Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-3807-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3807-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temperature and nutrient availability influence radial growth of Picea abies at opposite slopes in a treeline ecotone
Hana Kuželová
Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
Tomáš Chuman
Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
Jelena Lange
Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
Jan Tumajer
Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
Václav Treml
CORRESPONDING AUTHOR
Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
Related authors
No articles found.
J. Dvořák, M. Potůčková, and V. Treml
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 33–38, https://doi.org/10.5194/isprs-annals-V-3-2022-33-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-33-2022, 2022
Cited articles
Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M. P., and Frank, D. C.: Twentieth century redistribution in climatic drivers of Global Tree Growth, Science Advances, 5, eaat4313, https://doi.org/10.1126/sciadv.aat4313, 2019.
Barry, R. G.: Mountain Weather and climate, Cambridge University Press, Cambridge, United Kingdom, https://doi.org/10.1017/CBO9780511754753, 2008.
Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., and Zang, C.: dplR: Dendrochronology Program Library in R, R package version 1.7.4, The Comprehensive R Archive Network, https://CRAN.R-project.org/package=dplR (last access: 10 January 2024), 2023.
Carrer, M., Castagneri, D., Prendin, A. L., Petit, G., and von Arx, G.: Retrospective analysis of wood anatomical traits reveals a recent extension in tree cambial activity in two high-elevation conifers, Front. Plant Sci., 8, 737, https://doi.org/10.3389/fpls.2017.00737, 2017.
Castagneri, D., Fonti, P., von Arx, G., and Carrer, M.: How does climate influence xylem morphogenesis over the growing season? insights from long-term intra-ring anatomy in Picea abies, Ann. Bot., 119, 1011–1020, https://doi.org/10.1093/aob/mcw274, 2017.
Chagnon, C., Moreau, G., D'Orangeville, L., Caspersen, J., Labrecque-Foy, J.-P., and Achim, A.: Strong latitudinal gradient in temperature-growth coupling near the treeline of the Canadian Subarctic Forest, Frontiers in Forests and Global Change, 6, 1–12, https://doi.org/10.3389/ffgc.2023.1181653, 2023.
Cook, E. R. and Peters, K.: The smoothing spline a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies, Tree Ring Bull., 41, 45–53, 1981.
Cuny, H. E., Rathgeber, C. B., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., Rossi, S., del Castillo, E. M., Campelo, F., Vavrčík, H., Camarero, J. J., Bryukhanova, M. V., Jyske, T., Gričar, J., Gryc, V., De Luis, M., Vieira, J., Čufar, K., Kirdyanov, A. V., Oberhuber, W., Treml, V., Huang, J.-G., Li, X., Swidrak, I., Deslauriers, A., Liang, E., Nöjd, P., Gruber, A., Nabais, C., Morin, H., Krause, C., King, G., and Fournier, M.: Woody biomass production lags stem-girth increase by over one month in coniferous forests, Nat. Plants, 1, 15160, https://doi.org/10.1038/nplants.2015.160, 2015.
Czech Geological Survey: Lithogeochemical database of the Czech Geological Survey, Czech Geological Survey, http://www.geology.cz/litogeochemie (last access: 10 January 2024), 2024.
Dawes, M. A., Schleppi, P., Hättenschwiler, S., Rixen, C., and Hagedorn, F.: Soil warming opens the nitrogen cycle at the Alpine Treeline, Glob. Change Biol., 23, 421–434, https://doi.org/10.1111/gcb.13365, 2017.
Dial, R. J., Maher, C. T., Hewitt, R. E., and Sullivan, P. F.: Sufficient conditions for rapid range expansion of a boreal conifer, Nature, 608, 546–551, https://doi.org/10.1038/s41586-022-05093-2, 2022.
Dial, R. J., Maher, C. T., Hewitt, R. E., Wockenfuss, A. M., Wong, R. E., Crawford, D. J., Zietlow, M. G., and Sullivan, P. F.: Arctic sea ice retreat fuels Boreal Forest Advance, Science, 383, 877–884, https://doi.org/10.1126/science.adh2339, 2024.
