Articles | Volume 21, issue 4
https://doi.org/10.5194/bg-21-993-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-993-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric CO2 exchanges measured by eddy covariance over a temperate salt marsh and influence of environmental controlling factors
Jérémy Mayen
CORRESPONDING AUTHOR
IFREMER, Littoral, Laboratoire Environnement Ressources des Pertuis Charentais (LER/PC), BP 133, 17390 La Tremblade, France
IFREMER, Littoral, Laboratoire Environnement Ressources Morbihan-Pays de Loire (LER/MPL), BP 21105, 44311 Nantes, France
Pierre Polsenaere
IFREMER, Littoral, Laboratoire Environnement Ressources des Pertuis Charentais (LER/PC), BP 133, 17390 La Tremblade, France
Éric Lamaud
INRAE, Bordeaux Sciences Agro, ISPA, 33140 Villenave d'Ornon, France
Marie Arnaud
IFREMER, Littoral, Laboratoire Environnement Ressources des Pertuis Charentais (LER/PC), BP 133, 17390 La Tremblade, France
Institute of Ecology and Environmental Sciences Paris (iEES-Paris), Sorbonne University, 75005 Paris, France
Pierre Kostyrka
IFREMER, Littoral, Laboratoire Environnement Ressources des Pertuis Charentais (LER/PC), BP 133, 17390 La Tremblade, France
IFREMER, Dyneco, Pelagos, ZI de la Pointe du Diable – CS 10070, 29280 Plouzané, France
Jean-Marc Bonnefond
INRAE, Bordeaux Sciences Agro, ISPA, 33140 Villenave d'Ornon, France
Philippe Geairon
IFREMER, Littoral, Laboratoire Environnement Ressources des Pertuis Charentais (LER/PC), BP 133, 17390 La Tremblade, France
Julien Gernigon
LPO, Réserve Naturelle de Lilleau des Niges, 17880 Les Portes en Ré, France
Romain Chassagne
BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans, CEDEX 02, Orléans, France
Thomas Lacoue-Labarthe
Littoral Environnement et Sociétés (LIENSs), UMR 7276, CNRS, La Rochelle Université, 2 Rue Olympe de Gouge, 17000 La Rochelle, France
Aurore Regaudie de Gioux
IFREMER, Dyneco, Pelagos, ZI de la Pointe du Diable – CS 10070, 29280 Plouzané, France
Philippe Souchu
IFREMER, Littoral, Laboratoire Environnement Ressources Morbihan-Pays de Loire (LER/MPL), BP 21105, 44311 Nantes, France
Related authors
No articles found.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Virginie Moreaux, Simon Martel, Alexandre Bosc, Delphine Picart, David Achat, Christophe Moisy, Raphael Aussenac, Christophe Chipeaux, Jean-Marc Bonnefond, Soisick Figuères, Pierre Trichet, Rémi Vezy, Vincent Badeau, Bernard Longdoz, André Granier, Olivier Roupsard, Manuel Nicolas, Kim Pilegaard, Giorgio Matteucci, Claudy Jolivet, Andrew T. Black, Olivier Picard, and Denis Loustau
Geosci. Model Dev., 13, 5973–6009, https://doi.org/10.5194/gmd-13-5973-2020, https://doi.org/10.5194/gmd-13-5973-2020, 2020
Short summary
Short summary
The model GO+ describes the functioning of managed forests based upon biophysical and biogeochemical processes. It accounts for the impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes versatile descriptions of management operations. Its sensitivity and uncertainty are detailed and predictions are compared with observations about mass and energy exchanges, hydrological data, and tree growth variables from different sites.
Widya Ratmaya, Dominique Soudant, Jordy Salmon-Monviola, Martin Plus, Nathalie Cochennec-Laureau, Evelyne Goubert, Françoise Andrieux-Loyer, Laurent Barillé, and Philippe Souchu
Biogeosciences, 16, 1361–1380, https://doi.org/10.5194/bg-16-1361-2019, https://doi.org/10.5194/bg-16-1361-2019, 2019
Short summary
Short summary
This work reports the consequences of nutrient management strategy, an example from southwestern Europe focused mainly on P reduction. Upstream rivers reveal indices of recoveries following the significant diminution of P, while eutrophication continues to increase downstream, especially when N is the limiting factor. This long-term ecosystem-scale analysis provides more arguments for a dual-nutrient (N and P) management strategy to mitigate eutrophication along the freshwater–marine continuum.
Raphaël Savelli, Christine Dupuy, Laurent Barillé, Astrid Lerouxel, Katell Guizien, Anne Philippe, Pierrick Bocher, Pierre Polsenaere, and Vincent Le Fouest
Biogeosciences, 15, 7243–7271, https://doi.org/10.5194/bg-15-7243-2018, https://doi.org/10.5194/bg-15-7243-2018, 2018
Short summary
Short summary
We simulate the benthic microalgae seasonal cycle on a temperate intertidal mudflat by combining a physical–biological coupled model with remotely sensed and in situ data. While optimal light and temperature conditions lead to a spring bloom, thermo-inhibition and grazing result in a summer depression of biomass. The model ability to infer mechanisms driving the seasonal cycle could open the door to the contribution of productive intertidal biofilms to the coastal carbon cycle.
