Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-3011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Philipp Maurischat
CORRESPONDING AUTHOR
Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
Institute of Soil Science, Leibniz University Hannover, 30419 Hanover, Germany
Michael Seidel
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
Thorsten Dittmar
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129 Oldenburg, Germany
Georg Guggenberger
Institute of Soil Science, Leibniz University Hannover, 30419 Hanover, Germany
Related authors
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, and Georg Guggenberger
SOIL, 10, 139–150, https://doi.org/10.5194/soil-10-139-2024, https://doi.org/10.5194/soil-10-139-2024, 2024
Short summary
Short summary
Cover crops have substantial impacts on soil properties, but so far it is not clear how long a legacy effect of cover cropping will remain in the soil. We found that cover crops attenuate negative effects on soil structure that come from soil cultivation. The combination of plants with different litter qualities and rhizodeposits in biodiverse cover crop mixtures can improve the positive effects of cover cropping on soil structure amelioration.
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Preprint withdrawn
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Norman Gentsch, Diana Heuermann, Jens Boy, Steffen Schierding, Nicolaus von Wirén, Dörte Schweneker, Ulf Feuerstein, Robin Kümmerer, Bernhard Bauer, and Georg Guggenberger
SOIL, 8, 269–281, https://doi.org/10.5194/soil-8-269-2022, https://doi.org/10.5194/soil-8-269-2022, 2022
Short summary
Short summary
This study focuses on the potential of catch crops as monocultures or mixtures to improve the soil water management and reduction of soil N leaching losses. All catch crop treatments preserved soil water for the main crop and their potential can be optimized by selecting suitable species and mixture compositions. Mixtures can compensate for the individual weaknesses of monocultures in N cycling by minimizing leaching losses and maximizing the N transfer to the main crop.
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020, https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
Short summary
We studied the contribution of litter-derived carbon (C) in the formation of subsoil organic matter (OM). Soil core sampling, 13C field labeling, density fractionation, and water extractions were used to track its contribution to different functional OM fractions down to the deep subsoil. We show that while migrating down the soil profile, OM undergoes a sequence of repeated sorption, microbial processing, and desorption. However, the contribution of litter-derived C to subsoil OM is small.
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Mar Benavides, Katyanne M. Shoemaker, Pia H. Moisander, Jutta Niggemann, Thorsten Dittmar, Solange Duhamel, Olivier Grosso, Mireille Pujo-Pay, Sandra Hélias-Nunige, Alain Fumenia, and Sophie Bonnet
Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, https://doi.org/10.5194/bg-15-3107-2018, 2018
Short summary
Short summary
We measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. N2 fixation rates were low but consistently detected across all depths and stations. A distinct diazotrophic phylotype dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW) and suggesting that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure.
Norbert Bischoff, Robert Mikutta, Olga Shibistova, Reiner Dohrmann, Daniel Herdtle, Lukas Gerhard, Franziska Fritzsche, Alexander Puzanov, Marina Silanteva, Anna Grebennikova, and Georg Guggenberger
Biogeosciences, 15, 13–29, https://doi.org/10.5194/bg-15-13-2018, https://doi.org/10.5194/bg-15-13-2018, 2018
Short summary
Short summary
This study suggests that soil moisture significantly affects soil organic matter dynamics along a salinity gradient in semiarid steppe soils. The covarying moisture gradient along the salinity gradient serves as an explanatory factor for (i) the increasing soil organic carbon (OC) stocks with increasing salinity, (ii) the constant proportion and stability of particulate OC along the transect, and (iii) a similar fungi : bacteria ratio in the topsoils along the studied gradient.
Norbert Bischoff, Robert Mikutta, Olga Shibistova, Alexander Puzanov, Marina Silanteva, Anna Grebennikova, Roland Fuß, and Georg Guggenberger
Biogeosciences, 14, 2627–2640, https://doi.org/10.5194/bg-14-2627-2017, https://doi.org/10.5194/bg-14-2627-2017, 2017
Short summary
Short summary
This study set out to determine the quantity of organic carbon (OC) which is protected from microbial decomposition in macro-aggregates of Siberian steppe soils under different land use. Our results imply that the quantity of macro-aggregate protected OC is smaller than in similar steppe ecosystems like the North American prairies. We conclude that the tillage-induced breakdown of macro-aggregates after grassland to arable land conversion has not reduced the OC contents in the studied soils.
Zhenke Zhu, Guanjun Zeng, Tida Ge, Yajun Hu, Chengli Tong, Olga Shibistova, Xinhua He, Juan Wang, Georg Guggenberger, and Jinshui Wu
Biogeosciences, 13, 4481–4489, https://doi.org/10.5194/bg-13-4481-2016, https://doi.org/10.5194/bg-13-4481-2016, 2016
Short summary
Short summary
The main contribution of our study is our finding that rhizodeposits and microbe-assimilated carbon contribute significantly to the sequestration of carbon substrates in rice paddy soils. This contribution is theoretically and practically relevant because few studies have investigated the effects of different carbon substrates on the mineralization of native soil organic carbon and our findings have immediate applications for improving the fertility of paddy soils and mitigating global warming.
