Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
School of Biological, Earth and
Environmental Sciences, University of New South Wales, Kensington, 2033 NSW, Australia
School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2309 NSW, Australia
William Leggat
School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2309 NSW, Australia
Jessica L. Bergman
School of Biological, Earth and
Environmental Sciences, University of New South Wales, Kensington, 2033 NSW, Australia
Alexander Fordyce
School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2309 NSW, Australia
Charlotte Page
School of Biological, Earth and
Environmental Sciences, University of New South Wales, Kensington, 2033 NSW, Australia
Thomas Mesaglio
School of Biological, Earth and
Environmental Sciences, University of New South Wales, Kensington, 2033 NSW, Australia
Tracy D. Ainsworth
School of Biological, Earth and
Environmental Sciences, University of New South Wales, Kensington, 2033 NSW, Australia
Cited articles
Anon: Halimeda composition and biomass along the Great Barrier Reef,
AIMS metadata, aims.gov.au, available at:
https://apps.aims.gov.au/metadata/view/7f7e70a0-c3db-472c-90d4-1ae243d8180b
(last access: 1 September 2020), 2020.
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and
Hoegh-Guldberg, O.: Ocean acidification causes bleaching and productivity
loss in coral reef builders, P. Natl. Acad. Sci. USA, 105,
17442–17446, https://doi.org/10.1073/pnas.0804478105, 2008.
Albright, R., Benthuysen, J., Cantin, N., Caldeira, K., and Anthony, K.:
Coral reef metabolism and carbon chemistry dynamics of a coral reef flat,
Geophys. Res. Lett., 42, 3980–3988, https://doi.org/10.1002/2015GL063488, 2015.
Bahr, K. D., Jokiel, P. L., and Rodgers, K. S.: Influence of solar irradiance
on underwater temperature recorded by temperature loggers on coral reefs,
Limnol. Oceanogr.-Meth., 14, 338–342, https://doi.org/10.1002/lom3.10093, 2016.
Baird, A. H. and Marshall, P. A.: Mortality, growth and reproduction in
scleractinian corals following bleaching on the Great Barrier Reef, Mar.
Ecol. Prog. Ser., 237, 133–141, https://doi.org/10.3354/meps237133, 2002.
Bove, C. B., Umbanhowar, J., and Castillo, K. D.: Meta-Analysis Reveals
Reduced Coral Calcification Under Projected Ocean Warming but Not Under
Acidification Across the Caribbean Sea, Front. Mar. Sci., 7, p. 127,
https://doi.org/10.3389/fmars.2020.00127, 2020.
Brown, B. E. and Suharsono: Damage and recovery of coral reefs affected by El Niño related seawater warming in the Thousand Islands, Indonesia, Coral Reefs, 8, 163–170, https://doi.org/10.1007/BF00265007, 1990.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.:
Toward a metabolic theory of ecology, John Wiley & Sons, Ltd., Ecology, 85, 1771–1789,
2004.
Bruno, J. F. and Selig, E. R.: Regional decline of coral cover in the
Indo-Pacific: Timing, extent, and subregional comparisons, edited by:
Freckleton, R., PLoS One, 2, e711, https://doi.org/10.1371/journal.pone.0000711, 2007.
Campbell, J. E., Fisch, J., Langdon, C., and Paul, V. J.: Increased
temperature mitigates the effects of ocean acidification in calcified green
algae (Halimeda spp.), Coral Reefs, 35, 357–368,
https://doi.org/10.1007/s00338-015-1377-9, 2016.
Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M., and McCorkle,
D. C.: Ocean warming slows coral growth in the central Red Sea, Science, 329, 322–325, https://doi.org/10.1126/science.1190182, 2010.
Castillo, K. D., Ries, J. B., Bruno, J. F., and Westfield, I. T.: The
reef-building coral siderastrea siderea exhibits parabolic responses to
ocean acidification and warming, Proc. R. Soc. B, 281,
1–9, https://doi.org/10.1098/rspb.2014.1856, 2014.
Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C.: The
responses of eight coral reef calcifiers to increasing partial pressure of
CO2 do not exhibit a tipping point, Limnol. Oceanogr., 58, 388–398,
https://doi.org/10.4319/lo.2013.58.1.0388, 2013.
Comeau, S., Carpenter, R. C., Lantz, C. A., and Edmunds, P. J.:
Parameterization of the response of calcification to temperature and pCO2 in
the coral Acropora pulchra and the alga Lithophyllum kotschyanum, Coral
Reefs, 35, 929–939, https://doi.org/10.1007/s00338-016-1425-0, 2016.