Related subject area
Biogeochemistry: Land - Sea Coupling
Distinct Impacts of El Niño-Southern Oscillation and Indian Ocean Dipole on China’s Gross Primary Production
Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach
Recent inorganic carbon increase in a temperate estuary driven by water quality improvement and enhanced by droughts
Alkalinity and nitrate dynamics reveal dominance of anammox in a hyper-turbid estuary
Reconciling the paradox of soil organic carbon erosion by water
The dispersal of fluvially discharged and marine, shelf-produced particulate organic matter in the northern Gulf of Mexico
Carbon dynamics at the river–estuarine transition: a comparison among tributaries of Chesapeake Bay
From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India
Dissolved organic matter characterization in soils and streams in a small coastal low-Arctic catchment
Regional-scale phytoplankton dynamics and their association with glacier meltwater runoff in Svalbard
Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model
Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean
Ideas and perspectives: Biogeochemistry – some key foci for the future
Spatio-temporal variations in lateral and atmospheric carbon fluxes from the Danube Delta
Technical note: Seamless gas measurements across the land–ocean aquatic continuum – corrections and evaluation of sensor data for CO2, CH4 and O2 from field deployments in contrasting environments
Enrichment of trace metals from acid sulfate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea
Organic iron complexes enhance iron transport capacity along estuarine salinity gradients of Baltic estuaries
Particulate organic matter controls benthic microbial N retention and N removal in contrasting estuaries of the Baltic Sea
Export fluxes of dissolved inorganic carbon to the northern Indian Ocean from the Indian monsoonal rivers
The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean
Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico
Reconciling drainage and receiving basin signatures of the Godavari River system
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea
Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon
Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment
A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia
Nitrogen transformations along a shallow subterranean estuary
Modelling nutrient retention in the coastal zone of an eutrophic sea
Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost
Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean
Seasonal response of air–water CO2 exchange along the land–ocean aquatic continuum of the northeast North American coast.
Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources
Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey
Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf
Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments
Antarctic ice sheet fertilises the Southern Ocean
Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea
Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use
Seasonal dissolved inorganic nitrogen and phosphorus budgets for two sub-tropical estuaries in south Florida, USA
Export of 134 Cs and 137 Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011
The fate of riverine nutrients on Arctic shelves
External forcings, oceanographic processes and particle flux dynamics in Cap de Creus submarine canyon, NW Mediterranean Sea
Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident
Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem
The role of alkalinity generation in controlling the fluxes of CO2 during exposure and inundation on tidal flats
Coupling of fog and marine microbial content in the near-shore coastal environment
Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer
Effects of water discharge and sediment load on evolution of modern Yellow River Delta, China, over the period from 1976 to 2009
Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea
Ran Yan, Jun Wang, Weimin Ju, Xiuli Xing, Miao Yu, Meirong Wang, Jingye Tan, Xunmei Wang, Hengmao Wang, and Fei Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1250, https://doi.org/10.5194/egusphere-2024-1250, 2024
Short summary
Short summary
Our study reveal that the effects of El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China's gross primary production (GPP) are basically opposite with obvious seasonal changes. In general, soil moisture primarily influences GPP in fall and summer, while temperature plays a vital role in winter and spring. Quantitatively, China's annual GPP displays modest positive anomalies during La Niña and negative anomalies in El Niño years, driven by significant seasonal variations.
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Paul A. Bukaveckas
Biogeosciences, 19, 4209–4226, https://doi.org/10.5194/bg-19-4209-2022, https://doi.org/10.5194/bg-19-4209-2022, 2022
Short summary
Short summary
Inland waters play an important role in the global carbon cycle by storing, transforming and transporting carbon from land to sea. Comparatively little is known about carbon dynamics at the river–estuarine transition. A study of tributaries of Chesapeake Bay showed that biological processes exerted a strong effect on carbon transformations. Peak carbon retention occurred during periods of elevated river discharge and was associated with trapping of particulate matter.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022, https://doi.org/10.5194/bg-19-271-2022, 2022
Short summary
Short summary
We investigate the effect of glacier meltwater on phytoplankton dynamics in Svalbard. Phytoplankton forms the basis of the marine food web, and its seasonal dynamics depend on the availability of light and nutrients, both of which are affected by glacier runoff. We use satellite ocean color, an indicator of phytoplankton biomass, and glacier mass balance modeling to find that the overall effect of glacier runoff on marine productivity is positive within the major fjord systems of Svalbard.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021, https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
Kyra A. St. Pierre, Brian P. V. Hunt, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Allison A. Oliver, and Kenneth P. Lertzman
Biogeosciences, 18, 3029–3052, https://doi.org/10.5194/bg-18-3029-2021, https://doi.org/10.5194/bg-18-3029-2021, 2021
Short summary
Short summary
Using 4 years of paired freshwater and marine water chemistry from the Central Coast of British Columbia (Canada), we show that coastal temperate rainforest streams are sources of organic nitrogen, iron, and carbon to the Pacific Ocean but not the inorganic nutrients easily used by marine phytoplankton. This distinction may have important implications for coastal food webs and highlights the need to sample all nutrients in fresh and marine waters year-round to fully understand coastal dynamics.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Marie-Sophie Maier, Cristian R. Teodoru, and Bernhard Wehrli
Biogeosciences, 18, 1417–1437, https://doi.org/10.5194/bg-18-1417-2021, https://doi.org/10.5194/bg-18-1417-2021, 2021
Short summary
Short summary
Based on a 2-year monitoring study, we found that the freshwater system of the Danube Delta, Romania, releases carbon dioxide and methane to the atmosphere. The amount of carbon released depends on the freshwater feature (river branches, channels and lakes), season and hydrologic condition, affecting the exchange with the wetland. Spatial upscaling should therefore consider these factors. Furthermore, the Danube Delta increases the amount of carbon reaching the Black Sea via the Danube River.
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Simon David Herzog, Per Persson, Kristina Kvashnina, and Emma Sofia Kritzberg
Biogeosciences, 17, 331–344, https://doi.org/10.5194/bg-17-331-2020, https://doi.org/10.5194/bg-17-331-2020, 2020
Short summary
Short summary
Fe concentrations in boreal rivers are increasing strongly in several regions in Northern Europe. This study focuses on how Fe speciation and interaction with organic matter affect stability of Fe across estuarine salinity gradients. The results confirm a positive relationship between the relative contribution of organically complexed Fe and stability. Moreover, organically complexed Fe was more prevalent at high flow conditions and more dominant further upstream in a catchment.