H. Y. Liu, J. G. Zhou, J. Shen, Y. Y. Li, Y. Li, T. D. Ge, G. Guggenberger, and J. Wu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-211, https://doi.org/10.5194/bg-2016-211, 2016
Revised manuscript not accepted
Short summary
Short summary
We studied the spatial distribution of soil C, N, and P (carbon, nitrogen, and phosphorus) stoichiometry of the ecosystems in a subtropical catchment, and found that the stoichiometry was shaped in relatively narrow ranges in agricultural uses, and its spatial variations with topography were remarkably reduced. Thus, our findings demonstrate that intensive agriculture can change the spatial distributions of soil C, N, and P and the associated stoichiometry in a hilly subtropical catchment.
N. Gentsch, R. Mikutta, R. J. E. Alves, J. Barta, P. Čapek, A. Gittel, G. Hugelius, P. Kuhry, N. Lashchinskiy, J. Palmtag, A. Richter, H. Šantrůčková, J. Schnecker, O. Shibistova, T. Urich, B. Wild, and G. Guggenberger
Biogeosciences, 12, 4525–4542, https://doi.org/10.5194/bg-12-4525-2015, https://doi.org/10.5194/bg-12-4525-2015, 2015
W. Babel, T. Biermann, H. Coners, E. Falge, E. Seeber, J. Ingrisch, P.-M. Schleuß, T. Gerken, J. Leonbacher, T. Leipold, S. Willinghöfer, K. Schützenmeister, O. Shibistova, L. Becker, S. Hafner, S. Spielvogel, X. Li, X. Xu, Y. Sun, L. Zhang, Y. Yang, Y. Ma, K. Wesche, H.-F. Graf, C. Leuschner, G. Guggenberger, Y. Kuzyakov, G. Miehe, and T. Foken
Biogeosciences, 11, 6633–6656, https://doi.org/10.5194/bg-11-6633-2014, https://doi.org/10.5194/bg-11-6633-2014, 2014
M. Schrumpf, K. Kaiser, G. Guggenberger, T. Persson, I. Kögel-Knabner, and E.-D. Schulze
Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013, https://doi.org/10.5194/bg-10-1675-2013, 2013
Related subject area
Biogeochemistry: Rivers & Streams
Molecular-level characterization of supraglacial dissolved and water-extractable organic matter along a hydrological flow path in a Greenland Ice Sheet micro-catchment
Seasonal and spatial pattern of dissolved organic matter biodegradation and photodegradation in boreal humic waters
The role of nitrogen and iron biogeochemical cycles in the production and export of dissolved organic matter in agricultural headwater catchments
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Temporal dynamics and environmental controls of carbon dioxide and methane fluxes measured by the eddy covariance method over a boreal river
Seasonal particulate organic carbon dynamics of the Kolyma River tributaries, Siberia
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Shifts in organic matter character and microbial community structure from glacial headwaters to downstream reaches in Canadian Rocky Mountain rivers
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Physical and stoichiometric controls on stream respiration in a headwater stream
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
Biogeosciences, 22, 41–53, https://doi.org/10.5194/bg-22-41-2025, https://doi.org/10.5194/bg-22-41-2025, 2025
Short summary
Short summary
This study provides the first evidence for biogeochemical cycling of supraglacial dissolved organic matter (DOM) in meltwater flowing through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microbes and solar radiation to alter the DOM in glacial meltwaters. This is important as supraglacial meltwaters deliver DOM to downstream aquatic environments.
Artem V. Chupakov, Natalia V. Neverova, Anna A. Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, Taissia Ya. Vorobyeva, and Oleg S. Pokrovsky
Biogeosciences, 21, 5725–5743, https://doi.org/10.5194/bg-21-5725-2024, https://doi.org/10.5194/bg-21-5725-2024, 2024
Short summary
Short summary
In the boreal humic waters of a forest lake and bog, the rate of dissolved organic matter photodegradation is 4 times higher than that of biodegradation. However, given the shallow, light-penetrating layer, the biodegradation provides the largest contribution to CO2 emissions from water surfaces. Trace metals were partially removed (1–10 %) during photodegradation and biodegradation via precipitation of Fe(III) hydroxides after destabilization of organoferric colloids and organic complexes.
Thibault Lambert, Rémi Dupas, and Patrick Durand
Biogeosciences, 21, 4533–4547, https://doi.org/10.5194/bg-21-4533-2024, https://doi.org/10.5194/bg-21-4533-2024, 2024
Short summary
Short summary
This study investigates dissolved organic carbon (DOC) export in headwater catchments. Results show small links between DOC, nitrates, and the iron cycle throughout the year, calling into question our current conceptualization of DOC export at the catchment scale. Indeed, this study evidences that the winter period, referred as a non-productive period in our current conceptual model, acts as an active period for DOC production in riparian soils and DOC export toward stream waters.
