A., Sauterey, B., Poulton, A. J., Wilson, J., and Ridgwell, A.:
Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness,
Sci. Adv.,
6, eabc9123, https://doi.org/10.1126/sciadv.abc9123, 2020.
Godrijan, J., Drapeau, D., and Balch, W. M.: Mixotrophic uptake
of organic compounds by coccolithophores, Limnol. Oceanogr.,65, 1–12, 2020.
Godrijan, J., Drapeau, D. T., and Balch, W. M.: Osmotrophy of dissolved organic carbon by coccolithophores indarkness, New Phytol., 233, 781–794, 2022.
Greco, M., Jonkers, L., Kretschmer, K., Bijma, J., and Kucera, M.: Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations, Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, 2019.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 4, 9 pp., http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 4 February 2022), 2001.
Henderiks, J., Bartol, M., Pige, N., Karatsolis, B.-T., and Lougheed, B. C.:
Shifts in phytoplankton composition and stepwise climate change during the middle Miocene,
Paleoceanography and Paleoclimatology,
35, e2020PA003915, https://doi.org/10.1029/2020PA003915, 2020.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero-Gill, R., and Kelly, C. S.:
Late Miocene global cooling and the rise of modern ecosystems,
Nat. Geosci.,
9, 843–847, 2016.
Hodell, D. A. and Vayavananda, A.:
Middle Miocene paleoceanography of the western equatorial Pacific (DSDP Site 289) and the evolution of Globorotalia (Fohsella),
Mar. Micropaleontol.,
22, 279–310, 1993.
Hull P. M. and Norris R. D.:
Evidence for abrupt speciation in a classic case of gradual evolution,
P. Natl. Acad. Sci. USA,
106, 21224–21229, 2009.
Hull, P. M., Osborn, K. J., Norris, R. D., and Robison, B. H.:
Seasonality and depth distribution of a mesopelagic foraminifer, Hastigerinella digitata, Monterey Bay, California,
Limnol. Oceanogr.,
56, 562–576, 2011.
Itou, M., Ono, T., Olba, T., and Noriki, S.:
Isotopic composition and morphology of living Globoborotalia scitula: a new proxy of sub-intermediate ocean carbonate chemistry?,
Mar. Micropaleontol.,
42, 189–210, 2001.
Jenkins, D. G. and Srinivasan, M. S.:
Cenozoic planktonic foraminifers from the equator to the sub-antarctic of the southwest Pacific,
in: Initial Reports of the Deep Sea Drilling Project 90,
edited by: Blakeslee, J. H., U.S. Government Printing Office, Washington, DC,
795–834, https://doi.org/10.2973/dsdp.proc.90.1986, 1986.
John, E. H., P. N. Pearson, H. K. Coxall, H. Birch, B. S. Wade, and Foster G. L.:
Warm ocean processes and carbon cycling in the Eocene,
Philos. T. R. Soc. A,
371, 20130099, https://doi.org/10.1098/rsta.2013.0099, 2013.
Jonkers, L. and Kučera, M.: Global analysis of seasonality in the shell flux of extant planktonic Foraminifera, Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, 2015.
Kennett, J. P. and Exon, N. F.:
Palaeoceanographic Evolution of the Tasmanian Seaway and its Climatic Implications,
in: The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change between Australia and Antarctica,
edited by: Exon, N. F., Kennett, J. P., and Malone, M. J.,
Geophysical Monograph,
151, 345–367, 2004.
Kennett, J. P. and Srinivasan, M. S.:
Neogene Planktonic Foraminifera,
Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania, 1–265 pp, 1983.
Kennett, J. P. and Von der Borch, C. C.:
Southwest Pacific Cenozoic Paleoceanography,
in: Initial Reports of the Deep Sea Drilling Project, 90,
edited by: Blakeslee, J. H.,
U.S. Government Printing Office, Washington, DC, 1493–1517, https://doi.org/10.2973/dsdp.proc.90.1986, 1986.
Kim, S.-T. and O'Neil, J. R.:
Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates,
Geochim. Cosmochim. Ac.,
61, 3461–3475, 1997.
Kucera, M. and Schonfeld, J.:
The origin of modern oceanic foraminiferal faunas and Neogene climate change,
in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies,
edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N.,
The Micropalaeontological Society, Special Publications, The Geological Society, London, 409–425, 2007.
Lam, A. R. and Leckie, R. M.:
Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean,
Micropaleontology,
66, 177–268, 2020a.
Lam, A. R. and Leckie, R. M.:
Subtropical to temperate late Neogene to Quaternary planktic foraminiferal biostratigraphy across the Kuroshio Current Extension, Shatsky Rise, northwest Pacific Ocean,
PLoS ONE,
15, e0234351, https://doi.org/10.1371/journal.pone.0234351, 2020b.
Lazarus, D. B., Hilbrecht, H., Spencer-Cervato, C., and Thierstein, H.:
Sympatric speciation and phyletic change in Globorotalia truncatulinoides,
Paleobiology,
21, 28–51, 1995.