Ines Bartl, Dana Hellemann, Christophe Rabouille, Kirstin Schulz, Petra Tallberg, Susanna Hietanen, and Maren Voss
Biogeosciences, 16, 3543–3564, https://doi.org/10.5194/bg-16-3543-2019, https://doi.org/10.5194/bg-16-3543-2019, 2019
Short summary
Short summary
Irrespective of variable environmental settings in estuaries, the quality of organic particles is an important factor controlling microbial processes that facilitate a reduction of land-derived nitrogen loads to the open sea. Through the interplay of biogeochemical processing, geomorphology, and hydrodynamics, organic particles may function as a carrier and temporary reservoir of nitrogen, which has a major impact on the efficiency of nitrogen load reduction.
Moturi S. Krishna, Rongali Viswanadham, Mamidala H. K. Prasad, Vuravakonda R. Kumari, and Vedula V. S. S. Sarma
Biogeosciences, 16, 505–519, https://doi.org/10.5194/bg-16-505-2019, https://doi.org/10.5194/bg-16-505-2019, 2019
Short summary
Short summary
An order-of-magnitude variability in DIC was found within the Indian estuaries due to significant variability in size of rivers, precipitation pattern and lithology in the catchments. Indian monsoonal estuaries annually export ∼ 10.3 Tg of DIC to the northern Indian Ocean, of which 75 % enters into the Bay of Bengal. Our results indicated that chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, https://doi.org/10.5194/bg-16-485-2019, 2019
Short summary
Short summary
Data obtained from sediment trap experiments in the Indian Ocean indicate that lithogenic matter ballast increases organic carbon flux rates on average by 45 % and by up to 62 % at trap locations in the river-influenced regions of the Indian Ocean. Such a strong lithogenic matter ballast effect implies that land use changes and the associated enhanced transport of lithogenic matter may significantly affect the CO2 uptake of the organic carbon pump in the receiving ocean areas.
Yongping Yuan, Ruoyu Wang, Ellen Cooter, Limei Ran, Prasad Daggupati, Dongmei Yang, Raghavan Srinivasan, and Anna Jalowska
Biogeosciences, 15, 7059–7076, https://doi.org/10.5194/bg-15-7059-2018, https://doi.org/10.5194/bg-15-7059-2018, 2018
Short summary
Short summary
Elevated levels of nutrients in surface water, which originate from deposition of atmospheric N, drainage from agricultural fields, and discharges from sewage treatment plants, cause explosive algal blooms that impair water quality. The complex cycling of nutrients through the land, air, and water requires an integrated multimedia modeling system linking air, land surface, and stream processes to assess their sources, transport, and transformation in large river basins for decision making.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Tom Jilbert, Eero Asmala, Christian Schröder, Rosa Tiihonen, Jukka-Pekka Myllykangas, Joonas J. Virtasalo, Aarno Kotilainen, Pasi Peltola, Päivi Ekholm, and Susanna Hietanen
Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, https://doi.org/10.5194/bg-15-1243-2018, 2018
Short summary
Short summary
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here we show that when rivers reach the ocean much of this iron settles to the sediments by a process known as flocculation. The iron is then used by microbes in coastal sediments, which are important hotspots in the global carbon cycle.
Shin-Ah Lee and Guebuem Kim
Biogeosciences, 15, 1115–1122, https://doi.org/10.5194/bg-15-1115-2018, https://doi.org/10.5194/bg-15-1115-2018, 2018
Short summary
Short summary
The fluorescent dissolved organic matter (FDOM) delivered from riverine discharges significantly affects carbon and biogeochemical cycles in coastal waters. Our results show that the terrestrial concentrations of humic-like FDOM in river water were 60–80 % higher in the summer and fall, while the in situ production of protein-like FDOM was 70–80 % higher in the spring. Our results suggest that there are large seasonal changes in riverine fluxes of FDOM components to the ocean.
Yafei Zhu, Andrew McCowan, and Perran L. M. Cook
Biogeosciences, 14, 4423–4433, https://doi.org/10.5194/bg-14-4423-2017, https://doi.org/10.5194/bg-14-4423-2017, 2017
Short summary
Short summary
We used a 3-D coupled hydrodynamic–biogeochemical water quality model to investigate the effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system. The results highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Kamilla S. Sjøgaard, Alexander H. Treusch, and Thomas B. Valdemarsen
Biogeosciences, 14, 4375–4389, https://doi.org/10.5194/bg-14-4375-2017, https://doi.org/10.5194/bg-14-4375-2017, 2017
Short summary
Short summary
Permanent flooding of low-lying coastal areas is a growing threat due to climate-change-related sea-level rise. To reduce coastal damage, buffer zones can be created by managed coastal realignment where existing dykes are breached and new dykes are built further inland. We studied the impacts on organic matter degradation in soils flooded with seawater by managed coastal realignment and suggest that most of the organic carbon present in coastal soils will be permanently preserved after flooding.
Allison A. Oliver, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Paul Sanborn, Chuck Bulmer, and Ken P. Lertzman
Biogeosciences, 14, 3743–3762, https://doi.org/10.5194/bg-14-3743-2017, https://doi.org/10.5194/bg-14-3743-2017, 2017
Short summary
Short summary
Rivers draining small watersheds of the outer coastal Pacific temperate rainforest export some of the highest yields of dissolved organic carbon (DOC) in the world directly to the ocean. This DOC is largely derived from soils and terrestrial plants. Rainfall, temperature, and watershed characteristics such as wetlands and lakes are important controls on DOC export. This region may be significant for carbon export and linking terrestrial carbon to marine ecosystems.
Mathilde Couturier, Gwendoline Tommi-Morin, Maude Sirois, Alexandra Rao, Christian Nozais, and Gwénaëlle Chaillou
Biogeosciences, 14, 3321–3336, https://doi.org/10.5194/bg-14-3321-2017, https://doi.org/10.5194/bg-14-3321-2017, 2017
Short summary
Short summary
At the land–ocean interface, subterranean estuaries (STEs) are a critical transition pathway of nitrogen. Environmental conditions in the groundwater lead to nitrogen transformation, altering the nitrogen species and concentrations exported to the coastal ocean. This study highlights the role of a STE in processing groundwater-derived N in a shallow boreal STE, far from anthropogenic pressures. Biogeochemical transformations provide new N species from terrestrial origin to the coastal ocean.