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Aki Vähä, Timo Vesala, Sofya Guseva, Anders Lindroth, Andreas Lorke, Sally MacIntyre, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2024-1644, https://doi.org/10.5194/egusphere-2024-1644, 2024
Short summary
Short summary
Boreal rivers are significant sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere but the controls of these emissions are uncertain. We measured four months of CO2 and CH4 exchange between a regulated boreal river and the atmosphere with eddy covariance. We found statistical relationships between the gas exchange and several environmental variables, the most important of which were dissolved CO2 partial pressure in water, wind speed, and water temperature.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Hayley F. Drapeau, Suzanne E. Tank, Maria Cavaco, Jessica A. Serbu, Vincent St.Louis, and Maya P. Bhatia
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-121, https://doi.org/10.5194/bg-2023-121, 2023
Revised manuscript accepted for BG
Short summary
Short summary
From glacial headwaters to 100 km downstream, we found clear organic matter gradients in Canadian Rocky Mountain rivers. In contrast, microbial communities exhibited overall cohesion, indicating that species dispersal may be an over-riding control on community dynamics in these connected rivers. Identification of glacial-specific microbes suggest that glaciers seed headwater microbial communities; these findings show the importance of glacial waters and microbiomes in changing mountain systems.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316, https://doi.org/10.5194/bg-20-2301-2023, https://doi.org/10.5194/bg-20-2301-2023, 2023
Short summary
Short summary
Climate change is affecting mountain ecosystems intensely, including the loss of glaciers and the uphill migration of plants. How these changes will affect the streams draining these landscapes is unclear. We sampled streams across a gradient of glacier and vegetation cover in Switzerland and found glacier loss reduced the carbon dioxide sink from weathering, while vegetation cover increased dissolved organic carbon in the stream. These changes are important to consider for mountains globally.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Cited articles
Adams, H. E., Crump, B. C., and Kling, G. W.:
Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams, Environ. Microbiol., 12, 1319–1333, https://doi.org/10.1111/j.1462-2920.2010.02176.x, 2010.
Adnan, M., Kang, S., Zhang, G., Saifullah, M., Anjum, M. N., and Ali, A. F.:
Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model, Water, 11, 1383, https://doi.org/10.3390/w11071383, 2019a.
Adnan, M., Kang, S. C., Zhang, G. S., Anjum, M. N., Zaman, M., and Zhang, Y. Q.:
Evaluation of SWAT Model performance on glaciated and non-glaciated subbasins of Nam Co Lake, Southern Tibetan Plateau, China, J. Mt. Sci., 16, 1075–1097, https://doi.org/10.1007/s11629-018-5070-7, 2019b.
Anderson, M. J.: Distance-based tests for homogeneity of multivariate dispersions, Biometrics, 62, 245–253, https://doi.org/10.1111/j.1541-0420.2005.00440.x, 2006.
Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R., and Sattler, B.:
High microbial activity on glaciers: importance to the global carbon cycle, Glob. Change Biol., 15, 955–960, https://doi.org/10.1111/j.1365-2486.2008.01758.x, 2009.
Anslan, S., Azizi Rad, M., Buckel, J., Echeverria Galindo, P., Kai, J., Kang, W., Keys, L., Maurischat, P., Nieberding, F., Reinosch, E., Tang, H., Tran, T. V., Wang, Y., and Schwalb, A.:
Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)?, Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, 2020.
Asmala, E., Autio, R., Kaartokallio, H., Stedmon, C. A., and Thomas, D. N.:
Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: effects of predegradation and inorganic nutrients, Aquat. Sci., 76, 451–63, 2014.
Bandyopadhyay, J.:
Securing the Himalayas as the Water Tower of Asia: An Environmental Perspective, Asia Policy, 16, 45–50, https://doi.org/10.1353/asp.2013.0042, 2013.
Bai, J., Ouyang, H., Xiao, R., Gao, J., Gao, H., Cui, B., and Huang L.:
Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai – Tibet Plateau, China, Soil Res., 48, 730–736, https://doi.org/10.1071/SR09171, 2010.
Benner, R., Benitez-Nelson, B., Kaiser, K., and Amon, R. M. W.: Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean, Geophys. Res. Lett., 31, https://doi.org/10.1029/2003GL019251, 2004.
Birnbaum, Z. W.:
On a use of the Mann-Whitney Statistic, in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability: Held at the Statistical Laboratory, Berkeley, CA, 26–31 December 1954, edited by: Neyman J., University of California Press, Berkeley, CA, 13–18, 1956.
Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C.:
A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009, The Cryosphere, 4, 419–433, https://doi.org/10.5194/tc-4-419-2010, 2010.