Dolezal, J., Kopecky, M., Dvorsky, M., Macek, M., Rehakova, K., Capkova, K., Borovec, J., Schweingruber, F., Liancourt, P., and Altman, J.: Sink limitation of plant growth determines tree line in the arid Himalayas, Funct. Ecol., 33, 553–565, https://doi.org/10.1111/1365-2435.13284, 2019.
Drollinger, S., Müller, M., Kobl, T., Schwab, N., Böhner, J., Schickhoff, U., and Scholten, T.: Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal, Nepal, J. Mt. Sci., 14, 843–858, https://doi.org/10.1007/s11629-016-4228-4, 2017.
Ellison, S. B., Sullivan, P. F., Cahoon, S. M., and Hewitt, R. E.: Poor nutrition as a potential cause of divergent tree growth near the Arctic treeline in Northern Alaska, Ecology, 100, e02878, https://doi.org/10.1002/ecy.2878, 2019.
ESRI: ArcGIS Desktop: Release 10.7.1, Environmental Systems Research Institute, Redlands, CA, 2020.
Etzold, S., Ferretti, M., Reinds, G. J., Solberg, S., Gessler, A., Waldner, P., Schaub, M., Simpson, D., Benham, S., Hansen, K., Ingerslev, M., Jonard, M., Karlsson, P. E., Lindroos, A.-J., Marchetto, A., Manninger, M., Meesenburg, H., Merilä, P., Nöjd, P., Rautio, P., Sanders, T. G. M., Seidling, W., Skudnik, M., Thimonier, A., Verstraeten, A., Vesterdal, L., Vejpustkova, M., and de Vries, W.: Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests, Forest Ecol. Manag., 458, 117762, https://doi.org/10.1016/j.foreco.2019.117762, 2020.
Fajardo, A. and Piper, F. I.: An assessment of carbon and nutrient limitations in the formation of the southern Andes Tree Line, J. Ecol., 105, 517–527, https://doi.org/10.1111/1365-2745.12697, 2017.
Fatichi, S., Pappas, C., Zscheischler, J., and Leuzinger, S.: Modelling carbon sources and sinks in terrestrial vegetation, New Phytol., 221, 652–668, https://doi.org/10.1111/nph.15451, 2019.
Gričar, J., Zupančič, M., Čufar, K., Koch, G., Schmitt, U., and Oven, P.: Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies), Ann. Bot., 97, 943–951, https://doi.org/10.1093/aob/mcl050, 2006.
Gustafson, A., Miller, P. A., Björk, R. G., Olin, S., and Smith, B.: Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model, Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021, 2021.
Hagedorn, F., Dawes, M. A., Bubnov, M. O., Devi, N. M., Grigoriev, A. A., Mazepa, V. S., Nagimov, Z. Y., Shiyatov, S. G., and Moiseev, P. A.: Latitudinal decline in stand biomass and productivity at the elevational treeline in the Ural Mountains despite a common thermal growth limit, J. Biogeogr., 47, 1827–1842, https://doi.org/10.1111/jbi.13867, 2020.
Hoch, G. and Körner, C.: Global patterns of mobile carbon stores in trees at the high-Elevation Tree Line, Global Ecol. Biogeogr., 21, 861–871, https://doi.org/10.1111/j.1466-8238.2011.00731.x, 2012.