Cornwall, C. E., Diaz-Pulido, G., and Comeau, S.: Impacts of ocean warming on
coralline algae: Knowledge gaps and key recommendations for future research,
Front. Mar. Sci., 6, p. 186, https://doi.org/10.3389/fmars.2019.00186, 2019.
Courtney, T. A., De Carlo, E. H., Page, H. N., Bahr, K. D., Barro, A.,
Howins, N., Tabata, R., Terlouw, G., Rodgers, K. S., and Andersson, A. J.:
Recovery of reef-scale calcification following a bleaching event in
Kāne'ohe Bay, Hawai`i, Limnol. Oceanogr. Lett., 3, 1–9,
https://doi.org/10.1002/lol2.10056, 2018.
DeCarlo, T. M., Cohen, A. L., Wong, G. T. F., Shiah, F. K., Lentz, S. J.,
Davis, K. A., Shamberger, K. E. F., and Lohmann, P.: Community production
modulates coral reef pH and the sensitivity of ecosystem calcification to
ocean acidification, J. Geophys. Res.-Ocean., 122, 745–761,
https://doi.org/10.1002/2016JC012326, 2017.
Díaz-Castañeda, V., Erin Cox, T., Gazeau, F., Fitzer, S., Delille,
J., Alliouane, S., and Gattuso, J. P.: Ocean acidification affects calcareous
tube growth in adults and reared offspring of serpulid polychaetes, J. Exp.
Biol., 222, 13, https://doi.org/10.1242/jeb.196543, 2019.
Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline,
D. I., Weeks, S., Evans, R. D., Williamson, D. H., and Hoegh-Guldberg, O.:
Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and
Coral Recovery, edited by: Sandin, S. A., PLoS One, 4, e5239,
https://doi.org/10.1371/journal.pone.0005239, 2009.
Diaz-Pulido, G., Nash, M. C., Anthony, K. R. N., Bender, D., Opdyke, B. N.,
Reyes-Nivia, C., and Troitzsch, U.: Greenhouse conditions induce
mineralogical changes and dolomite accumulation in coralline algae on
tropical reefs, Nat. Commun., 5, 1–9, https://doi.org/10.1038/ncomms4310, 2014.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, North Pacific Marine Science Organization,
2007.
D’Olivo, J. P. and McCulloch, M. T.: Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress, Sci. Rep., 7, 1–15, https://doi.org/10.1038/s41598-017-02306-x, 2017.
Dove, S. G., Kline, D. I., Pantos, O., Angly, F. E., Tyson, G. W., and
Hoegh-Guldberg, O.: Future reef decalcification under a business-as-usual
CO2 emission scenario, P. Natl. Acad. Sci. USA, 110,
15342–15347, https://doi.org/10.1073/pnas.1302701110, 2013.
Edinger, E. N., Limmon, G. V., Jompa, J., Widjatmoko, W., Heikoop, J. M., and
Risk, M. J.: Normal coral growth rates on dying reefs: Are coral growth
rates good indicators of reef health?, Mar. Pollut. Bull., 40, 404–425,
https://doi.org/10.1016/S0025-326X(99)00237-4, 2000.
Edmunds, P. J.: The effect of sub-lethal increases in temperature on the
growth and population trajectories of three scleractinian corals on the
southern Great Barrier Reef, Oecologia, 146, 350–364,
https://doi.org/10.1007/s00442-005-0210-5, 2005.
Evenhuis, C., Lenton, A., Cantin, N. E., and Lough, J. M.: Modelling coral
calcification accounting for the impacts of coral bleaching and ocean
acidification, Biogeosciences, 12, 2607–2630,
https://doi.org/10.5194/bg-12-2607-2015, 2015.
Eyre, B. D., Cyronak, T., Drupp, P., De Carlo, E. H., Sachs, J. P., and
Andersson, A. J.: Coral reefs will transition to net dissolving before end
of century, Science, 359, 908–911, https://doi.org/10.1126/science.aao1118,
2018.
Gattuso, J. P., Frankignoulle, M., Bourge, I., Romaine, S., and Buddemeier,
R. W.: Effect of calcium carbonate saturation of seawater on coral
calcification, Glob. Planet. Change, 18, 37–46,
https://doi.org/10.1016/S0921-8181(98)00035-6, 1998.
Gierz, S., Ainsworth, T. D., and Leggat, W.: Diverse symbiont bleaching
responses are evident from 2-degree heating week bleaching conditions as
thermal stress intensifies in coral, Mar. Freshw. Res., 71, 1149,
https://doi.org/10.1071/MF19220, 2020.