Bortz, J. and Schuster, C.:
Statistik für Human- und Sozialwissenschaftler: Limitierte Sonderausgabe, 7th edn., Springer, Berlin, Heidelberg, ISBN 978-3-642-12769-4, 2010.
Connolly, C. T., Cardenas, M. B., Burkart, G. A., Spencer, R. G. M., and McClelland, J. W.:
Groundwater as a major source of dissolved organic matter to Arctic coastal waters, Nat. Commun., 11, 1479, https://doi.org/10.1038/s41467-020-15250-8, 2020.
D'Andrilli, J., Junker, J. R., Smith, H. J., Scholl, E. A., and Foreman, C. M.:
DOM composition alters ecosystem function during microbial processing of isolated sources, Biogeochemistry, 142, 281–298, https://doi.org/10.1007/s10533-018-00534-5, 2019.
Dexter, E., Rollwagen-Bollens, G., and Bollens, S. M.:
The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling, Limnol. Oceanogr.-Meth., 16, 434–443, https://doi.org/10.1002/lom3.10257, 2018.
Dittmar, T. and Kattner, G.:
The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review, Mar. Chem., 83, 3–4, 2003.
Dittmar, T., Koch, B., Hertkorn, N., and Kattner, G.:
A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater, Limnol. Oceanogr.-Meth., 6, 203–235, https://doi.org/10.4319/lom.2008.6.230, 2008.
Dixon, P.: VEGAN, a package of R functions for community ecology, J. Veget. Sci., 14, 927–930, https://doi.org/10.1111/j.1654-1103.2003.tb02228.x, 2003.
Du, Z., Wang, X., Xiang, J., Wu, Y., Zhang, B., Yan, Y., Xiaoke, Z., and Yanjiang, C.:
Yak dung pat fragmentation affects its carbon and nitrogen leaching in Northern Tibet, China, Agr. Ecosyst. Environ., 310, 107301, https://doi.org/10.1016/j.agee.2021.107301, 2021.
Eklöf, K., Brömssen, C. von, Amvrosiadi, N., Fölster, J., Wallin, M. B., and Bishop, K.: Brownification on hold: What traditional analyses miss in extended surface water records, Water Res., 203, 117544, https://doi.org/10.1016/j.watres.2021.117544, 2021.
Faith, D. P., Minchin, P. R., and Belbin, L.: Compositional dissimilarity as a robust measure of ecological distance, Vegetatio, 69, 57–68, https://doi.org/10.1007/BF00038687, 1987.
Fellman, J. B., Hood, E., and Spencer, R. G. M.:
Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review, Limnol. Oceanogr., 55, 2452–2462, https://doi.org/10.4319/lo.2010.55.6.2452, 2010.
Flerus, R., Lechtenfeld, O. J., Koch, B. P., McCallister, S. L., Schmitt-Kopplin, P., Benner, R., Kaiser, K., and Kattner, G.:
A molecular perspective on the ageing of marine dissolved organic matter, Biogeosciences, 9, 1935–1955, https://doi.org/10.5194/bg-9-1935-2012, 2012.
Gao, J.:
Wetland and Its Degradation in the Yellow River Source Zone, in: Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone, edited by: Brierley, G., Li, X., Cullum, C., and Gao, J., Springer Geography, Springer, Cham, https://doi.org/10.1007/978-3-319-30475-5_10, 2016.
Goldberg, S. J., Ball, G. I., Allen, B. C., Schladow, S. G., Simpson, A. J., Masoom, H., Soong, R., Graven, H. D., and Aluwihare, L. I.:
Refractory dissolved organic nitrogen accumulation in high-elevation lakes, Nat. Commun., 6, 6347, https://doi.org/10.1038/ncomms7347, 2015.
Goodman, K. J., Baker, M. A., and Wurtsbaugh, W. A.:
Lakes as buffers of stream dissolved organic matter (DOM) variability: Temporal patterns of DOM characteristics in mountain stream-lake systems, J. Geophys. Res., 116, G00N02, https://doi.org/10.1029/2011JG001709, 2011.
Green, N. W., Perdue, E. M., Aiken, G. R., Butler, K. D., Chen, H., Dittmar, T., Niggemann, J., and Stubbins, A.:
An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter, Mar. Chem., 161, 14–19, https://doi.org/10.1016/j.marchem.2014.01.012, 2014.
Green, N. W., McInnis, D., Hertkorn, N., Maurice, P. A., and Perdue, E. M.:
Suwannee River Natural Organic Matter: Isolation of the 2R101N Reference Sample by Reverse Osmosis, Environ. Eng. Sci., 32, 38–44, https://doi.org/10.1089/ees.2014.0284, 2015.
Guo, L. and Macdonald, R. W.:
Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases, Global Biogeochem. Cy., 20, GB2011, https://doi.org/10.1029/2005GB002593, 2006.