Huang, J.-G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., Liang, E., Mäkinen, H., Oberhuber, W., Rathgeber, C. B., Tognetti, R., Treml, V., Yang, B., Zhang, J.-L., Antonucci, S., Bergeron, Y., Camarero, J. J., Campelo, F., Čufar, K., Cuny, H. E., De Luis, M., Giovannelli, A., Gričar, J., Gruber, A., Gryc, V., Güney, A., Guo, X., Huang, W., Jyske, T., Kašpar, J., King, G., Krause, C., Lemay, A., Liu, F., Lombardi, F., Martinez del Castillo, E., Morin, H., Nabais, C., Nöjd, P., Peters, R. L., Prislan, P., Saracino, A., Swidrak, I., Vavrčík, H., Vieira, J., Yu, B., Zhang, S., Zeng, Q., Zhang, Y., and Ziaco, E.: Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers, P. Natl. Acad. Sci. USA, 117, 20645–20652, https://doi.org/10.1073/pnas.2007058117, 2020.
jantumajer: jantumajer/TreelineAspect: v3 (Version v3), Zenodo [code and data set], https://doi.org/10.5281/zenodo.14619874, 2025.
Jevšenak, J.: Daily Climate Data reveal stronger climate-growth relationships for an extended European tree-ring network, Quaternary Sci. Rev., 221, 105868, https://doi.org/10.1016/j.quascirev.2019.105868, 2019.
Jevšenak, J. and Levanič, T.: DendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data, Dendrochronologia, 48, 32–39, https://doi.org/10.1016/j.dendro.2018.01.005, 2018.
Jochner, M., Bugmann, H., Nötzli, M., and Bigler, C.: Tree growth responses to changing temperatures across space and time: A fine-scale analysis at the treeline in the Swiss alps, Trees, 32, 645–660, https://doi.org/10.1007/s00468-017-1648-x, 2017.
Kirchhefer, A. J.: The influence of slope aspect on tree-ring growth of Pinus sylvestris L. in northern Norway and its implications for climate reconstruction, Dendrochronologia, 18, 27–40, 2000.
Knibbe, B.: Personal Analysis System for Tree-ring Research 5, Instruction Manual, SCIEM, Vienna, Austria, 2013.
Körner, C.: Alpine treelines functional ecology of the global high elevation tree limits, Springer, Basel, Switzerland, https://doi.org/10.1007/978-3-0348-0396-0, 2012.
Körner, C.: The cold range limit of trees, Trend. Ecol. Evol., 36, 979–989, https://doi.org/10.1016/j.tree.2021.06.011, 2021.
Körner, C.: The forest's nutrient cycle drives its carbon cycle, Tree Physiology, 42, 425–427, https://doi.org/10.1093/treephys/tpab170, 2022.
Körner, C. and Hiltbrunner, E.: The 90 ways to describe plant temperature, Perspect. Plant Ecol., 30, 16–21, https://doi.org/10.1016/j.ppees.2017.04.004, 2018.
Körner, C. and Hiltbrunner, E.: Rapid advance of climatic tree limits in the eastern alps explained by on-site temperatures, Reg. Environ. Change, 24, 98, https://doi.org/10.1007/s10113-024-02259-8, 2024.
Körner, C. and Hoch, G.: A test of treeline theory on a montane Permafrost Island, Arct. Antarct. Alp. Res., 38, 113–119, https://doi.org/10.1657/1523-0430(2006)038[0113:atotto]2.0.co;2, 2006.
Körner, C. and Hoch, G.: Not every high-latitude or high-elevation forest edge is a treeline, J. Biogeogr., 50, 838–845, https://doi.org/10.1111/jbi.14593, 2023.
Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, J. Biogeogr., 31, 713–732, https://doi.org/10.1111/j.1365-2699.2003.01043.x, 2004.
Kolář, T., Čermák, P., Oulehle, F., Trnka, M., Štěpánek, P., Cudlín, P., Hruška, J., Büntgen, U., and Rybníček, M.: Pollution Control enhanced spruce growth in the “Black Triangle” near the Czech–Polish border, Sci. Total Environ., 538, 703–711, https://doi.org/10.1016/j.scitotenv.2015.08.105, 2015.
Kuželová, H. and Treml, V.: Landscape-scale variability of air and soil temperature related to tree growth in the treeline ecotone, Alpine Bot., 130, 75–87, https://doi.org/10.1007/s00035-020-00233-8, 2020.
