Articles | Volume 21, issue 22
https://doi.org/10.5194/bg-21-5143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-5143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the impact of forest management and climate on a peatland under Scots pine monoculture using a multidisciplinary approach
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Mariusz Lamentowicz
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Piotr Kołaczek
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Daria Wochal
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Paweł Matulewski
Anthropocene Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Dominik Kopeć
Department of Biogeography, Paleoecology and Nature Conservation, University of Lodz, Łódź, Poland
MGGP Aero Sp. z o. o., Tarnów, Poland
Martyna Wietecha
MGGP Aero Sp. z o. o., Tarnów, Poland
Doctoral School of Exact and Natural Sciences, University of Lodz, Łódź, Poland
Dominika Jaster
Anthropocene Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Katarzyna Marcisz
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Related authors
No articles found.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Michal Hájek, Borja Jiménez-Alfaro, Ondřej Hájek, Lisa Brancaleoni, Marco Cantonati, Michele Carbognani, Anita Dedić, Daniel Dítě, Renato Gerdol, Petra Hájková, Veronika Horsáková, Florian Jansen, Jasmina Kamberović, Jutta Kapfer, Tiina Hilkka Maria Kolari, Mariusz Lamentowicz, Predrag Lazarević, Ermin Mašić, Jesper Erenskjold Moeslund, Aaron Pérez-Haase, Tomáš Peterka, Alessandro Petraglia, Eulàlia Pladevall-Izard, Zuzana Plesková, Stefano Segadelli, Yuliya Semeniuk, Patrícia Singh, Anna Šímová, Eva Šmerdová, Teemu Tahvanainen, Marcello Tomaselli, Yuliya Vystavna, Claudia Biţă-Nicolae, and Michal Horsák
Earth Syst. Sci. Data, 13, 1089–1105, https://doi.org/10.5194/essd-13-1089-2021, https://doi.org/10.5194/essd-13-1089-2021, 2021
Short summary
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Gustaf Granath, Håkan Rydin, Jennifer L. Baltzer, Fia Bengtsson, Nicholas Boncek, Luca Bragazza, Zhao-Jun Bu, Simon J. M. Caporn, Ellen Dorrepaal, Olga Galanina, Mariusz Gałka, Anna Ganeva, David P. Gillikin, Irina Goia, Nadezhda Goncharova, Michal Hájek, Akira Haraguchi, Lorna I. Harris, Elyn Humphreys, Martin Jiroušek, Katarzyna Kajukało, Edgar Karofeld, Natalia G. Koronatova, Natalia P. Kosykh, Mariusz Lamentowicz, Elena Lapshina, Juul Limpens, Maiju Linkosalmi, Jin-Ze Ma, Marguerite Mauritz, Tariq M. Munir, Susan M. Natali, Rayna Natcheva, Maria Noskova, Richard J. Payne, Kyle Pilkington, Sean Robinson, Bjorn J. M. Robroek, Line Rochefort, David Singer, Hans K. Stenøien, Eeva-Stiina Tuittila, Kai Vellak, Anouk Verheyden, James Michael Waddington, and Steven K. Rice
Biogeosciences, 15, 5189–5202, https://doi.org/10.5194/bg-15-5189-2018, https://doi.org/10.5194/bg-15-5189-2018, 2018
Short summary
Short summary
Peat constitutes a long-term archive for climate reconstruction by using the isotopic composition of carbon and oxygen. We analysed isotopes in two peat moss species across North America and Eurasia. Peat (moss tissue) isotope composition was predicted by soil moisture and isotopic composition of the rainwater but differed between species. Our results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
Related subject area
Paleobiogeoscience: Terrestrial Record
The optimum fire window: applying the fire–productivity hypothesis to Jurassic climate states
Late Quaternary palaeoenvironmental evolution and sea level oscillation of Santa Catarina Island (southern Brazil)
Diatom responses and geochemical feedbacks to environmental changes at Lake Rauchuagytgyn (Far East Russian Arctic)
The emergence of the tropical rainforest biome in the Cretaceous
Faded landscape: unravelling peat initiation and lateral expansion at one of northwest Europe's largest bog remnants
Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses
Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record
The transformation of the forest steppe in the lower Danube Plain of southeastern Europe: 6000 years of vegetation and land use dynamics
Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies
Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe
Stable isotope signatures of Holocene syngenetic permafrost trace seabird presence in the Thule District (NW Greenland)
Preliminary evaluation of the potential of tree-ring cellulose content as a novel supplementary proxy in dendroclimatology
A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): interim results from the SCOPSCO deep drilling project
Yedoma Ice Complex of the Buor Khaya Peninsula (southern Laptev Sea)
Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)
First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania)
Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka
Age–depth model of the past 630 kyr for Lake Ohrid (FYROM/Albania) based on cyclostratigraphic analysis of downhole gamma ray data
Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska
A 22 570-year record of vegetational and climatic change from Wenhai Lake in the Hengduan Mountains biodiversity hotspot, Yunnan, Southwest China
Comment on "Possible source of ancient carbon in phytolith concentrates from harvested grasses" by G. M. Santos et al. (2012)
Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance
Teuntje P. Hollaar, Claire M. Belcher, Micha Ruhl, Jean-François Deconinck, and Stephen P. Hesselbo
Biogeosciences, 21, 2795–2809, https://doi.org/10.5194/bg-21-2795-2024, https://doi.org/10.5194/bg-21-2795-2024, 2024
Short summary
Short summary
Fires are limited in year-round wet climates (tropical rainforests; too wet), and in year-round dry climates (deserts; no fuel). This concept, the intermediate-productivity gradient, explains the global pattern of fire activity. Here we test this concept for climate states of the Jurassic (~190 Myr ago). We find that the intermediate-productivity gradient also applies in the Jurassic despite the very different ecosystem assemblages, with fires most frequent at times of high seasonality.
Lidia A. Kuhn, Karin A. F. Zonneveld, Paulo A. Souza, and Rodrigo R. Cancelli
Biogeosciences, 20, 1843–1861, https://doi.org/10.5194/bg-20-1843-2023, https://doi.org/10.5194/bg-20-1843-2023, 2023
Short summary
Short summary
This study investigated changes in coastal ecosystems that reflect environmental changes over the past 6500 years on Brazil's largest oceanic island. This study was motivated by the need to understand the natural evolution of coastal areas to predict future changes. The results highlight the sensitivity of this ecosystem to changes caused by relative sea level variations. As such, it contributes to the debate about potential effects of current climate change induced by global sea level changes.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Matthew L. Trumper, Daniel Griffin, Sarah E. Hobbie, Ian M. Howard, David M. Nelson, Peter B. Reich, and Kendra K. McLauchlan
Biogeosciences, 17, 4509–4522, https://doi.org/10.5194/bg-17-4509-2020, https://doi.org/10.5194/bg-17-4509-2020, 2020
Short summary
Short summary
We developed century-scale records of wood nitrogen isotopes (δ15N) from 16 trees across a long-term savanna fire experiment. Results show similar long-term trajectories in three out of four burn treatments. Lack of evidence to support our hypotheses underscores the complexity of nitrogen dynamics inferred from wood δ15N. This is the first study to our knowledge to investigate multi-decadal effects of fire at different return intervals on wood δ15N, a potential proxy of nitrogen availability.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Sebastian Wetterich, Thomas A. Davidson, Anatoly Bobrov, Thomas Opel, Torben Windirsch, Kasper L. Johansen, Ivan González-Bergonzoni, Anders Mosbech, and Erik Jeppesen
Biogeosciences, 16, 4261–4275, https://doi.org/10.5194/bg-16-4261-2019, https://doi.org/10.5194/bg-16-4261-2019, 2019
Short summary
Short summary
The effects of seabird presence on permafrost peat evolution in NW Greenland were studied by tracing changes in stable C and N isotope composition along the path from bird sources into permafrost peat. The permafrost growth was triggered by organic matter and nutrient input since the neoglacial cooling and concurrent polynya establishment. The study deals with the complex response of biologic and permafrost dynamics to High Arctic climatic and oceanographic conditions of the Late Holocene.
Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 15, 1047–1064, https://doi.org/10.5194/bg-15-1047-2018, https://doi.org/10.5194/bg-15-1047-2018, 2018
Short summary
Short summary
Cellulose content (CC (%)) series from two high-Alpine species, Larix decidua Mill. (European larch, LADE) and Pinus cembra L. (Swiss stone pine, PICE) are investigated in modern wood samples and Holocene wood remains from the Early and mid-Holocene. Trends in modern and Holocene time series as well as climate–cellulose relationships for modern trees in the Alps show high potential for CC (%) to be established as novel supplementary proxy in dendroclimatology.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, and Ulrike Herzschuh
Biogeosciences, 14, 575–596, https://doi.org/10.5194/bg-14-575-2017, https://doi.org/10.5194/bg-14-575-2017, 2017
Short summary
Short summary
Organic matter stored in permafrost will start decomposing due to climate warming. To better understand its composition in ice-rich Yedoma, we analyzed ancient sedimentary DNA, pollen and non-pollen palynomorphs throughout an 18.9 m long permafrost core. The combination of both proxies allow an interpretation both of regional floristic changes and of the local environmental conditions at the time of deposition.