Elin Almroth-Rosell, Moa Edman, Kari Eilola, H. E. Markus Meier, and Jörgen Sahlberg
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, https://doi.org/10.5194/bg-13-5753-2016, 2016
Short summary
Short summary
Nutrients from land have been discussed to increase eutrophication in the open sea. This model study shows that the coastal zone works as an efficient filter. Water depth and residence time regulate the retention that occurs mostly in the sediment due to processes such as burial and denitrification. On shorter timescales the retention capacity might seem less effective when the land load of nutrients decreases, but with time the coastal zone can import nutrients from the open sea.
B. W. Abbott, J. B. Jones, S. E. Godsey, J. R. Larouche, and W. B. Bowden
Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, https://doi.org/10.5194/bg-12-3725-2015, 2015
Short summary
Short summary
As high latitudes warm, carbon and nitrogen stored in permafrost soil will be vulnerable to erosion and transport to Arctic streams and rivers. We sampled outflow from 83 permafrost collapse features in Alaska. Permafrost collapse caused substantial increases in dissolved organic carbon and inorganic nitrogen but decreased methane concentration by 90%. Upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin
Biogeosciences, 12, 3385–3402, https://doi.org/10.5194/bg-12-3385-2015, https://doi.org/10.5194/bg-12-3385-2015, 2015
G. G. Laruelle, R. Lauerwald, J. Rotschi, P. A. Raymond, J. Hartmann, and P. Regnier
Biogeosciences, 12, 1447–1458, https://doi.org/10.5194/bg-12-1447-2015, https://doi.org/10.5194/bg-12-1447-2015, 2015
Short summary
Short summary
This study quantifies the exchange of carbon dioxide (CO2) between the atmosphere and the land-ocean aquatic continuum (LOAC) of the northeast North American coast, which consists of rivers, estuaries, and the coastal ocean. Our analysis reveals significant variations of the flux intensity both in time and space across the study area. Ice cover, snowmelt, and the intensity of the estuarine filter are identified as important control factors of the CO2 exchange along the LOAC.
O. Arnalds, H. Olafsson, and P. Dagsson-Waldhauserova
Biogeosciences, 11, 6623–6632, https://doi.org/10.5194/bg-11-6623-2014, https://doi.org/10.5194/bg-11-6623-2014, 2014
Short summary
Short summary
Iceland is one of the largest dust sources on Earth. Based on two separate methods, we estimate dust emissions to range between 30 and 40 million tons annually. Ocean deposition ranges between 5.5 and 13.8 million tons. Calculated iron deposition in oceans around Iceland ranges between 0.56 to 1.4 million tons, which are distributed over wide areas. Iron is a limiting nutrient for primary production in these waters, and dust is likely to affect oceanic Fe levels around Iceland.
N. I. W. Leblans, B. D. Sigurdsson, P. Roefs, R. Thuys, B. Magnússon, and I. A. Janssens
Biogeosciences, 11, 6237–6250, https://doi.org/10.5194/bg-11-6237-2014, https://doi.org/10.5194/bg-11-6237-2014, 2014
Short summary
Short summary
We studied the influence of allochthonous N inputs on primary succession and soil development of a 50-year-old volcanic island, Surtsey. Seabirds increased the ecosystem N accumulation rate inside their colony to ~47 kg ha-1 y-1, compared to 0.7 kg ha-1 y-1 outside it. A strong relationship was found between total ecosystem N stock and both total above- and belowground biomass and SOC stock, which shows how fast external N input can boost primary succession and soil formation.
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
H. E. Reader, C. A. Stedmon, and E. S. Kritzberg
Biogeosciences, 11, 3409–3419, https://doi.org/10.5194/bg-11-3409-2014, https://doi.org/10.5194/bg-11-3409-2014, 2014
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
R. H. Li, S. M. Liu, Y. W. Li, G. L. Zhang, J. L. Ren, and J. Zhang
Biogeosciences, 11, 481–506, https://doi.org/10.5194/bg-11-481-2014, https://doi.org/10.5194/bg-11-481-2014, 2014
E. Asmala, R. Autio, H. Kaartokallio, L. Pitkänen, C. A. Stedmon, and D. N. Thomas
Biogeosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, https://doi.org/10.5194/bg-10-6969-2013, 2013
C. Buzzelli, Y. Wan, P. H. Doering, and J. N. Boyer
Biogeosciences, 10, 6721–6736, https://doi.org/10.5194/bg-10-6721-2013, https://doi.org/10.5194/bg-10-6721-2013, 2013
S. Nagao, M. Kanamori, S. Ochiai, S. Tomihara, K. Fukushi, and M. Yamamoto
Biogeosciences, 10, 6215–6223, https://doi.org/10.5194/bg-10-6215-2013, https://doi.org/10.5194/bg-10-6215-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
A. Rumín-Caparrós, A. Sanchez-Vidal, A. Calafat, M. Canals, J. Martín, P. Puig, and R. Pedrosa-Pàmies
Biogeosciences, 10, 3493–3505, https://doi.org/10.5194/bg-10-3493-2013, https://doi.org/10.5194/bg-10-3493-2013, 2013
M. A. Charette, C. F. Breier, P. B. Henderson, S. M. Pike, I. I. Rypina, S. R. Jayne, and K. O. Buesseler
Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, https://doi.org/10.5194/bg-10-2159-2013, 2013
B. Deutsch, V. Alling, C. Humborg, F. Korth, and C. M. Mörth
Biogeosciences, 9, 4465–4475, https://doi.org/10.5194/bg-9-4465-2012, https://doi.org/10.5194/bg-9-4465-2012, 2012