Harms, T. K., Edmonds, J. W., Genet, H., Creed, I. F., Aldred, D., Balser, A., and Jones, J. B.:
Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient, J. Geophys. Res.-Biogeo., 121, 350–369, 2016.
Harris, R. B.:
Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes, J. Arid Environ., 74, 1–12, https://doi.org/10.1016/j.jaridenv.2009.06.014, 2010.
Hawkes, J. A., D'Andrilli, J., Agar, J. N., Barrow, M. P., Berg, S. M., Catalán, N., Chen, H., Chu, R. K., Cole, R. B., Dittmar, T., Gavard, R., Gleixner, G., Hatcher, P. G., He, C., Hess, N. J., Hutchins, R. H. S., Ijaz, A., Jones, H. E., Kew, W., Khaksari, M., Palacio Lozano, D. C., Lv, J., Mazzoleni, L. R., Noriega‐Ortega, B. E., Osterholz, H., Radoman, N., Remucal, C. K., Schmitt, N. D., Schum, S. K., Shi, Q., Simon, C., Singer, G., Sleighter, R. L., Stubbins, A., Thomas, M. J., Tolic, N., Zhang, S., Zito, P., and Podgorski, D. C.:
An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?m Limnol. Oceanogr.-Meth., 18, 235–258, https://doi.org/10.1002/lom3.10364, 2020.
Helms, J. R., Mao, J., Stubbins, A., Schmidt-Rohr, K., Spencer, R.G. M., Hernes, P. J., and Mopper, K.:
Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching, Aquat. Sci., 76, 353–373, https://doi.org/10.1007/s00027-014-0340-0, 2014.
Hodson, A., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M., Priscu, J., Laybourn-Parry, J., and Sattler, B.:
GLACIAL ECOSYSTEMS, Ecol. Monogr., 78, 41–67, https://doi.org/10.1890/07-0187.1, 2008.
Hoikkala, L., Kortelainen, P., Soinne, H., and Kuosa, H.:
Dissolved organic matter in the Baltic Sea, J. Marine Syst., 142, 47–61, https://doi.org/10.1016/j.jmarsys.2014.10.005, 2015.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D’Amore, D., and Scott, D.:
Glaciers as a source of ancient and labile organic matter to the marine environment, Nature, 462, 1044–1047, https://doi.org/10.1038/nature08580, 2009.
Hopping, K. A., Knapp, A. K., Dorji, T., and Klein, J. A.:
Warming and land use change concurrently erode ecosystem services in Tibet, Glob. Change Biol., 24, 5534–5548, https://doi.org/10.1111/gcb.14417, 2018.
Hu, E., He, H., Su, Y., Jeppesen, E., and Liu Z.:
Use of Multi-Carbon Sources by Zooplankton in an Oligotrophic Lake in the Tibetan Plateau, Water, 8, 565, https://doi.org/10.3390/w8120565, 2016.
Jolliffe, I. T.:
Principal Component Analysis, Springer-Verlag New York Inc, New York, NY, https://doi.org/10.1007/b98835, 2002.
Keil, A., Berking, J., Mügler, I., Schütt, B., Schwalb, A., and Steeb, P.:
Hydrological and geomorphological basin and catchment characteristics of Lake Nam Co, South-Central Tibet, Quatern. Int., 218, 118–130, https://doi.org/10.1016/j.quaint.2009.02.022, 2010.
Kaiser, K., Miehe, G., Barthelmes, A., Ehrmann, O., Scharf, A., Schult, M., Schlütz, F., Adamczyk, S., and Frenzel, B.:
Turf-bearing topsoils on the central Tibetan Plateau, China: Pedology, botany, geochronology, CATENA, 73, 300–311, 2008.
Koch, B. P. and Dittmar, T.:
From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter, Rapid Commun. Mass Sp., 20, 926–932, https://doi.org/10.1002/rcm.2386, 2006.
Koch, B. P. and Dittmar, T.:
From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Sp., 30, 250–250, https://doi.org/10.1002/rcm.7433, 2016.
Lechtenfeld, O. J., Kattner, G., Flerus, R., McCallister, S. L., Schmitt-Kopplin, P., and Koch, B. P.:
Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean, Geochim. Cosmochim. Ac., 126, 321–37, 2014.
Leyva, D., Jaffe, R., and Fernandez-Lima, F.:
Structural Characterization of Dissolved Organic Matter at the Chemical Formula Level Using TIMS-FT-ICR MS/MS, Anal. Chem., 92, 11960–11966, https://doi.org/10.1021/acs.analchem.0c02347, 2020.
Li, Y., Xiao, K., Du, J., Han, B., Liu, Q., Niu, H., Ren, W., Tan, J., and Wang, Y.:
Spectroscopic fingerprints to track the fate of aquatic organic matter along an alpine headstream on the Tibetan Plateau, Sci. Total Environ., 792, 148376, https://doi.org/10.1016/j.scitotenv.2021.148376, 2021.