Niklas Leicher, Giovanni Zanchetta, Roberto Sulpizio, Biagio Giaccio, Bernd Wagner, Sebastien Nomade, Alexander Francke, and Paola Del Carlo
Biogeosciences, 13, 2151–2178, https://doi.org/10.5194/bg-13-2151-2016, https://doi.org/10.5194/bg-13-2151-2016, 2016
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
M. L. Chipman, V. Hudspith, P. E. Higuera, P. A. Duffy, R. Kelly, W. W. Oswald, and F. S. Hu
Biogeosciences, 12, 4017–4027, https://doi.org/10.5194/bg-12-4017-2015, https://doi.org/10.5194/bg-12-4017-2015, 2015
Short summary
Short summary
Tundra fires may have increased as a result of anthropogenic climate change. To evaluate this hypothesis in the context of natural variability, we reconstructed fire history of the late Quaternary in the Alaskan tundra. Fire-return intervals are spatially variable, ranging from 1648 to 6045 years at our sites. The rarity of historical fires implies that increased fire frequency may greatly alter the structure and function of tundra ecosystems.
Y. F. Yao, X. Y. Song, A. H. Wortley, S. Blackmore, and C. S. Li
Biogeosciences, 12, 1525–1535, https://doi.org/10.5194/bg-12-1525-2015, https://doi.org/10.5194/bg-12-1525-2015, 2015
L. A. Sullivan and J. F. Parr
Biogeosciences, 10, 977–980, https://doi.org/10.5194/bg-10-977-2013, https://doi.org/10.5194/bg-10-977-2013, 2013
G. Brügmann, J. Krause, T. C. Brachert, B. Stoll, U. Weis, O. Kullmer, I. Ssemmanda, and D. F. Mertz
Biogeosciences, 9, 4803–4817, https://doi.org/10.5194/bg-9-4803-2012, https://doi.org/10.5194/bg-9-4803-2012, 2012
Cited articles
Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O., van Leeuwen, J. F. N., Bigler, C., Connor, S. E., Gałka, M., La Mantia, T., Makhortykh, S., Svitavská-Svobodová, H., Vannière, B., and Tinner, W.: The sedimentary and remote-sensing reflection of biomass burning in Europe, Global Ecol. Biogeogr., 27, 199–212, https://doi.org/10.1111/geb.12682, 2018.
Amesbury, M. J., Swindles, G. T., Bobrov, A., Charman, D. J., Lamentowicz, M., Mallon, G., Mazei, Y., Mitchell, E. A. D., Payne, R. J., Roland, T. P., Turner, E. T., and Warner, B. G.: Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology, Quaternary Sci. Rev., 152, 132–151, https://doi.org/10.1016/j.quascirev.2016.09.024, 2016.
Anderberg, A.-L.: Atlas of seeds and small fruits of Northwest-European plant species with morphological descriptions. Part 4: Resedaceae – Umbelliferae, Risbergs Tryckeri AB, Uddevalla, 1994.
Anon: Regulation no. 64/97 of the Bydgoszcz Voivode of October 30, 1997, on the recognition as ecological sites of natural objects in the Bydgoszcz Voivodeship, 1997.
Baillie, M. G. L. and Pilcher, J.: A simple cross-dating program for tree-ring research, Tree-Ring Bull., 33, 7–14, 1973.
Bąk, M., Lamentowicz, M., Kołaczek, P., Wochal, D., Matulewski, P., Kopec, D., Wietecha, M., Jaster, D., and Marcisz, K.: Dataset for the paper: Assessing the impact of forest management and climate on a peatland under Scots pine monoculture using a multidisciplinary approach, Mendeley Data [data set], https://doi.org/10.17632/prdgmjcg69.3, 2024.
Ballesteros-Cánovas, J. A., Edvardsson, J., Corona, C., Mažeika, J., and Stoffel, M.: Estimation of recent peat accumulation with tree saplings, Progress in Physical Geography: Earth and Environment, 46, 515–529, https://doi.org/10.1177/03091333211073786, 2022.
Bandopadhyay, S., Rastogi, A., Rascher, U., Rademske, P., Schickling, A., Cogliati, S., Julitta, T., Mac Arthur, A., Hueni, A., Tomelleri, E., Celesti, M., Burkart, A., Stróżecki, M., Sakowska, K., Gąbka, M., Rosadziński, S., Sojka, M., Iordache, M.-D., Reusen, I., Van Der Tol, C., Damm, A., Schuettemeyer, D., and Juszczak, R.: Hyplant-Derived Sun-Induced Fluorescence – A New Opportunity to Disentangle Complex Vegetation Signals from Diverse Vegetation Types, Remote Sens.-Basel, 11, 1691, https://doi.org/10.3390/rs11141691, 2019.
Bandopadhyay, S., Rastogi, A., Cogliati, S., Rascher, U., Gąbka, M., and Juszczak, R.: Can Vegetation Indices Serve as Proxies for Potential Sun-Induced Fluorescence (SIF)? A Fuzzy Simulation Approach on Airborne Imaging Spectroscopy Data, Remote Sens.-Basel, 13, 2545, https://doi.org/10.3390/rs13132545, 2021.
Barabach, J.: The history of Lake Rzecin and its surroundings drawn on maps as a background to palaeoecological reconstruction, Limnological Review, 12, 103–114, https://www.mdpi.com/2300-7575/12/3/103, 2012.
Barabach, J.: Zapis zdarzeń katastrofalnych na obszarze Puszczy Noteckiej w osadach Torfowiska Rzecin, 2015.
Bauhus, J., Forrester, D. I., Gardiner, B., Jactel, H., Vallejo, R., and Pretzsch, H.: Ecological Stability of Mixed-Species Forests, in: Mixed-Species Forests, Springer, Berlin, Heidelberg, 337–382, https://doi.org/10.1007/978-3-662-54553-9_7, 2017.
Beaulne, J., Boucher, É., Garneau, M., and Magnan, G.: Paludification reduces black spruce growth rate but does not alter tree water use efficiency in Canadian boreal forested peatlands, For. Ecosyst., 8, 28, https://doi.org/10.1186/s40663-021-00307-x, 2021a.
Beaulne, J., Garneau, M., Magnan, G., and Boucher, É.: Peat deposits store more carbon than trees in forested peatlands of the boreal biome, Sci. Rep.-UK, 11, 2657, https://doi.org/10.1038/s41598-021-82004-x, 2021b.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1 km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Becker, M., Nieminen, T., and Gérémia, F.: Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2, Ann. Sci. Forest., 51, 477–492, https://doi.org/10.1051/forest:19940504, 1994.
Berggren, G.: Atlas of seeds and small fruits of Northwest-European plant species (Sweden, Norway, Denmark, East Fennoscandia and Iceland) with morphological descriptions. Part 2: Cyperaceae, Berlingska Boktryckeriet, Lund, 1969.
Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen analysis and pollen diagrams, in: Handbook of Holocene Palaeoecology and Palaeohydrology, edited by: Berglund, B. E., John Wiley & Sons, Chichester, 455–484, 1986.
Beug, H.-J.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Verlag Dr. Friedrich Pfeil, München, 2004.
Bhiry, N. and Filion, L.: Mid-Holocene Hemlock Decline in Eastern North America Linked with Phytophagous Insect Activity, Quaternary Res., 45, 312–320, https://doi.org/10.1006/qres.1996.0032, 1996.
Bienias, D.: Las i człowiek w Borach Tucholskich uwagi o bartnictwie i smolarstwie w Borach Tucholskich, in: Dziedzictwo techniczne Boro' w Tucholskich, edited by: Woźny, J., Przedsiębiorstwo Marketingowe LOGO, Bydgoszcz, 43–51, 2009.
Błaszkiewicz, M., Piotrowski, J. A., Brauer, A., Gierszewski, P., Kordowski, J., Kramkowski, M., Lamparski, P., Lorenz, S., Noryśkiewicz, A. M., Ott, F., Słowiński, M., and Tyszkowski, S.: Climatic and morphological controls on diachronous postglacial lake and river valley evolution in the area of Last Glaciation, northern Poland, Quaternary Sci. Rev., 109, 13–27, https://doi.org/10.1016/j.quascirev.2014.11.023, 2015.
Blockeel, T.: Straminergon stramineum, in: Mosses and Liverworts of Britain and Ireland a field guide, edited by: Atherton, I., Bosanquet, S., and Lawley, M., British Bryological Society, Plymouth, 720, 2010.
Blodau, C.: Carbon cycling in peatlands – A review of processes and controls, Environ. Rev., 10, 111–134, https://doi.org/10.1139/a02-004, 2002.
Boczoń, A. and Wróbel, M.: Wpływ suszy na pobór wody przez sosnę zwyczajną (Pinus sylvestris L.) o różnej pozycji w drzewostanie, Leśne Prace Badawcze, 76, 370–376, 2015.
Boczoń, A., Kowalska, A., and Gawryś, R.: Glebowo-wodne uwarunkowania prowadzenia gospodarki leśnej w perspektywie zmian klimatu, Sylwan, 161, 763–771, 2017.
Bojňanský, V. and Fargašová, A.: Atlas of seeds and fruits of central and east-european flora. The Carpathian Mountains Region, Springer, Dordrecht, 2007.