P. A. Faber, A. J. Kessler, J. K. Bull, I. D. McKelvie, F. J. R. Meysman, and P. L. M. Cook
Biogeosciences, 9, 4087–4097, https://doi.org/10.5194/bg-9-4087-2012, https://doi.org/10.5194/bg-9-4087-2012, 2012
M. E. Dueker, G. D. O'Mullan, K. C. Weathers, A. R. Juhl, and M. Uriarte
Biogeosciences, 9, 803–813, https://doi.org/10.5194/bg-9-803-2012, https://doi.org/10.5194/bg-9-803-2012, 2012
L. Lassaletta, E. Romero, G. Billen, J. Garnier, H. García-Gómez, and J. V. Rovira
Biogeosciences, 9, 57–70, https://doi.org/10.5194/bg-9-57-2012, https://doi.org/10.5194/bg-9-57-2012, 2012
J. Yu, Y. Fu, Y. Li, G. Han, Y. Wang, D. Zhou, W. Sun, Y. Gao, and F. X. Meixner
Biogeosciences, 8, 2427–2435, https://doi.org/10.5194/bg-8-2427-2011, https://doi.org/10.5194/bg-8-2427-2011, 2011
E. S. Karlsson, A. Charkin, O. Dudarev, I. Semiletov, J. E. Vonk, L. Sánchez-García, A. Andersson, and Ö. Gustafsson
Biogeosciences, 8, 1865–1879, https://doi.org/10.5194/bg-8-1865-2011, https://doi.org/10.5194/bg-8-1865-2011, 2011
Cited articles
Alongi, D. M.: Carbon Balance in Salt Marsh and Mangrove Ecosystems: A Global Synthesis, J. Mar. Sci. Eng., 8, 767, https://doi.org/10.3390/jmse8100767, 2020.
Arnaud, M., Bakhos, M., Rumpel, C., Dignac, M. F., Norby, R. J., Bottinelli, N., Deborde. J., Geairon, P., Kostyrka, P., Gernigon, J., Lemesle, J. C., and Polsenaere, P.: Salt marsh litter quality and decomposition under sea-level rise scenarios: from leaves to fine absorptive roots, Commun. Earth Environ., submitted, January 2024.
Artigas, F., Shin, J. Y., Hobble, C., Marti-Donati, A., Schäfer, K. V. R., and Pechmann, I.: Long term carbon storage potential and CO2 sink strength of a restored salt marsh in New Jersey, Agr. Forest Meteorol., 200, 313–321, https://doi.org/10.1016/j.agrformet.2014.09.012, 2015.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, Adv. Ecol. Res., 30, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 2000.
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-2351-1, 2012.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future: CARBON BALANCE and EDDY COVARIANCE, Glob. Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods, Ecology, 69, 1331–1340, https://doi.org/10.2307/1941631, 1988.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Bel Hassen, M.: Spatial and Temporal Variability in Nutrients and Suspended Material Processing in the Fier d'Ars Bay (France), Estuar. Coast. Shelf S., 52, 457–469, https://doi.org/10.1006/ecss.2000.0754, 2001.
Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett., 32, L14601, https://doi.org/10.1029/2005GL023053, 2005.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32. https://doi.org/10.1023/A:1010933404324, 2001.
Burba, G.: 9 – Atmospheric flux measurements, in: Advances in Spectroscopic Monitoring of the Atmosphere, edited by: Chen, W., Venables, D. S., and Sigrist, M. W., Elsevier, 443–520, https://doi.org/10.1016/B978-0-12-815014-6.00004-X, 2021.
Cai, W.-J.: Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?, Annu. Rev. Mar. Sci., 3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723, 2011.
Campbell, A. D., Fatoyinbo, L., Goldberg, L., and Lagomasino, D.: Global hotspots of salt marsh change and carbon emissions, Nature, 612, 701–706, https://doi.org/10.1038/s41586-022-05355-z, 2022.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global carbon sequestration in tidal, saline wetland soils, Global Biogeochem. Cy., 17, 1111, https://doi.org/10.1029/2002GB001917, 2003.
Cui, X., Goff, T., Cui, S., Menefee, D., Wu, Q., Rajan, N., Nair, S., Phillips, N., and Walker, F.: Predicting carbon and water vapor fluxes using machine learning and novel feature ranking algorithms, Sci. Total Environ., 775, 145130, https://doi.org/10.1016/j.scitotenv.2021.145130, 2021.
De Brouwer, J. and Stal, L.: Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat, Mar. Ecol. Prog. Ser., 218, 33–44, https://doi.org/10.3354/meps218033, 2001.
Duarte, B., Couto, T., Freitas, J., Valentim, J., Silva, H., Marques, J. C., Dias, J. M., and Caçador, I.: Abiotic modulation of Spartina maritima photobiology in different latitudinal populations, Estuar. Coast. Shelf S., 130, 127–137, https://doi.org/10.1016/j.ecss.2013.02.008, 2013.
Duarte, B., Santos, D., Silva, H., Marques, J. C., and Caçador, I.: Photochemical and biophysical feedbacks of C3 and C4 Mediterranean halophytes to atmospheric CO2 enrichment confirmed by their stable isotope signatures, Plant Physiol. Bioch., 80, 10–22, https://doi.org/10.1016/j.plaphy.2014.03.016, 2014.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.: Post-field data quality control, in: Handbook of micrometeorology, University of Bayreuth, 181–208, Springer, 2004.
Foken, Th. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agr. Forest Meteorol., 78, 83–105, https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Forbrich, I. and Giblin, A. E.: Marsh–atmosphere CO2 exchange in a New England salt marsh, J. Geophys. Res.-Biogeo., 120, 1825–1838, https://doi.org/10.1002/2015JG003044, 2015.
Forbrich, I., Giblin, A. E., and Hopkinson, C. S.: Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes, J. Geophys. Res.-Biogeo., 123, 867–878, https://doi.org/10.1002/2017JG004336, 2018.