Liu, S., Schleuss, P.-M., and Kuzyakov, Y.:
Carbon and Nitrogen Losses from Soil Depend on Degradation of Tibetan Kobresia Pastures, Land Degrad. Dev., 28, 1253–62, 2017.
Liu, S., He, Z., Tang, Z., Liu, L., Hou, J., Li, T., Zhang, Y., Shi, Q., Giesy, J. P., and Wu, F.:
Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis, Sci. Total Environ., 703, 134764, https://doi.org/10.1016/j.scitotenv.2019.134764, 2020.
Lu, Y., Li, X., Mesfioui, R., Bauer, J. E., Chambers, R. M., Canuel, E. A., and Hatcher, P.G.:
Use of ESI-FTICR-MS to Characterize Dissolved Organic Matter in Headwater Streams Draining Forest-Dominated and Pasture-Dominated Watersheds, PLOS ONE, 10, e0145639, https://doi.org/10.1371/journal.pone.0145639, 2015.
Ma, W., Alhassan, A. R. M., Wang, Y., Li, G., Wang, H., and Zhao, J.:
Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai–Tibet Plateau of North-West China, Nutr. Cycl. Agroecosyst., 112, 335–354, https://doi.org/10.1007/s10705-018-9950-6, 2018.
Mann, B. F., Chen, H., Herndon, E. M., Chu, R. K., Tolic, N., Portier, E. F., Roy Chowdhury, T., Robinson, E. W., Callister, S. J., Wullschleger, S. D., Graham, D. E., Liang, L., and Gu, B.:
Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry, PLOS ONE, 10, e0130557, https://doi.org/10.1371/journal.pone.0130557, 2015
Maurischat, P., Lehnert, L., Zerres, V. H. D., Tran, T. V., Kalbitz, K., Rinnan, Å., Li, X. G., Dorji, T., and Guggenberger, G.:
The glacial–terrestrial–fluvial pathway: A multiparametrical analysis of spatiotemporal dissolved organic matter variation in three catchments of Lake Nam Co, Tibetan Plateau, Sci. Total Environ., 838, 156542, https://doi.org/10.1016/j.scitotenv.2022.156542, 2022a.
Maurischat, P., Seidel, M., Dittmar, T., and Guggenberger, G.: Dataset – Dissolved organic matter sources and processing in the endorheic Lake Nam Co catchment (Tibet) as assessed by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), Zenodo [data set], https://doi.org/10.5281/zenodo.5816680, 2022b.
Medeiros, P. M., Seidel, M., Niggemann, J., Spencer, R. G. M., Hernes, P. J., Yager, P. L., Miller, W. L., Dittmar, T., and Hansell, D. A.:
A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean, Global Biogeochem. Cy., 30, 689–699, https://doi.org/10.1002/2015GB005320, 2016.
Merder, J., Freund, J. A., Feudel, U., Hansen, C. T., Hawkes, J. A., Jacob, B., Klaproth, K., Niggemann, J., Noriega-Ortega, B. E., Osterholz, H., Rossel, P. E., Seidel, M., Singer, G., Stubbins, A., Waska, H., and Dittmar, T.:
ICBM-OCEAN: Processing Ultrahigh-Resolution Mass Spectrometry Data of Complex Molecular Mixtures, Anal. Chem. 92, 6832–6838, https://doi.org/10.1021/acs.analchem.9b05659, 2020.
Miehe, G., Miehe, S., Kaiser, K., Jianquan, L., and Zhao, X.:
Status and Dynamics of the Kobresia pygmaea Ecosystem on the Tibetan Plateau, AMBIO, 37, 272–279, https://doi.org/10.1579/0044-7447(2008)37[272:SADOTK]2.0.CO;2, 2008.
Miehe, G., Schleuss, P.-M., Seeber, E., Babel, W., Biermann, T., Braendle, M., Chen, F., Coners, H., Foken, T., Gerken, T., Graf, H.-F., Guggenberger, G., Hafner, S., Holzapfel, M., Ingrisch, J., Kuzyakov, Y., Lai, Z., Lehnert, L., Leuschner, C., Li, X., Liu, J., Liu, S., Ma, Y., Miehe, S., Mosbrugger, V., Noltie, H. J., Schmidt, J., Spielvogel, S., Unteregelsbacher, S., Wang, Y., Willinghöfer, S., Xu, X., Yang, Y., Zhang, S., Opgenoorth, L., and Wesche, K.:
The Kobresia pygmaea ecosystem of the Tibetan highlands – Origin, functioning and degradation of the world's largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci. Total Environ., 648, 754–71, https://doi.org/10.1016/j.scitotenv.2018.08.164, 2019.
Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.:
Winter daytime warming and shift in summer monsoon increase plant cover and net CO 2 uptake in a central Tibetan alpine steppe ecosystem, J. Geophys. Res.-Biogeo., 126, e2021JG006441, https://doi.org/10.1029/2021JG006441, 2021.