Booth, R. K.: Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration, J. Paleolimnol., 28, 329–348, 2002.
Booth, R. K., Lamentowicz, M., and Charman, D. J.: Preparation and analysis of testate amoebae in peatland paleoenvironmental studies, Mires Peat, 7, 1–7, 2010.
Booth, T. H.: Eucalypt plantations and climate change, Forest Ecol. Manag., 301, 28–34, https://doi.org/10.1016/j.foreco.2012.04.004, 2013.
Boulc'h, P.-N., Caullireau, E., Faucher, E., Gouerou, M., Guérin, A., Miray, R., and Couée, I.: Abiotic stress signalling in extremophile land plants, J. Exp. Bot., 71, 5771–5785, https://doi.org/10.1093/jxb/eraa336, 2020.
Broda, J.: Sosna w czasach historycznych, in: Biologia sosny zwyczajnej, edited by: Białobok, S., Boratyński, A., and Bugała, W., Instytut Dendrologii PAN, Poznań-Kórnik, 17–31, 1993.
Broda, J.: Historia leśnictwa w Polsce, Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Poznań, 20–70, 2000.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci. Rev., 27, 42–60, 2008.
Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Cedro, A.: Próba oceny oddziaływania temperatury powietrza i opadów atmosferycznych na przyrost radialny sosny zwyczajnej (Pinus sylvestris) na Pomorzu Zachodnim, Annales Universitatis Mariae Curie-Skłodowska. Sectio B, Geographia, Geologia, Mineralogia et Petrographia, 55/56, 105–112, 2001.
Cedro, A. and Lamentowicz, M.: Contrasting responses to environmental changes by pine (Pinus sylvestris L.) growing on peat and mineral soil: An example from a Polish Baltic bog, Dendrochronologia, 29, 211–217, https://doi.org/10.1016/j.dendro.2010.12.004, 2011.
Chambers, F. M., Beilman, D. W., and Yu, Z.: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics, Mires Peat, 7, 1–10, 2010.
Chapin, F. S., Matson, P. A., and Vitousek, P.: Managing and Sustaining Ecosystems, in: Principles of Terrestrial Ecosystem Ecology, edited by: Chapin, F. S., Springer, 447, 2012.
Cherek, E.: Ochotnicza Straż Pożarna w Kasparusie 1932–2007, Kasparus, 2007.
Clark, J. S.: Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling, Quaternary Res., 30, 67–80, https://doi.org/10.1016/0033-5894(88)90088-9, 1988.
Clark, J. S.: Fire and climate change during the last 750 yr in northwestern Minnesota, Ecol. Monogr., 60, 135–159, https://doi.org/10.2307/1943042, 1990.
Clarke, K. J.: Guide to Identification of Soil Protozoa – Testate Amoebae, edited by: Sutcliffe, D. W., Freshwater Biological Association, Ambleside, U. K., 1–40, 2003.
Clymo, R. S. and Hayward, P. M.: The Ecology of Sphagnum, in: Bryophyte Ecology, edited by: Smith, A. J. E., Chapman & Hall, London, New York, 229–289, 1982.
Cook, E. R., Briffa, K., Shiyatov, S., Mazepa, A., and Jones, P. D.: Data analysis, in: Methods of Dendrochronology: Applications in the Environmental Sciences, edited by: Cook, E. R. and Kairiukstis, L. A., Kluwer Academic Publ., Dordrecht, 97–162, 1990.
Cyzman, W.: Jednolity Program Gospodarczo-Ochronny dla Leśnego Kompleksu Promocyjnego “Bory Tucholskie”, Regionalna Dyrekcja Lasów Państwowych w Toruniu, Toruń, 122–124, 2008.
Czapiewski, S. and Szumińska, D.: An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021, Land-Basel, 11, 24, https://doi.org/10.3390/land11010024, 2021.
Czerwiński, S., Guzowski, P., Lamentowicz, M., Gałka, M., Karpińska-Kołaczek, M., Poniat, R., Łokas, E., Diaconu, A.-C., Schwarzer, J., Miecznik, M., and Kołaczek, P.: Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of paleoecological and historical data, Quaternary Sci. Rev., 259, 106902, https://doi.org/10.1016/j.quascirev.2021.106902, 2021.
Davis, M. B. and Deevey, E. S.: Pollen Accumulation Rates: Estimates from Late-Glacial Sediment of Rogers Lake, Science, 145, 1293–1295, https://doi.org/10.1126/science.145.3638.1293, 1964.
Diaconu, A.-C., Tóth, M., Lamentowicz, M., Heiri, O., Kuske, E., Tanţău, I., Panait, A.-M., Braun, M., and Feurdean, A.: How warm? How wet? Hydroclimate reconstruction of the past 7500 years in northern Carpathians, Romania, Palaeogeogr Palaeocl., 482, 1–12, https://doi.org/10.1016/j.palaeo.2017.05.007, 2017.
Dietze, E., Brykała, D., Schreuder, L. T., Jażdżewski, K., Blarquez, O., Brauer, A., Dietze, M., Obremska, M., Ott, F., Pieńczewska, A., Schouten, S., Hopmans, E. C., and Słowiński, M.: Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments, PLoS One, 14, e0222011, https://doi.org/10.1371/journal.pone.0222011, 2019.
Dinella, A., Giammarchi, F., Prendin, A. L., Carrer, M., and Tonon, G.: Xylem traits of peatland Scots pines reveal a complex climatic signal: A study in the Eastern Italian Alps, Dendrochronologia, 67, 125824, https://doi.org/10.1016/j.dendro.2021.125824, 2021.
Drinan, T. J., Graham, C. T., O'Halloran, J., and Harrison, S. S. C.: The impact of catchment conifer plantation forestry on the hydrochemistry of peatland lakes, Sci. Total Environ., 443, 608–620, https://doi.org/10.1016/j.scitotenv.2012.10.112, 2013.
Dyderski, M. K., Paź, S., Frelich, L. E., and Jagodziński, A. M.: How much does climate change threaten European forest tree species distributions?, Global Change Biol., 24, 1150–1163, https://doi.org/10.1111/gcb.13925, 2018.
Eckstein, D. and Bauch, J.: Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit, Forstwiss. Centralbl., 88, 230–250, https://doi.org/10.1007/BF02741777, 1969.
Edvardsson, J., Corona, C., Mažeika, J., Pukienė, R., and Stoffel, M.: Recent advances in long-term climate and moisture reconstructions from the Baltic region: Exploring the potential for a new multi-millennial tree-ring chronology, Quaternary Sci. Rev., 131, Part A, 118–126, https://doi.org/10.1016/j.quascirev.2015.11.005, 2016.
Edvardsson, J., Baužienė, I., Lamentowicz, M., Šimanauskienė, R., Tamkevičiūtė, M., Taminskas, J., Linkevičienė, R., Skuratovič, Ž., Corona, C., and Stoffel, M.: A multi-proxy reconstruction of moisture dynamics in a peatland ecosystem: A case study from Čepkeliai, Lithuania, Ecol. Indic., 106, 105484, https://doi.org/10.1016/j.ecolind.2019.105484, 2019.
Edvardsson, J., Helama, S., Rundgren, M., and Nielsen, A. B.: The Integrated Use of Dendrochronological Data and Paleoecological Records From Northwest European Peatlands and Lakes for Understanding Long-Term Ecological and Climatic Changes – A Review, Front. Ecol. Evol., 10, 781882, https://doi.org/10.3389/fevo.2022.781882, 2022.
FAO: Peatlands mapping and monitoring. Recommendations and technical overview, Rome, https://doi.org/10.4060/ca8200en, 2020.
Feliksik, E. and Wilczyński, S.: The Effect of Climate on Tree-Ring Chronologies of Native and Nonnative Tree Species Growing Under Homogenous Site Conditions, Geochronometria, 33, 49–57, https://doi.org/10.2478/v10003-009-0006-4, 2009.
Felton, A., Gustafsson, L., Roberge, J.-M., Ranius, T., Hjältén, J., Rudolphi, J., Lindbladh, M., Weslien, J., Rist, L., Brunet, J., and Felton, A. M.: How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden, Biol. Conserv., 194, 11–20, https://doi.org/10.1016/j.biocon.2015.11.030, 2016.
Finsinger, W. and Tinner, W.: Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors, Holocene, 15, 293–297, 2005.
Freeman, C., Fenner, N., Ostle, N., Kang, H., Dorwick, D. J., Reynolds, B., Lock, M. A., Sleep, D., Hughes, S., and Hudson, J.: Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels, Nature, 430, 195–198, 2004.
Gałka, M., Tobolski, K., Górska, A., Milecka, K., Fiałkiewicz-Kozieł, B., and Lamentowicz, M.: Disentangling the drivers for the development of a Baltic bog during the Little Ice Age in northern Poland, Quatern. Int., 328–329, 323–337, https://doi.org/10.1016/j.quaint.2013.02.026, 2014.
Gałka, M., Miotk-Szpiganowicz, G., Marczewska, M., Barabach, J., van der Knaap, W. O., and Lamentowicz, M.: Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high-resolution multi-proxy peat archive, Holocene, 25, 421–434, https://doi.org/10.1177/0959683614561887, 2015.