Lenz, A., Hoch, G., and Körner, C.: Early season temperature controls cambial activity and total tree ring width at the Alpine treeline, Plant Ecol. Divers., 6, 365–375, https://doi.org/10.1080/17550874.2012.711864, 2013.
Li, X., Liang, E., Camarero, J. J., Rossi, S., Zhang, J., Zhu, H., Fu, Y.,Sun, J., Wang, T., Piao, S., and Peñuelas J.: Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion, Natl. Sci. Rev., 10, nwad182, https://doi.org/10.1093/nsr/nwad182, 2023.
Liebig, J.: Die organische chemie in ihrer Anwendung auf Agricultur und Physiologie, Vieweg, Braunschweig, Germany, https://doi.org/10.5962/bhl.title.42117, 1840.
Liptzin, D., Sanford, R. L., and Seastedt, T. R.: Spatial patterns of total and available N and P at Alpine Treeline, Plant Soil, 365, 127–140, https://doi.org/10.1007/s11104-012-1379-0, 2013.
Lu, X., Liang, E., Wang,Y., Babst, F., and Camarero, J. J.: Mountain treelines climb slowly despite rapid climate warming, Global Ecol. Biogeogr., 30, 305–315, https://doi.org/10.1111/geb.13214, 2021.
Lucas, R. W., Klaminder, J., Futter, M. N., Bishop, K. H., Egnell, G., Laudon, H., and Högberg, P.: A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams, Forest Ecol. Manag., 262, 95–104, https://doi.org/10.1016/j.foreco.2011.03.018, 2011.
Lundqvist, S.-O., Seifert, S., Grahn, T., Olsson, L., García-Gil, M. R., Karlsson, B., and Seifert, T.: Age and weather effects on between and within ring variations of number, width and coarseness of tracheids and radial growth of young Norway spruce, Eur. J. For. Res., 137, 719–743, https://doi.org/10.1007/s10342-018-1136-x, 2018.
Mayor, J. R., Sanders, N. J., Classen, A. T., Bardgett, R. D., Clément, J. C., Fajardo, A., Lavorel, S., Sundqvist, M. K., Bahn, M., Chisholm, C., Cieraad, E., Gedalof, Z., Grigulis, K., Kudo, G., Oberski, D. L., and Wardle, D. A.: Elevation alters ecosystem properties across temperate treelines globally, Nature, 542, 91–95, https://doi.org/10.1038/nature21027, 2017.
Mehlich, A.: Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant, Commun. Soil Sci. Plan., 15, 1409–1416, https://doi.org/10.1080/00103628409367568, 1984.
Mellert, K. H. and Ewald, J.: Nutrient limitation and site-related growth potential of Norway spruce (Picea abies [L.] karst) in the Bavarian alps, Eur. J. For. Res., 133, 433–451, https://doi.org/10.1007/s10342-013-0775-1, 2014.
Metelka, L., Mrkvica, Z., and Halásová, O.: Climate, in Krkonoše – nature, history, life, Baset, Prague, pp. 147–155, ISBN: 978-80-7340-104-7, 2007.
Möhl, P., Mörsdorf, M. A., Dawes, M. A., Hagedorn, F., Bebi, P., Viglietti, D., Freppaz, M., Wipf, S., Körner, C., Thomas, F. M., and Rixen, C.: Twelve years of low nutrient input stimulates growth of trees and dwarf shrubs in the treeline ecotone, J. Ecol., 107, 768–780, https://doi.org/10.1111/1365-2745.13073, 2018.
Müller, M., Oelmann, Y., Schickhoff, U., Böhner, J., and Scholten, T.: Himalayan treeline soil and foliar stoichiometry indicate nutrient shortage with elevation, Geoderma, 291, 21–32, https://doi.org/10.1016/j.geoderma.2016.12.015, 2017.
Norby, R. J., Warren, J. M., Iversen, C. M., Childs, J., Jawdy, S. S., and Walker, A. P.: Forest stand and canopy development unaltered by 12 years of CO2 Enrichment, Tree Physiol., 42, 428–440, https://doi.org/10.1093/treephys/tpab107, 2022.