Lowery, C. M., Bown, P. R., Fraass, A. J., and Hull, P. M.:
Ecological Response of Plankton to Environmental Change: Thresholds for Extinction,
Annu. Rev. Earth Pl. Sc.,
48, 403–429, 2020.
Matsui, H., Nishi, H., Takashima, R., Kuroyanagi, A., Ikehara, M., Takayanagi, H., and Iryu, Y.:
Changes in the depth habitat of the Oligocene planktic foraminifera (Dentoglobigerina venezuelana) induced by thermocline deepening in the eastern equatorial Pacific,
Paleoceanography,
31, 715–731, 2016.
Majewski, W.:
Planktonic Foraminiferal Response to Middle Miocene Cooling in the Southern Ocean (ODP Site 747, Kerguelen Plateau),
Acta Palaeontol. Pol.,
55, 541–560, 2010.
Meilland, J., Siccha, M., Weinkauf, M. F. G., Jonkers, L., Morard, R., Baranowski, U., Baumeister, A., Bertlich, J., Brummer, G. J., Debray, P., Fritz-Endres, T., Groeneveld, J., Magerl, L., Munz, P., Rillo, M. C., Schmidt, C., Takagi, H., Theara, G., and Kucera, M.:
Highly replicated sampling reveals no diurnal vertical migration but stable species-specific vertical habitats in planktonic foraminifera,
J. Plankton Res.,
41, 127–141, 2019.
Minoletti, F., Gardin, S., Nicot, E., Renard, M., and Spezzaferri, S.: Mise au point d'un protocole expérimental de separation granulométrique d'assemblages de nannofossiles calcaires; applications paleoécologiques et geochimiques, B. Soc. Geol. France, 172, 437–446, 2001.
Morard, R., Quillevere, F., Douady, C. J., De Vargas, C., De Garidel-Thoron, T., and Escarguel, G.:
Worldwide Genotyping in the Planktonic Foraminifer Globoconella inflata: Implications for Life History and Paleoceanography,
PLoS ONE,
6, e26665, https://doi.org/10.1371/journal.pone.0026665, 2011.
Norris, R. D.:
Pelagic Species Diversity, Biogeography, and Evolution,
Paleobiology,
26, 236–258, 2000.
Norris, R. D. and Corfield, R. M.:
Evolutionary ecology of Globorotalia (Globoconella) (planktic foraminifera),
Mar. Micropaleontol.,
23, 121–145, 1994.
Norris, R. D. and de Vargas, C.:
Evolution all at sea,
Nature,
405, 23–24, 2000.
Norris, R. D., Corfield, R. M., and Cartlidge, J. E.:
Evolution of depth ecology in the planktic foraminifera lineage Globorotalia (Fohsella),
Geology,
21, 975–978, 1993.
Norris, R. D., Kirtland Turner, S., Hull, P. M., and Ridgwell, A.:
Marine Ecosystem Responses to Cenozoic Global Change,
Science,
341, 492–498, 2013.
Pearson, P. N.:
Planktonic foraminifer biostratigraphy and the development of pelagic caps on guyots in the marshall islands group,
in: Proceedings of the Ocean Drilling Program, Scientific Results,
edited by: Haggerty, J. A., Premoli Silva, I., Rack, R., and McNutt, M. K.,
College Station, TX (Ocean Drilling Program), 144, 21–59, 1995.
Pearson, P. N. and Coxall, K. H.:
Origin of the Eocene planktonic foraminifer Hantkenina by gradual evolution,
Palaeontology,
57, 243–267, 2012.
Pearson, P. N., Shackleton, N. J., and Hall, M. A.:
Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina uniriersa (planktonic foraminifera),
J. Geol. Soc. London,
154, 295–302, 1997.
Poulton, A. J., Holligan, P. M., Charalampopoulou, A., and Adey, T. R.: Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: New perspectives from the Atlantic meridional transect (AMT) programme, Prog. Oceanogr., 158, 150–170, 2017.
Quinn, P. S., Cortés, M. Y., and Bollmann, J.:
Morphological variation in the deep ocean-dwelling coccolithophore Florisphaera profunda (Haptophyta),
Eur. J. Phycol.,
40, 123–133, 2005.
Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., Krijgsman, W., Moore, T., Raine, I., Sardella, R., and Vernyhorova, Y. V.:
Chapter 29 – The Neogene Period,
in: Geologic Time Scale 2020,
edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.,
Elsevier, 1141–1215, https://doi.org/10.1016/C2020-1-02369-3, 2020.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017.
Ridgwell, A., Reinhard, C., van de Velde, S., Adloff, M., DomHu, Wilson, J., Ward, B., Vervoort, P., Monteiro, F., kirtlandster, and Li, M.: derpycode/cgenie.muffin: Boscolo-Galazzo et al. [2021] (Science) (v0.9.18), Zenodo [code], https://doi.org/10.5281/zenodo.4469673, 2021a.