Gałka, M., Knorr, K.-H., Tobolski, K., Gallego-Sala, A., Kołaczek, P., Lamentowicz, M., Kajukało-Drygalska, K., and Marcisz, K.: How far from a pristine state are the peatlands in the Białowieża Primeval Forest (CE Europe) – Palaeoecological insights on peatland and forest development from multi-proxy studies, Ecol. Indic., 143, 109421, https://doi.org/10.1016/j.ecolind.2022.109421, 2022.
Gallego-Sala, A. V, Charman, D. J., Brewer, S., Page, S. E., Prentice, I. C., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W., Björck, S., Blyakharchuk, T., Bochicchio, C., Booth, R. K., Bunbury, J., Camill, P., Carless, D., Chimner, R. A., Clifford, M., Cressey, E., Courtney-Mustaphi, C., De Vleeschouwer, F., de Jong, R., Fialkiewicz-Koziel, B., Finkelstein, S. A., Garneau, M., Githumbi, E., Hribjlan, J., Holmquist, J., Hughes, P. D. M., Jones, C., Jones, M. C., Karofeld, E., Klein, E. S., Kokfelt, U., Korhola, A., Lacourse, T., Le Roux, G., Lamentowicz, M., Large, D., Lavoie, M., Loisel, J., Mackay, H., MacDonald, G. M., Makila, M., Magnan, G., Marchant, R., Marcisz, K., Martínez Cortizas, A., Massa, C., Mathijssen, P., Mauquoy, D., Mighall, T., Mitchell, F. J. G., Moss, P., Nichols, J., Oksanen, P. O., Orme, L., Packalen, M. S., Robinson, S., Roland, T. P., Sanderson, N. K., Sannel, A. B. K., Silva-Sánchez, N., Steinberg, N., Swindles, G. T., Turner, T. E., Uglow, J., Väliranta, M., van Bellen, S., van der Linden, M., van Geel, B., Wang, G., Yu, Z., Zaragoza-Castells, J., and Zhao, Y.: Latitudinal limits to the predicted increase of the peatland carbon sink with warming, Nat. Clim. Change, 8, 907–913, 2018.
Gerhards, M.: Advanced Thermal Remote Sensing for Water Stress Detection of Agricultural Crops, PhD thesis, Universität Trier, Trier, 1–140, 2018.
Godwin, H.: Archives of the Peat Bogs, Cambridge University Press, Cambridge, 1981.
González de Andrés, E., Shestakova, T. A., Scholten, R. C., Delcourt, C. J. F., Gorina, N. V, and Camarero, J. J.: Changes in tree growth synchrony and resilience in Siberian Pinus sylvestris forests are modulated by fire dynamics and ecohydrological conditions, Agr. Forest Meteorol., 312, 108712, https://doi.org/10.1016/j.agrformet.2021.108712, 2022.
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming, Ecol. Appl., 1, 182–195, https://doi.org/10.2307/1941811, 1991.
Gregow, H., Laaksonen, A., and Alper, M. E.: Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010, Sci. Rep.-UK, 7, 46397, https://doi.org/10.1038/srep46397, 2017.
Grimm, E. C.: Tilia and Tilia Graph, Illinois State Museum, 1991.
Grimm, E. C.: Tilia and Tilia-Graph. Pollen Spreadsheet and Graphics Programs, 8th International Palynological Congress (President: A. Pons), Aix-en-Provence, 6–12 September 1992, Program and Abstracts, 56, 1992.
Grissino-Mayer, H. D.: Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA, Tree-Ring Res., 57, 205–221, 2001.
Grodzki, W.: Mass outbreaks of the spruce bark beetle Ips typographus in the context of the controversies around the Białowieża Primeval Forest, Forest Research Papers, 77, 324–331, https://open.icm.edu.pl/handle/123456789/12042 (last access: 26 April 2024), 2016.
Grondin, P., Gauthier, S., Borcard, D., Bergeron, Y., and Noël, J.: A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances, Landscape Ecol., 29, 1–16, https://doi.org/10.1007/s10980-013-9961-2, 2014.
Guariguata, M. R., Cornelius, J. P., Locatelli, B., Forner, C., and Sánchez-Azofeifa, G. A.: Mitigation needs adaptation: Tropical forestry and climate change, Mitig. Adapt. Strat. Gl., 13, 793–808, https://doi.org/10.1007/s11027-007-9141-2, 2008.
Guiot, J.: The bootstrapped response function, Tree-Ring Bulletin, 51, 39–41, 1991.
Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L.: A Review of Wetland Remote Sensing, Sensors, 17, 777, https://doi.org/10.3390/s17040777, 2017.
Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., and Zimmermann, N. E.: Climate change may cause severe loss in the economic value of European forest land, Nat. Clim. Change, 3, 203–207, https://doi.org/10.1038/nclimate1687, 2013.
Hanson, P. J. and Weltzin, J. F.: Drought disturbance from climate change: response of United States forests, Sci. Total Environ., 262, 205–220, https://doi.org/10.1016/S0048-9697(00)00523-4, 2000.
Harenda, K. M., Lamentowicz, M., Samson, M., and Chojnicki, B. H.: The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change, in: Interdisciplinary Approaches for Sustainable Development Goals, edited by: Zieliński, T., Sagan, I., and Surosz, W., Springer International Publishing, Gdańsk, 169–187, https://doi.org/10.1007/978-3-319-71788-3_12, 2018.
Harriman, R., Watt, A. W., Christie, A. E. G., Moore, D. W., McCartney, A. G., and Taylor, E. M.: Quantifying the effects of forestry practices on the recovery of upland streams and lochs from acidification, Sci. Total Environ., 310, 101–111, https://doi.org/10.1016/S0048-9697(02)00626-5, 2003.
Harris, A.: Spectral reflectance and photosynthetic properties of Sphagnum mosses exposed to progressive drought, Ecohydrology, 1, 35–42, https://doi.org/10.1002/eco.5, 2008.
Harris, A., Bryant, R., and Baird, A.: Detecting near-surface moisture stress in spp., Remote Sens. Environ., 97, 371–381, https://doi.org/10.1016/j.rse.2005.05.001, 2005.
Harris, A., Bryant, R. G., and Baird, A. J.: Mapping the effects of water stress on Sphagnum: Preliminary observations using airborne remote sensing, Remote Sens. Environ., 100, 363–378, https://doi.org/10.1016/j.rse.2005.10.024, 2006.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Hedenäs, L.: A generic revision of the Warnstorfia-Calliergon group, J. Bryol., 17, 447–479, https://doi.org/10.1179/jbr.1993.17.3.447, 1993.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results, J. Paleolimnol., 25, 101–110, https://doi.org/10.1023/A:1008119611481, 2001.
Higuera, P., Peters, M., Brubaker, L., and Gavin, D.: Understanding the origin and analysis of sediment-charcoal records with a simulation model, Quaternary Sci. Rev., 26, 1790–1809, https://doi.org/10.1016/j.quascirev.2007.03.010, 2007.
Hill, M. O. and Blockeel, T. L.: Straminergon stramineum, in: Atlas of British and Irish Bryophytes, edited by: Blockeel, T. L., Bosanquet, S. D. S., Hill, M. O., and Preston, C. D., British Bryological Society, Newbury, Berkshire, 464, 2014.
Hua, Q., Turnbull, J. C., Santos, G. M., Rakowski, A. Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S. J., Levin, I., Miller, J. B., Palmer, J. G., and Turney, C. S. M.: Atmospheric Radiocarbon for the Period 1950–2019, Radiocarbon, 64, 1–23, https://doi.org/10.1017/RDC.2021.95, 2021.
Hunt, E. and Rock, B.: Detection of changes in leaf water content using Near- and Middle-Infrared reflectances?, Remote Sens. Environ., 30, 43–54, https://doi.org/10.1016/0034-4257(89)90046-1, 1989.
Huuskonen, S., Domisch, T., Finér, L., Hantula, J., Hynynen, J., Matala, J., Miina, J., Neuvonen, S., Nevalainen, S., Niemistö, P., Nikula, A., Piri, T., Siitonen, J., Smolander, A., Tonteri, T., Uotila, K., and Viiri, H.: What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia?, Forest Ecol. Manag., 479, 118558, https://doi.org/10.1016/j.foreco.2020.118558, 2021.
Jabłoński, T.: Występowanie i zwalczanie leśnych foliofagów – trendy i prognozy, Postępy Techniki w Leśnictwie, 132, 13–19, 2015.
Jäger, E.: Die Schroettersche Landesaufnahme von Ost- und Westpreußen (1796–1802). Entstehungsgeschichte, Herstellung und Vertrieb der Karte, Z. Ostforsch., 30, 359–389, 1981.
Jäger, E.: Prussia-Karten 1542–1810: Geschichte der kartographischen Darstellung Ostpreussens vom 16. bis zum 19. Jahrhundert. Entstehung der Karten – Kosten – Vertrieb: bibliographischer Katalog, Anton H. Konrad Verlag, Weißenhorn, 1982.
Jasnowski, M.: Budowa i roślinność torfowisk Pomorza Szczecińskiego, Societas Scientarium Stetinensis, Szczecin, 1962.
Joosten, H.: Global guidelines for peatland rewetting and restoration, Ramsar Technical Report no. 11, Gland, Switzerland, 2021.