Gash, J. H. C. and Culf, A. D.: Applying a linear detrend to eddy correlation data in realtime, Bound.-Lay. Meteorol., 79, 301–306, https://doi.org/10.1007/BF00119443, 1996.
Gattuso, J.-P., Frankignoulle, M., and Smith, S. V.: Measurement of community metabolism and significance in the coral reef CO2 source-sink debate, P. Natl. Acad. Sci. USA, 96, 13017–13022, https://doi.org/10.1073/pnas.96.23.13017, 1999.
Gedan, K. B., Silliman, B. R., and Bertness, M. D.: Centuries of Human-Driven Change in Salt Marsh Ecosystems, Annu. Rev. Mar. Sci., 1, 117–141, https://doi.org/10.1146/annurev.marine.010908.163930, 2009.
Gnanamoorthy, P., Selvam, V., Deb Burman, P. K., Chakraborty, S., Karipot, A., Nagarajan, R., Ramasubramanian, R., Song, Q., Zhang, Y., and Grace, J.: Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram, Estuar. Coast. Shelf S., 243, 106828, https://doi.org/10.1016/j.ecss.2020.106828, 2020.
Göckede, M., Rebmann, C., and Foken, T.: A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites, Agr. Forest Meteorol., 127, 175–188, https://doi.org/10.1016/j.agrformet.2004.07.012, 2004.
Gu, J., Luo, M., Zhang, X., Christakos, G., Agusti, S., Duarte, C. M., and Wu, J.: Losses of salt marsh in China: Trends, threats and management, Estuar. Coast. Shelf S., 214, 98–109, https://doi.org/10.1016/j.ecss.2018.09.015, 2018.
Gu, L., Falge, E. M., Boden, T., Baldocchi, D. D., Black, T. A., Saleska, S. R., Suni, T., Verma, S. B., Vesala, T., Wofsy, S. C., and Xu, L.: Objective threshold determination for nighttime eddy flux filtering, Agr. Forest Meteorol., 128, 179–197, https://doi.org/10.1016/j.agrformet.2004.11.006, 2005.
Guo, H., Noormets, A., Zhao, B., Chen, J., Sun, G., Gu, Y., Li, B., and Chen, J.: Tidal effects on net ecosystem exchange of carbon in an estuarine wetland, Agr. Forest Meteorol., 149, 1820–1828, https://doi.org/10.1016/j.agrformet.2009.06.010, 2009.
Han, G., Chu, X., Xing, Q., Li, D., Yu, J., Luo, Y., Wang, G., Mao, P., and Rafique, R.: Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta, J. Geophys. Res.-Biogeo., 120, 1506–1520, https://doi.org/10.1002/2015JG002923, 2015.
Herbst, M., Friborg, T., Schelde, K., Jensen, R., Ringgaard, R., Vasquez, V., Thomsen, A. G., and Soegaard, H.: Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland, Biogeosciences, 10, 39–52, https://doi.org/10.5194/bg-10-39-2013, 2013.
Hwang, Y.-H. and Morris, J. T.: Whole-plant gas exchange responses of Spartina alterniflora (Poaceae) to a range of constant and transient salinities, Am. J. Bot., 81, 659–665, https://doi.org/10.1002/j.1537-2197.1994.tb15500.x, 1994.
Jia, X., Zha, T., Wang, S., Bourque, C. P.-A., Wang, B., Qin, S., and Zhang, Y.: Canopy photosynthesis modulates soil respiration in a temperate semi-arid shrubland at multiple timescales, Plant Soil, 432, 437–450, https://doi.org/10.1007/s11104-018-3818-z, 2018.
Jiang, L.-Q., Cai, W.-J., and Wang, Y.: A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries, Limnol. Oceanogr., 53, 2603–2615, https://doi.org/10.4319/lo.2008.53.6.2603, 2008.
Jimenez, K. L., Starr, G., Staudhammer, C. L., Schedlbauer, J. L., Loescher, H. W., Malone, S. L., and Oberbauer, S. F.: Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh: EVERGLADES MARSH CARBON DYNAMICS, J. Geophys. Res., 117, G04009, https://doi.org/10.1029/2012JG002117, 2012.
Kathilankal, J. C., Mozdzer, T. J., Fuentes, J. D., D'Odorico, P., McGlathery, K. J., and Zieman, J. C.: Tidal influences on carbon assimilation by a salt marsh, Environ. Res. Lett., 3, 044010, https://doi.org/10.1088/1748-9326/3/4/044010, 2008.
Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M., Kim, J., and Baldocchi, D.: Gap-filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis, Glob. Change Biol., 26, 1499–1518, https://doi.org/10.1111/gcb.14845, 2020.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Knox, S. H., Windham-Myers, L., Anderson, F., Sturtevant, C., and Bergamaschi, B.: Direct and Indirect Effects of Tides on Ecosystem-Scale CO2 Exchange in a Brackish Tidal Marsh in Northern California, J. Geophys. Res.-Biogeo., 123, 787–806, https://doi.org/10.1002/2017JG004048, 2018.
Kowalski, S., Sartore, M., Burlett, R., Berbigier, P., and Loustau, D.: The annual carbon budget of a French pine forest (Pinus pinaster) following harvest: ANNUAL CARBON BUDGET OF A PINE FOREST AFTER HARVEST, Glob. Change Biol., 9, 1051–1065, https://doi.org/10.1046/j.1365-2486.2003.00627.x, 2003.
Krauss, K. W., Holm, G. O., Perez, B. C., McWhorter, D. E., Cormier, N., Moss, R. F., Johnson, D. J., Neubauer, S. C., and Raynie, R. C.: Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance: Gas Fluxes From Louisiana Marshes, J. Geophys. Res.-Biogeo., 121, 1503–1521, https://doi.org/10.1002/2015JG003224, 2016.
Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation: SEPARATION OF NEE INTO GPP AND RECO, Glob. Change Biol., 16, 187–208, https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010.