Grigg, R. W. and Dollar, S. J.: Natural and anthropogenic disturbance on coral
reefs, Coral Reefs, 25, 439–452, 1990.
Gutiérrez-Isaza, N., Espinoza-Avalos, J., León-Tejera, H. P., and
González-Solís, D.: Endolithic community composition of Orbicella
faveolata (Scleractinia) underneath the interface between coral tissue and
turf algae, Coral Reefs, 34, 625–630, https://doi.org/10.1007/s00338-015-1276-0,
2015.
Harney, J. N. and Fletcher, C. H.: A Budget of Carbonate Framework and
Sediment Production, Kailua Bay, Oahu, Hawai'i, J. Sediment. Res., 73,
856–868, https://doi.org/10.1306/051503730856, 2007.
Heron, S. F., Maynard, J. A., Van Hooidonk, R., and Eakin, C. M.: Warming
Trends and Bleaching Stress of the World's Coral Reefs 1985–2012, Sci. Rep.,
6, 1–14, https://doi.org/10.1038/srep38402, 2016.
Hughes, T., Szmant, A. M., Steneck, R., Carpenter, R., and Miller, S.: Algal
blooms on coral reefs: What are the causes?, Limnol. Oceanogr., 44,
1583–1586, https://doi.org/10.4319/lo.1999.44.6.1583, 1999.
Kayanne, H., Hata, H., Kudo, S., Yamano, H., Watanabe, A., Ikeda, Y.,
Nozaki, K., Kato, K., Negishi, A., and Saito, H.: Seasonal and
bleaching-induced changes in coral reef metabolism and CO2 flux,
Global Biogeochem. Cy., 19, 1–11, https://doi.org/10.1029/2004GB002400, 2005.
Klueter, A., Loh, W., Hoegh-Guldberg, O., and Dove, S.: Physiological and
genetic properties of two fluorescent colour morphs of the coral Montipora
digitata, Symbiosis, 42, 123–134, available at:
https://www.cabdirect.org/cabdirect/abstract/20073143496 (last access: 23
September 2020), 2006.
Kornder, N. A., Riegl, B. M., and Figueiredo, J.: Thresholds and drivers of
coral calcification responses to climate change, Glob. Change Biol., 24,
5084–5095, https://doi.org/10.1111/gcb.14431, 2018.
Krause, S., Liebetrau, V., Nehrke, G., Damm, T., Büsse, S., Leipe, T.,
Vogts, A., Gorb, S. N., and Eisenhauer, A.: Endolithic Algae Affect Modern
Coral Carbonate Morphology and Chemistry, Front. Earth Sci., 7, p. 304,
https://doi.org/10.3389/feart.2019.00304, 2019.
Langdon, C., Gattuso, J.-P., Andersson, A., Océanologique, O., and
Pierre, U.: Part 3: Measurements of CO2 – sensitive processes
Measurements of calcifi cation and dissolution of benthic organisms and
communities, in: Guide to best practICES for ocean acidification research and data reporting, Luxembourg, Publications Office of the European Union, 213–232,
2010.
Lantz, C. A., Schulz, K. G., Stoltenberg, L., and Eyre, B. D.: The short-term
combined effects of temperature and organic matter enrichment on permeable
coral reef carbonate sediment metabolism and dissolution, Biogeosciences,
14, 5377–5391, https://doi.org/10.5194/bg-14-5377-2017, 2017.
Lantz, C., Leggat, W., Bergman, J., Fordyce, A., Page, C., Mesaglio, T., Ainsworth, T.: Will daytime community calcification reflect reef accretion on future, degraded coral reefs?, figshare [data set], https://doi.org/10.6084/m9.figshare.18733019.v1, 2022.
Liu, G., Strong, A. E., Skirving, W. J., and Arzayus, L. F.: Overview of NOAA
Coral Reef Watch Program's near-real-time satellite global coral bleaching
monitoring activities, NOAA, available at:
http://coralreefwatch.noaa.gov/ (last access: 15 April 2020), 2006.
Lough, J. M. and Barnes, D. J.: Environmental controls on growth of the
massive coral Porites, J. Exp. Mar. Bio. Ecol., 245, 225–243,
https://doi.org/10.1016/S0022-0981(99)00168-9, 2000.
McMahon, A., Santos, I. R., Schulz, K. G., Scott, A., Silverman, J., Davis,
K. L., and Maher, D. T.: Coral Reef Calcification and Production After the
2016 Bleaching Event at Lizard Island, Great Barrier Reef, J. Geophys. Res.-Ocean., 124, 4003–4016, https://doi.org/10.1029/2018JC014698, 2019.