Joosten, H., Tapio-Biström, M.-L., and Tol, S.: Peatlands – guidance for climate change mitigation through conservation, rehabilitation and sustainable use, 2nd edn., Food and Agriculture Organization of the United Nations, Rome, 2012.
Juggins, S.: C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation, Newcastle University, Newcastle upon Tyne, UK, 73, 2007.
Kamińska, A., Lisiewicz, M., Kraszewski, B., and Stereńczak, K.: Mass outbreaks and factors related to the spatial dynamics of spruce bark beetle (Ips typographus) dieback considering diverse management regimes in the Białowieża forest, Forest Ecol. Manag., 498, 119530, https://doi.org/10.1016/j.foreco.2021.119530, 2021.
Kaplan, G., Yigit Avdan, Z., and Avdan, U.: Mapping and Monitoring Wetland Dynamics Using Thermal, Optical, and SAR Remote Sensing Data, in: Wetlands Management – Assessing Risk and Sustainable Solutions, IntechOpen, https://doi.org/10.5772/intechopen.80264, 2019.
Karpińska-Kołaczek, M., Kołaczek, P., Marcisz, K., Gałka, M., Kajukało-Drygalska, K., Mauquoy, D., and Lamentowicz, M.: Kettle-hole peatlands as carbon hot spots: Unveiling controls of carbon accumulation rates during the last two millennia, Catena, 237, 107764, https://doi.org/10.1016/j.catena.2023.107764, 2024.
Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., and Hu, F. S.: Recent burning of boreal forests exceeds fire regime limits of the past 10 000 years, P. Natl. Acad. Sci. USA, 110, 13055–13060, https://doi.org/10.1073/pnas.1305069110, 2013.
Kiełczewski, B.: Klęska sówki chojnówki jako zagadnienie biocenotyczne, Prace Komisji Matematyczno-Przyrodniczej, 10, 167–171, 1947.
Kirschenstein, M.: Wieloletnie zmiany sum opadów atmosferycznych na wybranych stacjach północno-zachodniej Polski, Słupskie Prace Geograficzne, 2, 199–214, 2005.
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 1441–1453, https://doi.org/10.1002/joc.773, 2002.
Koenig, I., Mulot, M., and Mitchell, E. A. D.: Taxonomic and functional traits responses of Sphagnum peatland testate amoebae to experimentally manipulated water table, Ecol. Indic., 85, 342–351, https://doi.org/10.1016/j.ecolind.2017.10.017, 2018.
Kołaczek, P., Karpińska-Kołaczek, M., Marcisz, K., Gałka, M., and Lamentowicz, M.: Palaeohydrology and the human impact on one of the largest raised bogs complex in the Western Carpathians (Central Europe) during the last two millennia, Holocene, 28, 595–608, https://doi.org/10.1177/0959683617735587, 2018.
Konczal, S., Lamentowicz M, Bąk, M., Czerwiński, S., Kołaczek, P., Wochal, D., Marcisz, M., Chojnicki, B., Harenda, K., Poczta, P., Gąbka, M., Jaster, D., Matulewski, P., Jedliński, J., Niedzielko, J., Wylazłowska, J., Żmuda, M., Żmuda, D., Kopeć, D., Rosadziński, S., Wietecha, M., Landowska, J., and Landowski, J.: Rekomendacje dla ochrony mokradeł w lasach, in: Jak chronić torfowiska w lasach?, edited by: Lamentowicz, M. and Konczal, S., ArchaeGraph, Łódź, 161–165, 2024.
Kondracki, J.: Geografia regionalna Polski, Wydawnictwo Naukowe PWN, Warszawa, 2001.
Kopeć, D., Michalska-Hejduk, D., Sławik, Ł., Berezowski, T., Borowski, M., Rosadziński, S., and Chormański, J.: Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat, Ecol. Indic., 70, 196–208, https://doi.org/10.1016/j.ecolind.2016.06.001, 2016.
Koprowski, M., Zielski, A., and Skowronek, T.: Analiza przyrostów rocznych dwóch sosen (Pinus sylvestris) o nietypowej budowie strzały na terenie Nadleśnictwa Borne Sulinowo, Sylwan, 155, 555–562, 2011.
Koprowski, M., Przybylak, R., Zielski, A., and Pospieszyńska, A.: Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland, Int. J. Biometeorol., 56, 1–10, https://doi.org/10.1007/s00484-010-0390-5, 2012.
Kowalewski, G.: Shoreline changes of basins in the mire-lake reserves in s Tuchola Pinewoods, Limnological Review, 3, 119–126, 2003.
Kowalewski, G. and Milecka, K.: Palaeoecology of basins of organic sediment accumulation in the Reserve Dury, Studia Quaternaria, 20, 73–82, 2003.
Kuosmanen, N., Čada, V., Halsall, K., Chiverrell, R. C., Schafstall, N., Kuneš, P., Boyle, J. F., Knížek, M., Appleby, P. G., Svoboda, M., and Clear, J. L.: Integration of dendrochronological and palaeoecological disturbance reconstructions in temperate mountain forests, Forest Ecol. Manag., 475, 118413, https://doi.org/10.1016/j.foreco.2020.118413, 2020.
Łabędzki, L.: Problematyka susz w Polsce, Woda-Środowisko-Obszary Wiejskie, 4, 47–66, 2004.
Laine, J., Vasander, H., and Laiho, R.: Long-Term Effects of Water Level Drawdown on the Vegetation of Drained Pine Mires in Southern Finland, J. Appl. Ecol., 32, 785–802, https://doi.org/10.2307/2404818, 1995.
Laine, J., Flatberg, K. I., Harju, P., Timonen, T., Minkinen, K., Laine, A., Tuittila, E.-S., and Vasander, H.: Sphagnum mosses. The Stars of European Mires, Department of Forest Sciences, University of Helsinki, Sphagna Ky, Helsinki, 58–62, 2018.
Lamentowicz, Ł., Gąbka, M., Rusińska, A., Sobczyński, T., Owsianny, P. M., and Lamentowicz, M.: Testate amoeba (Arcellinida, Euglyphida) ecology along a poor-rich gradient in fens of western Poland, Int. Rev. Hydrobiol., 96, 256–380, 2011.
Lamentowicz, M. and Mitchell, E. A. D.: Testate amoebae (Protists) as palaeoenvironmental indicators in peatlands, Polish Geological Institute Special Papers, 16, 58–64, 2005a.
Lamentowicz, M. and Mitchell, E. A. D.: The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology, Microb. Ecol., 50, 48–63, 2005b.
Lamentowicz, M. and Obremska, M.: A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire, J. Paleolimnol., 43, 499–511, https://doi.org/10.1007/s10933-009-9347-2, 2010.
Lamentowicz, M., Tobolski, K., and Mitchell, E. A. D.: Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland, Holocene, 17, 1185–1196, 2007.
Lamentowicz, M., Obremska, M., and Mitchell, E. A. D.: Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle hole mire in Northern Poland, Rev. Palaeobot. Palyno., 151, 21–40, https://doi.org/10.1016/j.revpalbo.2008.01.009, 2008a.
Lamentowicz, M., Cedro, A., Gałka, M., Goslar, T., Miotk-Szpiganowicz, G., Mitchell, E. A. D., and Pawlyta, J.: Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae, Palaeogeogr Palaeocl., 265, 93–106, 2008b.
Lamentowicz, M., Balwierz, Z., Forysiak, J., Płóciennik, M., Kittel, P., Kloss, M., Twardy, J., Żurek, S., and Pawlyta, J.: Multiproxy study of anthropogenic and climatic changes in the last two millennia from a small mire in central Poland, Hydrobiologia, 631, 213–230, https://doi.org/10.1007/s10750-009-9812-y, 2009a.
Lamentowicz, M., Milecka, K., Gałka, M., Cedro, A., Pawlyta, J., Piotrowska, N., Lamentowicz, Ł., and van der Knaap, W. O.: Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossilis, pollen tree-rings of pine, Boreas, 38, 214–229, 2009b.
Lamentowicz, M., Gałka, M., Lamentowicz, Ł., Obremska, M., Kühl, N., Lücke, A., and Jassey, V. E. J.: Reconstructing climate change and ombrotrophic bog development during the last 4000 years in northern Poland using biotic proxies, stable isotopes and trait-based approach, Palaeogeogr Palaeocl., 418, 261–277, https://doi.org/10.1016/j.palaeo.2014.11.015, 2015a.
Lamentowicz, M., Mueller, M., Gałka, M., Barabach, J., Milecka, K., Goslar, T., and Binkowski, M.: Reconstructing human impact on peatland development during the past 200 years in CE Europethrough biotic proxies and X-ray tomography, Quatern. Int., 357, 282–294, https://doi.org/10.1016/j.quaint.2014.07.045, 2015b.
Lamentowicz, M., Marcisz, K., Guzowski, P., Gałka, M., Diaconu, A.-C., and Kołaczek, P.: How Joannites' economy eradicated primeval forest and created anthroecosystems in medieval Central Europe, Sci. Rep.-UK, 10, 18775, https://doi.org/10.1038/s41598-020-75692-4, 2020.