Ridgwell, A., DomHu, Peterson, C., Ward, B., sjszas, evansmn, and Jones, R.: derpycode/muffindoc v0.9.18 (v0.9.18), Zenodo [code], https://doi.org/10.5281/zenodo.4469678, 2021b.
Schiebel, R. and Hemleben, C.:
Planktic Foraminifers in the Modern Ocean,
Springer-Verlag, Berlin Heidelberg, 2017.
Schneider, C. and Kennett, J.:
Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminiferal clade Globoconella,
Paleobiology,
22, 282–303, 1996.
Schneider, C. and Kennett, J.:
Segregation and speciation in the Neogene planktonic foraminiferal clade Globoconella,
Paleobiology,
25, 383–395, 1999.
Schueth, J. D. and Bralower, T. J.: The relationship between environmental change and the extinction of the nannoplankton Discoaster in the early Pleistocene, Paleoceanography, 30, 863–876, 2015.
Scott, G. H., Bishop, S., and Burt, B. J.:
Guide to some Neogene Globorotalids (Foraminiferida) from New Zealand,
New Zealand Geological Survey Paleontological Bulletin 61,
Lower Hutt, N.Z., New Zealand Geological Survey, 176 pp., ISBN 978-1-972192-18-4, 1986.
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and Lear, C. H.:
Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy,
Earth Planet. Sc. Lett.,
498, 362–376, 2018.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole, C. R., Morard, R., and Stalder, C.:
Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of the new genus Trilobatus,
PLoS One,
10, e0128108, https://doi.org/10.1371/journal.pone.0128108, 2015.
Stainbank, S., Kroon, D., Ruggeberg, A., Raddatz, J., de Leau, E. S., Zhang, M., and Spezzaferri, S.:
Controls on planktonic foraminifera apparent calcification depths for the northern equatorial Indian Ocean,
PLoS ONE,
14, e0222299, https://doi.org/10.1371/journal.pone.0222299, 2019.
Styzen, M. J.:
Cascading counts of nannofossil abundance,
J. Nannoplankton Res.,
19, 49, https://doi.org/10.1007/978-3-319-02330-4_4-1, 1997.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C. L., and Hull, P. M.:
Miocene evolution of North Atlantic Sea surface temperature,
Paleoceanography and Paleoclimatology,
35, e2019PA003748, https://doi.org/10.1029/2019PA003748, 2020.
Tangunan, D. N., Baumann, K. H., Just, J., LeVay, L. J., Barker, S., Brentegani, L., De Vleeschouwer, D., Hall, I. R., Hemming, S., and Norris, R.: The last 1 million years of the extinct genus Discoaster: Plio–Pleistocene environment and productivity at Site U1476 (Mozambique Channel), Palaeogeogr. Palaeocl., 505, 187–197, 2018.
Wade, B. S., Pearson, P. N. Berggren, W. A., and Palike, H.:
Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale,
Earth-Sci. Rev.,
104, 111–142, 2011.
Wade, B. S., Pearson, P. N., Olsson, R. K., Fraass, A. Leckie, R. M., and Hemleben, Ch.:
Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene Dentoglobigerina and Globoquadrina,
in: Atlas of Oligocene Planktonic Foraminifera,
edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A.,
Cushman Foundation for Foraminiferal Research, Special Publication, No. 46, p. 331–384, ISBN electronic: 978-19-7016-841-9, 2018.
Wei, K. Y.:
Stratophenetic tracing of phylogeny using SIMCA pattern recognition technique: A case study of the late Neogene planktic foraminifera Globoconella clade,
Paleobiology,
20, 52–65, 1994.
Wei, K. Y. and Kennett, J. P.:
Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations,
Paleoceanography,
1, 67–84, 1986.
Wei, K. Y. and Kennett, J.:
Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella,
Paleobiology,
14, 345–363, 1988.
Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H., and Kucera, M.:
Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protest,
Mol. Ecol.,
21, 4063–4073, 2012.
Woodhouse, A., Jackson, S. L., Jamieson, R. A., Newton, R. J., Sexton, P. F., and Aze, T.:
Adaptive ecological niche migration does not negate extinction susceptibility,
Sci. Rep.-UK,
11, 15411, https://doi.org/10.1038/s41598-021-94140-5, 2021.
Young, J. and Bown, P.: Higher classification of calcareous nannofossils, J. Nannoplankton Res., 19, 1–56, 1997.
Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A., Jordan, R. W., Kleijne, A., van Niel, B. E., Romein, A. J. T., and Von Salis, K.:
Guidelines for coccolith and calcareous nannofossil terminology,
Palaeontology,
40, 875–912, 1997.
Zhang, Y. G., Pagani, M., and Liu, Z.:
A 12-Million-Year Temperature History of the Tropical Pacific Ocean,
Science,
344, 84–87, 2014.
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we...
Altmetrics
Final-revised paper
Preprint