Osterholz, H., Turner, S., Alakangas, L. J., Tullborg, E.-L., Dittmar, T., Kalinowski, B. E., and Dopson, M.:
Terrigenous dissolved organic matter persists in the energy-limited deep groundwaters of the Fennoscandian Shield, Nat. Commun., 13, 4837, https://doi.org/10.1038/s41467-022-32457-z, 2022.
Pohlabeln, A. M., Gomez-Saez, G. V., Noriega-Ortega, B. E., and Dittmar, T.:
Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter, Frontiers in Marine Science, 4, 364, https://doi.org/10.3389/fmars.2017.00364, 2017.
Qiu, J.:
China: The third pole, Nature, 454, 393–396, https://doi.org/10.1038/454393a, 2008.
Qu, B., Zhang, Y., Kang, S., and Sillanpää, M.:
Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ., 649, 571–81, 2019.
R Core Team:
R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.
Riedel, T. and Dittmar, T.:
A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem., 86, 8376–8382, https://doi.org/10.1021/ac501946m, 2014.
Roebuck, J. A., Seidel, M., Dittmar, T., and Jaffé, R.:
Land Use Controls on the Spatial Variability of Dissolved Black Carbon in a Subtropical Watershed, Environ. Sci. Technol., 52, 8104–8114, https://doi.org/10.1021/acs.est.8b00190, 2018.
Roebuck, J. A., Seidel, M., Dittmar, T., and Jaffé, R.:
Controls of Land Use and the River Continuum Concept on Dissolved Organic Matter Composition in an Anthropogenically Disturbed Subtropical Watershed. Environ. Sci. Technol., 54, 198–206, https://doi.org/10.1021/acs.est.9b04605, 2020.
Ruediger, S.:
Siberian River Run-Off in the Kara Sea: Characterisation, Quantification, Variability and Environmental Significance, Elsevier, Amsterdam, ISBN13 978-0444513656, 2003.
Sankar, M. S., Dash, P., Lu, Y., Mercer, A. E., Turnage, G., Shoemaker, C. M., Chen, S., and Moorhead, R. J.:
Land use and land cover control on the spatial variation of dissolved organic matter across 41 lakes in Mississippi, USA, Hydrobiologia, 847, 1159–1176, 2020.
šantl-Temkiv, T., Finster, K., Dittmar, T., Hansen, B. M., Thyrhaug, R., Nielsen, N. W., and Karlson, U. G.:
Hailstones: a window into the microbial and chemical inventory of a storm cloud, PLOS ONE, 8, e53550, https://doi.org/10.1371/journal.pone.0053550, 2013.
Seidel, M., Yager, P. L., Ward, N. D., Carpenter, E. J., Gomes, H. R., Krusche, A. V., Richey, J. E., Dittmar, T., and Medeiros, P. M.:
Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum, Mar. Chem., 177, 218–231, https://doi.org/10.1016/j.marchem.2015.06.019, 2015.
Seidel, M., Manecki, M., Herlemann, D. P. R., Deutsch, B., Schulz-Bull, D., Jürgens, K., and Dittmar, T.:
Composition and Transformation of Dissolved Organic Matter in the Baltic Sea, Front. Earth Sci., 5, G01004, https://doi.org/10.3389/feart.2017.00031, 2017.
Seifert, A.-G., Roth, V.-N., Dittmar, T., Gleixner, G., Breuer, L., Houska, T., and Marxsen, J.:
Comparing molecular composition of dissolved organic matter in soil and stream water: Influence of land use and chemical characteristics. Sci. Total Environ., 571, 145–152, https://doi.org/10.1016/j.scitotenv.2016.07.033, 2016.
Singer, G. A., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P., Dittmar, T., and Battin, T. J.:
Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate, Nat. Geosci., 5, 710–714, https://doi.org/10.1038/ngeo1581, 2012.
Spencer, R. G. M., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K., Aufdenkampe, A. K., Dyda, R. Y., Mwamba, V. L., Mangangu, A. M., Wabakanghanzi, J. N., and Six, J.:
Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River, J. Geophys. Res., 114, G03010, https://doi.org/10.1029/2009JG000968, 2009.
Spencer, R. G. M., Guo, W., Raymond, P. A., Dittmar, T., Hood, E., Fellman, J., and Stubbins, A.:
Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau, Geochim. Cosmochim. Ac., 142, 64–74, https://doi.org/10.1016/j.gca.2014.08.006, 2014.
Takeuchi, N.: Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite, Ann. Glaciol., 34, 409–414, https://doi.org/10.3189/172756402781817743, 2002.
Telling, J., Anesio, A. M., Tranter, M., Irvine-Fynn, T., Hodson, A., Butler, C., and Wadham, J.:
Nitrogen fixation on Arctic glaciers, Svalbard, J. Geophys. Res., 116, G03039, https://doi.org/10.1029/2010JG001632, 2011.