Lavoie, M., Filion, L., and Robert, É. C.: Boreal peatland margins as repository sites of long-term natural disturbances of balsam fir/spruce forests, Quaternary Res., 71, 295–306, https://doi.org/10.1016/j.yqres.2009.01.005, 2009.
Lee, D., Holmström, E., Hynynen, J., Nilsson, U., Korhonen, K. T., Westerlund, B., Bianchi, S., Aldea, J., and Huuskonen, S.: Current state of mixed forests available for wood supply in Finland and Sweden, Scand. J. Forest Res., 38, 442–452, https://doi.org/10.1080/02827581.2023.2259797, 2023.
Lees, K. J., Artz, R. R. E., Chandler, D., Aspinall, T., Boulton, C. A., Buxton, J., Cowie, N. R., and Lenton, T. M.: Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery, Sci. Total Environ., 761, 143312, https://doi.org/10.1016/j.scitotenv.2020.143312, 2021.
Letendre, J., Poulin, M., and Rochefort, L.: Sensitivity of spectral indices to CO2 fluxes for several plant communities in a Sphagnum-dominated peatland, Can. J. Remote Sens., 34, S414–S425, https://doi.org/10.5589/m08-053, 2008.
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R., Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M., Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C., Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz, M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M., Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R., Nichols, J., O'Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard, P. J. H., Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai, C., Thom, T., Tuittila, E.-S., Turetsky, M., Väliranta, M., van der Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and Zhou, W.: A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation, Holocene, 24, 1028–1042, https://doi.org/10.1177/0959683614538073, 2014.
Łuców, D., Lamentowicz, M., Kołaczek, P., Łokas, E., Marcisz, K., Obremska, M., Theuerkauf, M., Tyszkowski, S., and Słowiński, M.: Pine Forest Management and Disturbance in Northern Poland: Combining High-Resolution 100-Year-Old Paleoecological and Remote Sensing Data, Front. Ecol. Evol., 9, 747976, https://doi.org/10.3389/fevo.2021.747976, 2021.
Łuców, D., Küttim, M., Słowiński, M., Kołaczek, P., Karpińska-Kołaczek, M., Küttim, L., Salme, M., and Lamentowicz, M.: Searching for an ecological baseline: Long-term ecology of a post-extraction restored bog in Northern Estonia, Quatern. Int., 607, 65–78, https://doi.org/10.1016/j.quaint.2021.08.017, 2022.
Marcisz, K., Tinner, W., Colombaroli, D., Kołaczek, P., Słowiński, M., Fiałkiewicz-Kozieł, B., Łokas, E., and Lamentowicz, M.: Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive, Quaternary Sci. Rev., 112, 138–152, https://doi.org/10.1016/j.quascirev.2015.01.019, 2015.
Marcisz, K., Gałka, M., Pietrala, P., Miotk-Szpiganowicz, G., Obremska, M., Tobolski, K., and Lamentowicz, M.: Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic–continental climatic gradient in northern Poland, Quaternary Sci. Rev., 177, 145–157, https://doi.org/10.1016/j.quascirev.2017.10.018, 2017.
Marcisz, K., Jassey, V. E. J., Kosakyan, A., Krashevska, V., Lahr, D. J. G., Lara, E., Lamentowicz, Ł., Lamentowicz, M., Macumber, A., Mazei, Y., Mitchell, E. A. D., Nasser, N. A., Patterson, R. T., Roe, H. M., Singer, D., Tsyganov, A. N., and Fournier, B.: Testate Amoeba Functional Traits and Their Use in Paleoecology, Front. Ecol. Evol., 8, 340, https://doi.org/10.3389/fevo.2020.575966, 2020a.
Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C., and Lamentowicz, M.: Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene, Quaternary Sci. Rev., 231, 106180, https://doi.org/10.1016/j.quascirev.2020.106180, 2020b.
Marcisz, K., Bąk, M., Kołaczek, P., Lamentowicz, M., and Wochal, D.: Historia lasu i mokradełzapisana w torfowiskach, in: Jak chronić torfowiska w lasach?, edited by: Lamentowicz, M. and Konczal, S., ArchaeGraph, Łódź, 29–45, 2024.
Marks, L.: Timing of the Late Vistulian (Weichselian) glacial phases in Poland, Quaternary Sci. Rev., 44, 81–88, https://doi.org/10.1016/j.quascirev.2010.08.008, 2012.
Matthias, I. and Giesecke, T.: Insights into pollen source area, transport and deposition from modern pollen accumulation rates in lake sediments, Quaternary Sci. Rev., 87, 12–23, https://doi.org/10.1016/j.quascirev.2013.12.015, 2014.
Matulewski, P., Buchwal, A., and Makohonienko, M.: Higher climatic sensitivity of Scots pine (Pinus sylvestris L.) subjected to tourist pressure on a hiking trail in the Brodnica Lakeland, NE Poland, Dendrochronologia, 54, 78–86, https://doi.org/10.1016/j.dendro.2019.02.008, 2019.
Mauquoy, D. and van Geel, B.: Mire and peat macros, in: Encyclopedia of Quaternary Science, vol. 3, Elsevier, Heidelberg, 2315–2336, 2007.
Mauquoy, D. and Yeloff, D.: Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change?, Biodivers. Conserv., 17, 2139–2151, https://doi.org/10.1007/s10531-007-9222-2, 2008.
Mauquoy, D., Hughes, P. D. M., and van Geel, B.: A protocol for plant macrofossil analysis of peat deposits, Mires Peat, 7, 1–5, 2010.
Mazei, Y. and Tsyganov, A. N.: Freshwater testate amoebae, KMK, Moscow, 2006.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quaternary Sci. Rev., 23, 771–801, https://doi.org/10.1016/j.quascirev.2003.06.017, 2004.
McGrath, M. J., Luyssaert, S., Meyfroidt, P., Kaplan, J. O., Bürgi, M., Chen, Y., Erb, K., Gimmi, U., McInerney, D., Naudts, K., Otto, J., Pasztor, F., Ryder, J., Schelhaas, M.-J., and Valade, A.: Reconstructing European forest management from 1600 to 2010, Biogeosciences, 12, 4291–4316, https://doi.org/10.5194/bg-12-4291-2015, 2015.
McNulty, S., Caldwell, P., Doyle, T. W., Johnsen, K., Liu, Y., Mohan, J., Prestemon, J., and Sun, G.: Forests and Climate Change in the Southeast USA, in: Climate of the Southeast United States, edited by: Ingram, K. T., Dow, K., Carter, L., and Anderson, J., Island Press, Washington, 165–189, 2013.
Meisterfeld, R.: Testate amoebae, in: Patrimoines Naturels, vol. 50, edited by: Costello, M. J., Emblow, C. S., and White, R., Muséum National d'Histoire Naturelle – Institut d'Ecologie et de Gestion de la Biodiversité (I. E. G. B.) – Service du Patrimoine Naturel (S. P. N.), Paris, 54–57, 2001.
Messier, C., Bauhus, J., Sousa-Silva, R., Auge, H., Baeten, L., Barsoum, N., Bruelheide, H., Caldwell, B., Cavender-Bares, J., Dhiedt, E., Eisenhauer, N., Ganade, G., Gravel, D., Guillemot, J., Hall, J. S., Hector, A., Hérault, B., Jactel, H., Koricheva, J., Kreft, H., Mereu, S., Muys, B., Nock, C. A., Paquette, A., Parker, J. D., Perring, M. P., Ponette, Q., Potvin, C., Reich, P. B., Scherer-Lorenzen, M., Schnabel, F., Verheyen, K., Weih, M., Wollni, M., and Zemp, D. C.: For the sake of resilience and multifunctionality, let's diversify planted forests!, Conserv. Lett., 15, e12829, https://doi.org/10.1111/conl.12829, 2022.
Microworld, world of amoeboid organisms: https://arcella.nl/, last access: 23 November 2023.
Milecka, K., Kowalewski, G., Fiałkiewicz-Kozieł, B., Gałka, M., Lamentowicz, M., Chojnicki, B. H., Goslar, T., and Barabach, J.: Hydrological changes in the Rzecin peatland (Puszcza Notecka, Poland) induced by anthropogenic factors: Implications for mire development and carbon sequestration, Holocene, 27, 651–664, https://doi.org/10.1177/0959683616670468, 2017.
Miller, J. D., Anderson, H. A., Ferrier, R. C., and Walker, T. A. B.: Hydrochemical Fluxes and their Effects on Stream Acidity in Two Forested Catchments in Central Scotland, Forestry, 63, 311–331, https://doi.org/10.1093/forestry/63.4.311, 1990.
Minkkinen, K., Byrne, K. A., and Trettin, C.: Climate impacts of peatland forestry, in: Peatlands and climate change, edited by: Strack, M., International Peat Society, Saarijärvi, 98–122, 2008.
Miola, A.: Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972–2011), Rev. Palaeobot. Palyno., 186, 142–161, https://doi.org/10.1016/j.revpalbo.2012.06.010, 2012.
Mirek, Z., Zarzycki, K., Wojewoda, W., and Szeląg, Z.: Red list of plants and fungi in Poland. Czerwona lista roślin i grzybów Polski, Instytut Botaniki im. W. Szafera, Polska Akademia Nauk, Kraków, 2006.