McNeil, B. I., Matear, R. J., and Barnes, D. J.: Coral reef calcification and
climate change: The effect of ocean warming, Geophys. Res. Lett., 31,
1–4, https://doi.org/10.1029/2004GL021541, 2004.
Orte, M. R. de, Koweek, D. A., Cyronak, T., Takeshita, Y., Griffin, A.,
Wolfe, K., Szmant, A., Whitehead, R., Albright, R., and Caldeira, K.:
Unexpected role of communities colonizing dead coral substrate in the
calcification of coral reefs, Limnol. Oceanogr., 66, 1793–1803,
https://doi.org/10.1002/LNO.11722, 2021.
Pisapia, C., Hochberg, E. J., and Carpenter, R.: Multi-Decadal Change in
Reef-Scale Production and Calcification Associated With Recent Disturbances
on a Lizard Island Reef Flat, Front. Mar. Sci., 6, p. 575,
https://doi.org/10.3389/fmars.2019.00575, 2019.
Reyes-Nivia, C., Diaz-Pulido, G., Kline, D., Guldberg, O. H., and Dove, S.:
Ocean acidification and warming scenarios increase microbioerosion of coral
skeletons, Glob. Change Biol., 19, 1919–1929, https://doi.org/10.1111/gcb.12158,
2013.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit
mixed responses to CO2-induced ocean acidification, Geology, 37,
1131–1134, https://doi.org/10.1130/G30210A.1, 2009.
Roelfsema, C., Kovacs, E., Ortiz, J. C., Wolff, N. H., Callaghan, D.,
Wettle, M., Ronan, M., Hamylton, S. M., Mumby, P. J., and Phinn, S.: Coral
reef habitat mapping: A combination of object-based image analysis and
ecological modelling, Remote Sens. Environ., 208, 27–41,
https://doi.org/10.1016/j.rse.2018.02.005, 2018.
Stimson, J. and Kinzie, R. A.: The temporal pattern and rate of release of
zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under
nitrogen-enrichment and control conditions, J. Exp. Mar. Bio. Ecol., 153,
63–74, https://doi.org/10.1016/S0022-0981(05)80006-1, 1991.
Stoltenberg, L., Schulz, K. G., Lantz, C. A., Cyronak, T., and Eyre, B. D.:
Late afternoon seasonal transition to dissolution in a coral reef: An early
warning of a net dissolving ecosystem?, Geophys. Res. Lett., 48, e2020GL090811,
https://doi.org/10.1029/2020gl090811, 2021.
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., and van Woesik, R.:
A global analysis of coral bleaching over the past two decades, Nat.
Commun., 10, 1–5, https://doi.org/10.1038/s41467-019-09238-2, 2019.
Tribollet, A., Langdon, C., Golubic, S., and Atkinson, M.: Endolithic
microflora are major primary producers in dead carbonate substrates of
Hawaiian coral reefs, J. Phycol., 42, 292–303,
https://doi.org/10.1111/j.1529-8817.2006.00198.x, 2006.
Unsworth, R. K. F., Collier, C. J., Henderson, G. M., and McKenzie, L. J.:
Tropical seagrass meadows modify seawater carbon chemistry: Implications for
coral reefs impacted by ocean acidification, Environ. Res. Lett., 7, 024026,
https://doi.org/10.1088/1748-9326/7/2/024026, 2012.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.:
Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing, Ann.
Rev. Mar. Sci., 1, 213–244, https://doi.org/10.1146/annurev.marine.010908.163742,
2009.
Warner, M. E., Fitt, W. K., and Schmidt, G. W.: Damage to photosystem II in
symbiotic dinoflagellates: A determinant of coral bleaching, P. Natl.
Acad. Sci. USA, 96, 8007–8012, https://doi.org/10.1073/pnas.96.14.8007, 1999.
Wei, Z., Mo, J., Huang, R., Hu, Q., Long, C., Ding, D., Yang, F., and Long,
L.: Physiological performance of three calcifying green macroalgae Halimeda
species in response to altered seawater temperatures, Acta Oceanol. Sin.,
39, 89–100, https://doi.org/10.1007/s13131-019-1471-3, 2020.
Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G., and Montoya, J.
M.: Warming alters the metabolic balance of ecosystems, Philos. T. R.
Soc. B, 365, 2117–2126, https://doi.org/10.1098/rstb.2010.0038, 2010.
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study...
Altmetrics
Final-revised paper
Preprint