Thukral, A. K.:
A review on measurement of Alpha diversity in biology, Int. J. Contemp. Microbiol., 54, 1–10, https://doi.org/10.5958/2395-146X.2017.00001.1, 2017.
Tran, T. V., Buckel, J., Maurischat, P., Tang, H., Yu, Z., Hördt, A., Guggenberger, G., Zhang, F., Schwalb, A., and Graf, T.:
Delineation of a Quaternary Aquifer Using Integrated Hydrogeological and Geophysical Estimation of Hydraulic Conductivity on the Tibetan Plateau, China, Water, 13, 1412, https://doi.org/10.3390/w13101412, 2021.
van Dongen, B. E., Zencak, Z., and Gustafsson, Ö.:
Differential transport and degradation of bulk organic carbon and specific terrestrial biomarkers in the surface waters of a sub-arctic brackish bay mixing zone, Mar. Chem., 112, 203–214, https://doi.org/10.1016/j.marchem.2008.08.002, 2008.
Vähätalo, A. V. and Wetzel, R. G.:
Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures, Mar. Chem., 89, 313–326, 2004.
Vega, E. N., Bastidas Navarro, M., and Modenutti, B.: Goose and hare faeces as a source of nutrients and dissolved organic matter for bacterial communities in the newly formed proglacial lake Ventisquero Negro (Patagonia, Argentina), Hydrobiologia, 847, 1479–1489, https://doi.org/10.1007/s10750-020-04202-4, 2020.
Wang, H., Zhou, X., Wan, C., Fu, H., Zhang, F., and Ren, J.:
Eco-environmental degradation in the northeastern margin of the Qinghai–Tibetan Plateau and comprehensive ecological protection planning, Environ. Geol., 55, 1135–1147, 2008.
Wang, J., Huang, L., Ju, J., Daut, G., Ma, Q., Zhu, L., Haberzettl, T., Baade, J., Mäusbacher, R., Hamilton, A., Graves, K., Olsthoorn, J., and Laval, B. E.:
Seasonal stratification of a deep, high-altitude, dimictic lake: Nam Co, Tibetan Plateau, J. Hydrol., 584, 124668, https://doi.org/10.1016/j.jhydrol.2020.124668, 2020.
Wang, L., Zhang, L., Cai, W.-J., Wang, B., and Yu, Z.:
Consumption of atmospheric CO2 via chemical weathering in the Yellow River basin: The Qinghai–Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River, Chem. Geol., 430, 34–44, 2016.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.:
Welcome to the Tidyverse, JOSS, 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wilson, H. F. and Xenopoulos, M. A.:
Effects of agricultural land use on the composition of fluvial dissolved organic matter, Nat. Geosci., 2, 37–41, https://doi.org/10.1038/ngeo391, 2009.
Wu, X., Zhang, W., Liu, G., Yang, X., Hu, P., Chen, T., Zhang, G., and Li, Z.:
Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China, Ann. Glaciol., 7, 14038, https://doi.org/10.1088/1748-9326/7/1/014038, 2012.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.:
Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau, W. K.-M., Lettenmaier, D., Mosbrugger, V., Zhang, R., Xu, B., Dozier, J., Gillespie, T., Gu, Y., Kang, S., Piao, S., Sugimoto, S., Ueno, K., Wang, L., Wang, W., Zhang, F., Sheng, Y., Guo, W., Ailikun, Yang, X., Ma, Y., Shen, S. S. P., Su, Z., Chen, F., Liang, S., Liu, Y., Singh, V. P., Yang, K., Yang, D., Zhao, X., Qian, Y., Zhang, Y., and Li, Q.: Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis, B. Am. Meteorol. Soc., 100, 423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019.
Yoo, H.-J., Choi, Y.-J., and Cho, K.:
Characterization of Natural Organic Matter in Spring Water, Mass Spectrometry Letters, 11, 90–94, https://doi.org/10.5478/MSL.2020.11.4.90, 2020.
Yu, Z., Wu, G., Li, F., Chen, M., Vi Tran, T., Liu, X., and Gao, S.:
Glaciation enhanced chemical weathering in a cold glacial catchment, western Nyaingêntanglha Mountains, central Tibetan Plateau, J. Hydrol., 597, 126197, https://doi.org/10.1016/j.jhydrol.2021.126197, 2021.
Zhang, Y., Wang, G., and Wang, Y.:
Changes in alpine wetland ecosystems of the Qinghai–Tibetan plateau from 1967 to 2004, Environ. Monit. Assess., 180, 189–199, 2011.
Zhang, Z., Qin, J., Sun, H., Yang, J., and Liu, Y.:
Spatiotemporal Dynamics of Dissolved Organic Carbon and Freshwater Browning in the Zoige Alpine Wetland, Northeastern Qinghai–Tibetan Plateau, Water, 12, 2453, https://doi.org/10.3390/w12092453, 2020.
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this...
Altmetrics
Final-revised paper
Preprint