Mitosek, H.: Letnio-jesienna susza 1959 r., Postępy Nauk Rolniczych, 7, 53–64, 1960.
Mokrzecki, Z.: Strzygonia choinówka, Związek Zawodowy Leśników w Rzeczypospolitej Polskiej, Warszawa, 1928.
Moore, P. D., Webb, J. A., and Collinson, M. E.: Pollen Analysis, Blackwell Scientific Publications, Oxford, 1991.
Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz, D. J., and Hayhoe, K.: Climate change and disruptions to global fire activity, Ecosphere, 3, 1–22, https://doi.org/10.1890/ES11-00345.1, 2012.
Mroczkowska, A., Kittel, P., Marcisz, K., Dolbunova, E., Gauthier, E., Lamentowicz, M., Mazurkevich, A., Obremska, M., Płóciennik, M., Kramkowski, M., Łuców, D., Kublitskiy, Y., and Słowiński, M.: Small peatland with a big story: 600 year paleoecological and historical data from a kettle-hole peatland in Western Russia, Holocene, 31, 1761–1776, https://doi.org/10.1177/09596836211033224, 2021.
Nisbet, T. R.: The role of forest management in controlling diffuse pollution in UK forestry, Forest Ecol. Manag., 143, 215–226, https://doi.org/10.1016/S0378-1127(00)00519-3, 2001.
Obmiński, Z.: Zarys ekologii, in: Sosna zwyczajna. Nasze drzewa leśne, edited by: Białobok, S., Warszawa-Poznań, 152–231, 1970.
Ogden, C. G. and Hedley, R. H.: An Atlas of Freshwater Testate Amoebae, 1st Edn., Oxford University Press, London, 1–228, 1980.
Oris, F., Ali, A. A., Asselin, H., Paradis, L., Bergeron, Y., and Finsinger, W.: Charcoal dispersion and deposition in boreal lakes from 3 years of monitoring: Differences between local and regional fires, Geophys. Res. Lett., 41, 6743–6752, https://doi.org/10.1002/2014GL060984, 2014.
Orłowicz, M.: Ilustrowany przewodnik po województwie pomorskiem, Książnica Polska, Lwów, 360–361, 1924.
OxCal v4.4.4: https://c14.arch.ox.ac.uk/oxcal.html, last access: 21 November 2023.
Paavilainen, E. and Päivänen, J.: Peatland Forestry: Ecology and Principles, Springer, Berlin, 1995.
Parish, F., Sirin, A., Charman, D. J., Joosten, H., Minayeva, T., Silvius, M., and Stringer, L.: Assessment on peatlands, biodiversity and climate change: main report, 2008.
Pawlyta, J. and Lamentowicz, M.: Age-depth model for modern peat core. Methodological approach, methods of absolute chronology., in: Methods of absolute chronology: 10th International Conference, GADAM Centre of Excellence. Department of Radioisotopes, Institute of Physics, Silesian University of Technology, Gliwice, Poland, 22–25 April 2010, p. 109, 2010.
Payne, R. J. and Mitchell, E. A. D.: How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae, J. Paleolimnol., 42, 483–495, https://doi.org/10.1007/s10933-008-9299-y, 2009.
Pędziszewska, A. and Latałowa, M.: Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites, Veg. Hist. Archaeobot., 25, 239–254, https://doi.org/10.1007/s00334-015-0546-7, 2016.
Péli, E. R., Nagy, J. G., and Cserhalmi, D.: In situ measurements of seasonal productivity dynamics in two sphagnum dominated mires in Hungary, Carpath. J. Earth Env., 10, 231–240, 2015.
Peters, M. E. and Higuera, P. E.: Quantifying the source area of macroscopic charcoal with a particle dispersal model, Quaternary Res., 67, 304–310, https://doi.org/10.1016/j.yqres.2006.10.004, 2007.
Poraj-Górska, A. I., Żarczyński, M. J., Ahrens, A., Enters, D., Weisbrodt, D., and Tylmann, W.: Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno, northeastern Poland, Catena, 153, 182–193, https://doi.org/10.1016/j.catena.2017.02.007, 2017.
Przybylski, T.: Ekologia, in: Biologia sosny zwyczajnej, edited by: Białobok, S., Boratyński, A., and Bugała, W., Sorus, Poznań-Kórnik, 255–300, 1993.
Pureswaran, D. S., De Grandpré, L., Paré, D., Taylor, A., Barrette, M., Morin, H., Régnière, J., and Kneeshaw, D. D.: Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests, Ecology, 96, 1480–1491, https://doi.org/10.1890/13-2366.1, 2015.
R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, https://www.R-project.org, last access: 4 December 2023.
Rapinel, S., Panhelleux, L., Gayet, G., Vanacker, R., Lemercier, B., Laroche, B., Chambaud, F., Guelmami, A., and Hubert-Moy, L.: National wetland mapping using remote-sensing-derived environmental variables, archive field data, and artificial intelligence, Heliyon, 9, e13482, https://doi.org/10.1016/j.heliyon.2023.e13482, 2023.
Rastogi, A., Stróżecki, M., Kalaji, H. M., Łuców, D., Lamentowicz, M., and Juszczak, R.: Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peatland vegetation, Environ. Exp. Bot., 160, 71–80, https://doi.org/10.1016/j.envexpbot.2019.01.005, 2019.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Reynolds, B., Ormerod, S. J., and Gee, A. S.: Spatial patterns concentrations in upland Wales in relation to catchment forest cover and forest age, Environ. Pollut., 84, 27–33, https://doi.org/10.1016/0269-7491(94)90067-1, 1994.
Rioja: Analysis of Quaternary Science Data, https://cran.r-project.org/web/packages/rioja/index.html, last access: 4 December 2023.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Monitoring vegetation systems in the great plains with ERTS, in: Third Earth Resources Technology Satellite-l Symposium, Volume I: Technical Presentations Section A. Paper A-20. Goddard Space Flight Center: Washington, D.C., December 10–14, 1973, National Aeronautics and Space Administration: Washington, D.C., 309–317, 1974.
Rydin, H. and Jeglum, J. K.: The biology of peatlands, 2nd Edn., Oxford University Press, 2013.
Sanderson, N., Loisel, J., Gallego-Sala, A., Anshari, G., Novita, N., Marcisz, K., Lamentowicz, M., Bąk, M., and Wochal, D.: Setting a new research agenda for tropical peatlands, recent carbon accumulation and ecosystem services, Past Global Changes Magazine, 31, 121–121, https://doi.org/10.22498/pages.31.2.121, 2023.
Schueler, S., Falk, W., Koskela, J., Lefèvre, F., Bozzano, M., Hubert, J., Kraigher, H., Longauer, R., and Olrik, D. C.: Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change, Global Change Biol., 20, 1498–1511, https://doi.org/10.1111/gcb.12476, 2014.
Schüle, M., Domes, G., Schwanitz, C., and Heinken, T.: Early natural tree regeneration after wildfire in a Central European Scots pine forest: Forest management, fire severity and distance matters, Forest Ecol. Manag., 539, 120999, https://doi.org/10.1016/j.foreco.2023.120999, 2023.
Schütte, R.: Die Tucheler Haide vornehmlich in forstlicher Beziehung, Bertling, Danzig, 1893.
Seidl, R., Schelhaas, M.-J., Rammer, W., and Verkerk, P. J.: Increasing forest disturbances in Europe and their impact on carbon storage, Nat. Clim. Change, 4, 806, https://doi.org/10.1038/nclimate2318, 2014.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P. O.: Forest disturbances under climate change, Nat. Clim. Change, 7, 395, https://doi.org/10.1038/nclimate3303, 2017.
Shumilovskikh, L. S. and van Geel, B.: Non-Pollen Palynomorphs, in: Handbook for the Analysis of Micro-Particles in Archaeological Samples, edited by: Henry, E. G., Springer Cham, 65–94, 2020.
Shumilovskikh, L. S., Shumilovskikh, E. S., Schlütz, F., and van Geel, B.: NPP-ID: Non-Pollen Palynomorph Image Database as a research and educational platform, Veg. Hist. Archaeobot., 31, 323–328, https://doi.org/10.1007/s00334-021-00849-8, 2022.
Sillasoo, U., Väliranta, M., and Tuittila, E. S.: Fire history and vegetation recovery in two raised bogs at the Baltic Sea, J. Veg. Sci., 22, 1084–1093, 2011.
Simard, I., Morin, H., and Lavoie, C.: A millennial-scale reconstruction of spruce budworm abundance in Saguenay, Quéebec, Canada, Holocene, 16, 31–37, https://doi.org/10.1191/0959683606hl904rp, 2006.
Śliwa, E.: Gradacja strzygoni choinówki (Panolis flammea Schiff.) w Kampinowskim Parku Narodowym, Sylwan, 11, 61–66, 1974.
Śliwa, E.: Występowanie i zwalczanie ważniejszych folio fagów w drzewostanach sosnowych w latach 1946–1985, Sylwan, 13, 49–59, 1987.
Śliwa, E.: Przebieg masowego pojawu brudnicy mniszki (Lymantria monacha L.) i jej zwalczania w Polsce w latach 1978–1985 oraz regeneracja aparatu asymilacyjnego w uszkodzonych drzewostanach, Prace Instytutu Badawczego Leśnictwa, 710, 3–120, 1989.