Lee, S.-C., Fan, C.-J., Wu, Z.-Y., and Juang, J.-Y.: Investigating effect of environmental controls on dynamics of CO2 budget in a subtropical estuarial marsh wetland ecosystem, Environ. Res. Lett., 10, 025005, https://doi.org/10.1088/1748-9326/10/2/025005, 2015.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R news, 2, 18–22, 2022.
Ma, J., Wang, Z.-Y., Stevenson, B. A., Zheng, X.-J., and Li, Y.: An inorganic CO2 diffusionand dissolution process explains negative CO2 fluxes in saline/alkaline soils, Sci. Rep., 3, 2025, https://doi.org/10.1038/srep02025, 2013.
Mayen, J., Polsenaere, P., Regaudie De Gioux, A., Dupuy, C., Vagner, M., Lemesle, J.-C., Poitevin, B., and Souchu, P.: Influence of typology and management practices on water pCO2 and atmospheric CO2 fluxes over two temperate shelf–estuary–marsh water continuums, Regional Studies in Marine Science, 67, 103209, https://doi.org/10.1016/j.rsma.2023.103209, 2023.
Mayen, J., Polsenaere, P., Regaudie de Gioux, A., Deborde, J., Collin, K., Le Merrer, Y., Foucault, E., Ouisse, V., André, L., Lamaud, E., and Souchu, P.: Influence of aquatic metabolism on temporal marsh carbon dynamics and associated atmospheric CO2 fluxes, in preparation, 2024.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
Mcowen, C., Weatherdon, L., Bochove, J.-W., Sullivan, E., Blyth, S., Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C., Spalding, M., and Fletcher, S.: A global map of saltmarshes, Biodiversity Data Journal, 5, e11764, https://doi.org/10.3897/BDJ.5.e11764, 2017.
Migné, A., Spilmont, N., and Davoult, D.: In situ measurements of benthic primary production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France), Cont. Shelf Res., 24, 1437–1449, https://doi.org/10.1016/j.csr.2004.06.002, 2004.
Miller, W. D., Neubauer, S. C., and Anderson, I. C.: Effects of Sea Level Induced Disturbances on High Salt Marsh Metabolism, Estuaries, 24, 357, https://doi.org/10.2307/1353238, 2001.
Mitra, B., Miao, G., Minick, K., McNulty, S. G., Sun, G., Gavazzi, M., King, J. S., and Noormets, A.: Disentangling the Effects of Temperature, Moisture, and Substrate Availability on Soil CO2 Efflux, J. Geophys. Res.-Biogeo., 124, 2060–2075, https://doi.org/10.1029/2019JG005148, 2019.
Moffett, K. B., Wolf, A., Berry, J. A., and Gorelick, S. M.: Salt marsh–atmosphere exchange of energy, water vapor, and carbon dioxide: Effects of tidal flooding and biophysical controls, Water Resour. Res., 46, 2009WR009041, https://doi.org/10.1029/2009WR009041, 2010.
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, Detrending, and Filtering of Eddy Covariance Time Series, in: Handbook of Micrometeorology, Vol. 29, edited by: Lee, X., Massman, W., and Law, B., Kluwer Academic Publishers, Dordrecht, 7–31, https://doi.org/10.1007/1-4020-2265-4_2, 2004.
Morelle, J., Roose-Amsaleg, C., and Laverman, A. M.: Microphytobenthos as a source of labile organic matter for denitrifying microbes, Estuar. Coast. Shelf S., 275, 108006, https://doi.org/10.1016/j.ecss.2022.108006, 2022.
Morris, J. T.: Effects of oxygen and salinity on ammonium uptake by Spartina alterniflora Loisel. and Spartina patens (Aiton) Muhl., J. Exp. Mar. Biol. Ecol., 78, 87–98, https://doi.org/10.1016/0022-0981(84)90071-6, 1984.
Nahrawi, H.: Exchange of Carbon Dioxide between a Southeastern Salt Marsh and the Atmosphere, PhD thesis, The University of Georgia, 131 pp., 2019.
Nahrawi, H., Leclerc, M. Y., Pennings, S., Zhang, G., Singh, N., and Pahari, R.: Impact of tidal inundation on the net ecosystem exchange in daytime conditions in a salt marsh, Agr. Forest Meteorol., 294, 108133, https://doi.org/10.1016/j.agrformet.2020.108133, 2020.
Najjar, R. G., Herrmann, M., Alexander, R., Boyer, E. W., Burdige, D. J., Butman, D., Cai, W.-J., Canuel, E. A., Chen, R. F., Friedrichs, M. A. M., Feagin, R. A., Griffith, P. C., Hinson, A. L., Holmquist, J. R., Hu, X., Kemp, W. M., Kroeger, K. D., Mannino, A., McCallister, S. L., McGillis, W. R., Mulholland, M. R., Pilskaln, C. H., Salisbury, J., Signorini, S. R., St-Laurent, P., Tian, H., Tzortziou, M., Vlahos, P., Wang, Z. A., and Zimmerman, R. C.: Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America, Global Biogeochem. Cy., 32, 389–416, https://doi.org/10.1002/2017GB005790, 2018.
Nyman, J. A. and DeLaune, R. D.: CO2 emission and soil Eh responses to different hydrological conditions in fresh, brackish, and saline marsh soils, Limnol. Oceanogr., 36, 1406–1414, https://doi.org/10.4319/lo.1991.36.7.1406, 1991.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Polsenaere, P., Lamaud, E., Lafon, V., Bonnefond, J.-M., Bretel, P., Delille, B., Deborde, J., Loustau, D., and Abril, G.: Spatial and temporal CO2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production, Biogeosciences, 9, 249–268, https://doi.org/10.5194/bg-9-249-2012, 2012.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Reynolds, O.: An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels, Philos. T. R. Soc. Lond., 935–982, 1883.