Novotný, R., Lomský, B., and Šrámek, V.: Changes in the phosphorus and nitrogen status and supply in the young spruce stands in the Lužické, the jizerské and the Orlické Mts. in the Czech Republic during the 2004–2014 period, Eur. J. For. Res., 137, 879–894, https://doi.org/10.1007/s10342-018-1146-8, 2018.
Ols, C., Klesse, S., Girardin, M. P., Evans, M. E. K., DeRose, R. J., and Trouet, V.: Detrending climate data prior to climate–growth analyses in dendroecology: A common best practice?, Dendrochronologia, 79, 126094, https://doi.org/10.1016/j.dendro.2023.126094, 2023.
Oulehle, F., Urban, O., Tahovská, K., Kolář, T., Rybníček, M., Büntgen, U., Hruška, J., Čáslavský, J., and Trnka, M.: Calcium availability affects the intrinsic water-use efficiency of temperate forest trees, Commun. Earth Environ., 4, 199, https://doi.org/10.1038/s43247-023-00822-5, 2023.
Paulsen, J. and Körner, C.: GIS-analysis of tree-line elevation in the Swiss alps suggests no exposure effect, J. Veg. Sci., 12, 817–824, https://doi.org/10.2307/3236869, 2001.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. 2023.
Rautio, P., Fürst, A., Stefan, K., Raitio, H., Bartels, U.: Part XII: Sampling and Analysis of Needles and Leaves, Version 2020-3, in: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, edited by: UNECE ICP Forests Programme Co-ordinating Centre, Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 2020.
Rathgeber, C. B., Rossi, S., and Bontemps, J.-D.: Cambial activity related to tree size in a mature silver-fir plantation, Ann. Bot., 108, 429–438, https://doi.org/10.1093/aob/mcr168, 2011.
Rathgeber, C. B., Santenoise, P., and Cuny, H. E.: Caviar: An R package for checking, displaying and processing wood-formation-monitoring data, Tree Physiol., 38, 1246–1260, https://doi.org/10.1093/treephys/tpy054, 2018.
Regent Instruments: WinDendro (Version 2021), Quebec, Canada, 2021.
Rita, A., Bonanomi, G., Allevato, E., Brghetti, M., Cesarano, G., Mogaveno, V., Rossi, S., Saulino, L., Zotti, M., and Saracino, A.: Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline, Sci. Rep., 11, 8122, https://doi.org/10.1038/s41598-021-87661-6, 2021.
Rossi, S., Deslauriers, A., and Morin, H.: Application of the gompertz equation for the study of xylem cell development, Dendrochronologia, 21, 33–39, https://doi.org/10.1078/1125-7865-00034, 2003.
Rossi, S., Deslauriers, A., and Anfodillo, T.: Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the alpine timberline, IAWA J., 27, 383–394, https://doi.org/10.1163/22941932-90000161, 2006a.
Rossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R., and Borghetti, M.: Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length, New Phytol., 170, 301–310, https://doi.org/10.1111/j.1469-8137.2006.01660.x, 2006b.
Rossi, S., Deslauriers, A., Anfodillo, T., and Carraro, V.: Evidence of threshold temperatures for xylogenesis in conifers at high altitudes, Oecologia, 152, 1–12, https://doi.org/10.1007/s00442-006-0625-7, 2007.
Rossi, S., Deslauriers, A., Griçar, J., Seo, J., Rathgeber, C. B., Anfodillo, T., Morin, H., Levanic, T., Oven, P., and Jalkanen, R.: Critical temperatures for xylogenesis in conifers of cold climates, Global Ecol. Biogeogr., 17, 696–707, https://doi.org/10.1111/j.1466-8238.2008.00417.x, 2008.
Rossi, S., Anfodillo, T., Čufar, K., Cuny, H. E., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., Prislan, P., Rathgeber, C. B. K., Saracino, A., Swidrak, I., and Treml, V.: Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere, Glob. Change Biol., 22, 3804–3813, https://doi.org/10.1111/gcb.13317, 2016.