Słowiński, M., Lamentowicz, M., Łuców, D., Barabach, J., Brykała, D., Tyszkowski, S., Pieńczewska, A., Śnieszko, Z., Dietze, E., Jażdżewski, K., Obremska, M., Ott, F., Brauer, A., and Marcisz, K.: Paleoecological and historical data as an important tool in ecosystem management, J. Environ. Manage., 236, 755–768, https://doi.org/10.1016/j.jenvman.2019.02.002, 2019.
Spiecker, H.: Growth of Norway Spruce (Picea abies [L.] Karst.) under Changing Environmental Conditions in Europe, in: Spruce Monocultures in Central Europe – Problems and Prospects, edited by: Klimo, E., Hager, H., and Kulhavý, J., European Forest Institute, Joensuu, 11–26, 2000.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in Europe?, Int. J. Climatol., 38, 1718–1736, https://doi.org/10.1002/joc.5291, 2018.
Stivrins, N., Liiv, M., Ozola, I., and Reitalu, T.: Carbon accumulation rate in a raised bog in Latvia, NE Europe, in relation to climate warming, Est. J. Earth Sci., 67, 247, https://doi.org/10.3176/earth.2018.20, 2018.
Stockmarr, J.: Tablets with spores used in absolute pollen analysis, Pollen et Spores, 13, 615–621, 1971.
Sullivan, J.: Pinus sylvestris, Fire Effects Information System,https://www.fs.usda.gov/database/feis/plants/tree/pinsyl/all.html (last access: 30 April 2024), 1993.
Sullivan, M. E. and Booth, R. K.: The Potential Influence of Short-term Environmental Variability on the Composition of Testate Amoeba Communities in Sphagnum Peatlands, Microb. Ecol., 62, 80–93, https://doi.org/10.1007/s00248-011-9875-y, 2011.
Szwankowski, J.: Powiat tucholski w latach 1875–1920, administracja, ludność, gospodarka, kultura, Logo, Tuchola, 2005.
Taeger, S., Zang, C., Liesebach, M., Schneck, V., and Menzel, A.: Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances, Forest Ecol. Manag., 307, 30–42, https://doi.org/10.1016/j.foreco.2013.06.053, 2013.
Tinner, W. and Hu, F. S.: Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction, Holocene, 13, 499–505, 2003.
Tipton, J.: Past anthropogenic impacts on peatland through the forest management practices in the Polish Tuchola Forest, Master thesis, Adam Mickiewicz University, Poznań, 2023.
Trouet, V. and Van Oldenborgh, G. J.: KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology, Tree-Ring Res., 69, 3–13, https://doi.org/10.3959/1536-1098-69.1.3, 2013.
Trumbore, S., Brando, P., and Hartmann, H.: Forest health and global change, Science, 349, 814–818, https://doi.org/10.1126/science.aac6759, 2015.
Ulrich, B.: Production and consumption of Hydrogen ions in the ecosphere, in: Effects of acid precipitation on terrestrial ecosystems, edited by: Hutchinson, T. and Havas, M., Plenum Press, New York, London, 255–282, 1980.
Väliranta, M., Korhola, A., Seppä, H., Tuittila, E. S., Sarmaja-Korjonen, K., Laine, J., and Alm, J.: High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach, Holocene, 17, 1093–1107, https://doi.org/10.1177/0959683607082550, 2007.
van der Linden, M., Heijmans, M. M., and van Geel, B.: Carbon accumulation in peat deposits from northern Sweden to northern Germany during the last millennium, Holocene, 24, 1117–1125, https://doi.org/10.1177/0959683614538071, 2014.
van der Schrier, G., Allan, R. P., Ossó, A., Sousa, P. M., Van de Vyver, H., Van Schaeybroeck, B., Coscarelli, R., Pasqua, A. A., Petrucci, O., Curley, M., Mietus, M., Filipiak, J., Štěpánek, P., Zahradníček, P., Brázdil, R., Řezníčková, L., van den Besselaar, E. J. M., Trigo, R., and Aguilar, E.: The 1921 European drought: impacts, reconstruction and drivers, Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, 2021.
Waller, M.: Drought, disease, defoliation and death: forest pathogens as agents of past vegetation change, J. Quaternary Sci., 28, 336–342, https://doi.org/10.1002/jqs.2631, 2013.
Wardenaar, E. C. P.: A new hand tool for cutting peat profiles, Can. J. Botany, 65, 1772–1773, https://doi.org/10.1139/b87-243, 1987.
Warner, B. G.: Palaeoecology of floating bogs and landscape change in the Great Lakes drainage basin of North America, in: Climate change and human impact on the landscape, edited by: Chambers, F. M., Chapman & Hall, 237–248, 1993.
Westerling, A. L.: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring, Philos. T. Roy. Soc. B, 371, 20150178, https://doi.org/10.1098/rstb.2015.0178, 2016.
Westman, C. J. and Laiho, R.: Nutrient dynamics of drained peatland forests, Biogeochemistry, 63, 269–298, https://doi.org/10.1023/A:1023348806857, 2003.
Whitlock, C. and Larsen, C.: Charcoal as a fire proxy., in: Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol. 3, edited by: Smol, J. P., Birks, H. J. B., and Last, W. M., Kluwer, Dordrecht, 75–97, 2001.
Wilson, J. K.: The German Forest. Nature, Identity, and the Contestation of a National Symbol, 1871–1914, University of Toronto Press, 132–174, 2012.
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths, N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.: Stability of peatland carbon to rising temperatures, Nat. Commun., 7, 13723, https://doi.org/10.1038/ncomms13723, 2016.
Woodward, C. and Haines, H. A.: Unprecedented long-distance transport of macroscopic charcoal from a large, intense forest fire in eastern Australia: Implications for fire history reconstruction, Holocene, 30, 947–952, https://doi.org/10.1177/0959683620908664, 2020.
Wotton, B. M., Nock, C. A., and Flannigan, M. D.: Forest fire occurrence and climate change in Canada, Int. J. Wildland Fire, 19, 253, https://doi.org/10.1071/WF09002, 2010.
Young, D. M., Baird, A. J., Charman, D. J., Evans, C. D., Gallego-Sala, A. V., Gill, P. J., Hughes, P. D. M., Morris, P. J., and Swindles, G. T.: Misinterpreting carbon accumulation rates in records from near-surface peat, Sci. Rep.-UK, 9, 17939, https://doi.org/10.1038/s41598-019-53879-8, 2019.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402, https://doi.org/10.1029/2010GL043584, 2010.
Zajączkowski, J., Brzeziecki, B., and Kozak I.: Wpływ potencjalnych zmian klimatycznych na zdolność konkurencyjną głównych gatunków drzew w Polsce, Sylwan, 157, 253–261, 2013.
Zang, C. and Biondi, F.: treeclim: an R package for the numerical calibration of proxy-climate relationships, Ecography, 38, 431–436, https://doi.org/10.1111/ecog.01335, 2015.
Zielski, A.: Wpływ temperatury i opadów na szerokość słojów rocznych drewna u sosny zwyczajnej (Pinus sylvestris L. w rejonie Torunia), Sylwan, 2, 71–80, 1996.
Zielski, A. and Barankiewicz, A.: Dendrochronologiczna analiza przyrostów radialnych sosny zwyczajnej na terenie leśnictwa Dębie, Nadleśnictwa Włocławek, Sylwan, 2000, 69–74, 2000.
Zielski, A. and Krąpiec, M.: Dendrochronologia, PWN, 2004.
Zielski, A. and Sygit, W.: Wpływ klimatu na przyrost radialny sosny zwyczajnej (Pinus sylvestris L.), badania wzdłuż równoleżnika 52° N i transekcie Śląsk-Białowieża, in: Reakcja borów sosnowych na zmianę klimatu wzdłuż równoleżnika 52° N (12–32° E) oraz na zmiany w depozycji zanieczyszczeń chemicznych na transekcie Śląsk-Białowieża, edited by: Breymeyer, A. and Roo-Zielińska, E., Dokumentacja Geograficzna IG PAN Warszawa, 13, 161–185, 1998.
Zielski, A., Błaszkowski, A., and Barankiewicz, A.: Dynamika przyrostu radialnego sosny zwyczajnej (Pinus sylvestris L.) na obszarze leśnym eksploatowanym turystycznie nad jeziorem Wielkie Partęczyny (Nadleśnictwo Brodnica), Sylwan, 3, 69–78, 1998.
Zielski, A., Krąpiec, M., and Koprowski, M.: Dendrochronological data, in: The Polish Climate in the European Context: An Historical Overview, edited by: Przybylak, R., Majorowicz, J., Brázdil, R., and Kejna, M., 191–217, 2010.
Short summary
The study combines palaeoecological, dendrochronological, remote sensing and historical data to detect the impact of forest management and climate change on peatlands. Due to these changes, the peatland studied in this paper and the pine monoculture surrounding it have become vulnerable to water deficits and various types of disturbance, such as fires and pest infestations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.
The study combines palaeoecological, dendrochronological, remote sensing and historical data to...
Altmetrics
Final-revised paper
Preprint