Rodda, S., Thumaty, K., Jha, C., and Dadhwal, V.: Seasonal Variations of Carbon Dioxide, Water Vapor and Energy Fluxes in Tropical Indian Mangroves, Forests, 7, 35, https://doi.org/10.3390/f7020035, 2016.
Ruttenberg, K. C.: Development of a sequential extraction method for different forms of phosphorus in marine sediments, Limnol. Oceanogr., 37, 1460–1482, https://doi.org/10.4319/lo.1992.37.7.1460, 1992.
Savelli, R., Bertin, X., Orvain, F., Gernez, P., Dale, A., Coulombier, T., Pineau, P., Lachaussée, N., Polsenaere, P., Dupuy, C., and Le Fouest, V.: Impact of Chronic and Massive Resuspension Mechanisms on the Microphytobenthos Dynamics in a Temperate Intertidal Mudflat, J. Geophys. Res.-Biogeo., 124, 3752–3777, https://doi.org/10.1029/2019JG005369, 2019.
Schäfer, K. V. R., Tripathee, R., Artigas, F., Morin, T. H., and Bohrer, G.: Carbon dioxide fluxes of an urban tidal marsh in the Hudson-Raritan estuary: Carbon dioxide fluxes of an wetland, J. Geophys. Res.-Biogeo., 119, 2065–2081, https://doi.org/10.1002/2014JG002703, 2014.
Schäfer, K. V. R., Duman, T., Tomasicchio, K., Tripathee, R., and Sturtevant, C.: Carbon dioxide fluxes of temperate urban wetlands with different restoration history, Agr. Forest Meteorol., 275, 223–232, https://doi.org/10.1016/j.agrformet.2019.05.026, 2019.
Song, S., Wang, Z. A., Kroeger, K. D., Eagle, M., Chu, S. N., and Ge, J.: High-frequency variability of carbon dioxide fluxes in tidal water over a temperate salt marsh, Limnol. Oceanogr., 68, 2108–2125, https://doi.org/10.1002/lno.12409, 2023.
Sousa, A. I., Lillebø, A. I., Pardal, M. A., and Caçador, I.: Productivity and nutrient cycling in salt marshes: Contribution to ecosystem health, Estuar. Coast. Shelf S., 87, 640–646, https://doi.org/10.1016/j.ecss.2010.03.007, 2010.
Van Dam, B., Polsenaere, P., Barreras-Apodaca, A., Lopes, C., Sanchez-Mejia, Z., Tokoro, T., Kuwae, T., Loza, L. G., Rutgersson, A., Fourqurean, J., and Thomas, H.: Global Trends in Air-Water CO2 Exchange Over Seagrass Meadows Revealed by Atmospheric Eddy Covariance, Global Biogeochem. Cy., 35, e2020GB006848, https://doi.org/10.1029/2020GB006848, 2021.
Vargas, R., Baldocchi, D. D., Bahn, M., Hanson, P. J., Hosman, K. P., Kulmala, L., Pumpanen, J., and Yang, B.: On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations, New Phytol., 191, 1006–1017, https://doi.org/10.1111/j.1469-8137.2011.03771.x, 2011.
Vickers, D. and Mahrt, L.: Quality Control and Flux Sampling Problems for Tower and Aircraft Data, J. Atmos. Ocean. Techn., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO2, 1997.
Wang, Q., Wang, C. H., Zhao, B., Ma, Z. J., Luo, Y. Q., Chen, J. K., and Li, B.: Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats, Biol. Invasions, 8, 1547–1560, https://doi.org/10.1007/s10530-005-5846-x, 2006.
Wang, Z. A. and Cai, W.-J.: Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2 pump, Limnol. Oceanogr., 49, 341–354, https://doi.org/10.4319/lo.2004.49.2.0341, 2004.
Wang, Z. A., Kroeger, K. D., Ganju, N. K., Gonneea, M. E., and Chu, S. N.: Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean, Limnol. Oceanogr., 61, 1916–1931, https://doi.org/10.1002/lno.10347, 2016.
Wei, S., Han, G., Chu, X., Song, W., He, W., Xia, J., and Wu, H.: Effect of tidal flooding on ecosystem CO2 and CH4 fluxes in a salt marsh in the Yellow River Delta, Estuar. Coast. Shelf S., 232, 106512, https://doi.org/10.1016/j.ecss.2019.106512, 2020a.
Wei, S., Han, G., Jia, X., Song, W., Chu, X., He, W., Xia, J., and Wu, H.: Tidal effects on ecosystem CO2 exchange at multiple timescales in a salt marsh in the Yellow River Delta, Estuar. Coast. Shelf S., 238, 106727, https://doi.org/10.1016/j.ecss.2020.106727, 2020b.
Xi, M., Zhang, X., Kong, F., Li, Y., Sui, X., and Wang, X.: CO2 exchange under different vegetation covers in a coastal wetland of Jiaozhou Bay, China, Ecol. Eng., 137, 26–33, https://doi.org/10.1016/j.ecoleng.2018.12.025, 2019.
Zhao, J., Malone, S. L., Oberbauer, S. F., Olivas, P. C., Schedlbauer, J. L., Staudhammer, C. L., and Starr, G.: Intensified inundation shifts a freshwater wetland from a CO2 sink to a source, Glob. Change Biol., 25, 3319–3333, https://doi.org/10.1111/gcb.14718, 2019.
Short summary
We deployed an atmospheric eddy covariance system to measure continuously the net ecosystem CO2 exchanges (NEE) over a salt marsh and determine the major biophysical drivers. Our results showed an annual carbon sink mainly due to photosynthesis of the marsh plants. Our study also provides relevant information on NEE fluxes during marsh immersion by decreasing daytime CO2 uptake and night-time CO2 emissions at the daily scale, whereas the immersion did not affect the annual marsh C balance.
We deployed an atmospheric eddy covariance system to measure continuously the net ecosystem CO2...
Altmetrics
Final-revised paper
Preprint