Rousi, M., Possen, B. J., Ruotsalainen, S., Silfver, T., and Mikola, J.: Temperature and soil fertility as regulators of tree line Scots pine growth and survival—implications for the acclimation capacity of northern populations, Glob. Change Biol., 24, 545–559, https://doi.org/10.1111/gcb.13956, 2018.
Shi, C., Schneider, L., Hu, Y., Shen, M., Sun, C., Xia, J., Forbes, B. C., Shi, P., Zhang, Y., and Ciais, P.: Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau, Environ. Res. Lett., 15, 054011, https://doi.org/10.1088/1748-9326/ab7b9b, 2020.
Shi, H., Zhou, Q., He, R., Zhang, Q., and Dang, H.: Climate warming will widen the lagging gap of global treeline shift relative to densification, Agr. Forest Meteorol., 318, 108917, https://doi.org/10.1016/j.agrformet.2022.108917, 2022.
Speer, J. H.: Fundamentals of Tree Ring Research, University of Arizona Press, Tucson, ISBN: 9780816526857, 2010.
Stark, S., Kumar, M., Myrsky, E., Vuorinen, J., Kantola, A. M., Telkki, V.-V., Sjögersten, S., Olofsson, J., and Männistö, M. K.: Decreased soil microbial nitrogen under vegetation `shrubification' in the subarctic forest–Tundra Ecotone: The potential role of increasing nutrient competition between plants and soil microorganisms, Ecosystems, 26, 1504–1523, https://doi.org/10.1007/s10021-023-00847-z, 2023.
Sullivan, P. F., Ellison, S. B., McNown, R. W., Brownlee, A. H., and Sveinbjörnsson, B.: Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska, Ecology, 96, 716–727, https://doi.org/10.1890/14-0626.1, 2015.
Treml, V. and Banaš, M.: The effect of exposure on Alpine treeline position: A case study from the high sudetes, Czech Republic, Arct. Antarct. Alp. Res., 40, 751–760, https://doi.org/10.1657/1523-0430(07-060)[treml]2.0.co;2, 2008.
Treml, V., Kašpar, J., Kuželová, H., and Gryc, V.: Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, czech republic, Trees, 29, 515–526, https://doi.org/10.1007/s00468-014-1129-4, 2015.
Treml, V., Hejda, T., and Kašpar, J.: Differences in growth between shrubs and trees: How does the stature of woody plants influence their ability to thrive in cold regions?, Agr. Forest Meteorol., 271, 54–63, https://doi.org/10.1016/j.agrformet.2019.02.036, 2019.
Tumajer, J., Kašpar, J., Kuželová, H., Shishov, V. V., Tychkov, I. I., Popkova, M. I., Vaganov, E. A., and Treml, V.: Forward modeling reveals multidecadal trends in cambial kinetics and phenology at treeline, Front. Plant Sci., 12, 613643, https://doi.org/10.3389/fpls.2021.613643, 2021.
Zeng, Q., Rossi, S., and Yang, B.: Effects of age and size on xylem phenology in two conifers of northwestern China, Front. Plant Sci., 8, 2264, https://doi.org/10.3389/fpls.2017.02264, 2018.
Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R. L., Walthert, L., Wilhelm, M., Ziemińska, K., and Etzold, S.: Why trees grow at night, New Phytol., 231, 2174–2185, https://doi.org/10.1111/nph.17552, 2021.
Short summary
Treeline ecotones are exposed to pronounced differences in irradiation and nutrient availability in complex mountain relief. We compared growth phenology and growth rate of Picea abies on north- and south-facing slopes at sites differing in nutrient availability at the lower part of the treeline ecotone. Our results suggest that temperature alone governs growth phenology, but nutrient availability modulates the growth rate in the peak season when temperature no longer limits cambial activity.
Treeline ecotones are exposed to pronounced differences in irradiation and nutrient availability...
Altmetrics
Final-revised paper
Preprint