Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-3867-2025
https://doi.org/10.5194/bg-22-3867-2025
Research article
 | 
12 Aug 2025
Research article |  | 12 Aug 2025

Groundwater–CO2 emissions relationship in Dutch peatlands derived by machine learning using airborne and ground-based eddy covariance data

Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes

Related authors

The Loobos ecosystem first tower dataset: meteorology, turbulent fluxes and net ecosystem exchange (1996 to 2021)
Hong Zhao, Han Dolman, Jan Elbers, Wilma Jans, Bart Kruijt, Eddy Moors, Henk Snellen, Jordi Vila-Guerau de Arellano, Wouter Peters, Maarten Krol, Ronald Hutjes, and Michiel van der Molen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-372,https://doi.org/10.5194/essd-2025-372, 2025
Preprint under review for ESSD
Short summary
Quantifying agricultural N2O and CH4 emissions in the Netherlands using an airborne eddy covariance system
Paul Waldmann, Max Eckl, Leon Knez, Klaus-Dirk Gottschaldt, Alina Fiehn, Christian Mallaun, Michal Galkowski, Christoph Kiemle, Ronald Hutjes, Thomas Röckmann, Huilin Chen, and Anke Roiger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3297,https://doi.org/10.5194/egusphere-2025-3297, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Radiation and surface wetness drive carbon monoxide fluxes from an Arctic peatland
Asta Laasonen, Alexander Buzacott, Kukka-Maaria Kohonen, Erik Lundin, Alexander Meire, Mari Pihlatie, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2025-2094,https://doi.org/10.5194/egusphere-2025-2094, 2025
Short summary
A detailed streamflow and groundwater salinity dataset for Muttama Creek Catchment, NSW, Australia
Rutger Willem Vervoort, Floris van Ogtrop, Mina Tambrchi, Farzina Akter, Alexander Buzacott, Jason Lessels, James Moloney, Dipangkar Kundu, Feike Dijkstra, and Thomas Bishop
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-105,https://doi.org/10.5194/essd-2025-105, 2025
Revised manuscript under review for ESSD
Short summary
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024,https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary

Cited articles

Aben, R. C. H., van de Craats, D., Boonman, J., Peeters, S. H., Vriend, B., Boonman, C. C. F., van der Velde, Y., Erkens, G., and van den Berg, M.: Using automated transparent chambers to quantify CO2 emissions and potential emission reduction by water infiltration systems in drained coastal peatlands in the Netherlands, EGUsphere, 403, 1–31, https://doi.org/10.5194/egusphere-2024-403, 2024. a, b, c, d, e, f
Actueel Hoogtebestand Nederland: Kwaliteitsbeschrijving, https://www.ahn.nl/kwaliteitsbeschrijving (last access: 14 April 2025), 2025. a
Arets, E. J. M. M., van der Kolk, J. W. H., Hengeveld, G. M., Lesschen, J. P., Kramer, H., Kuikman, P. J., and Schelhaas, M. J.: Greenhouse gas reporting for the LULUCF sector in the Netherlands: methodological background, update 2018, WOt-technical report; No. 113, WOT Natuur and Milieu, https://doi.org/10.18174/441617, 2018. a
Arora, B., Wainwright, H. M., Dwivedi, D., Vaughn, L. J., Curtis, J. B., Torn, M. S., Dafflon, B., and Hubbard, S. S.: Evaluating temporal controls on greenhouse gas (GHG) fluxes in an Arctic tundra environment: An entropy-based approach, Sci. Total Environ., 649, 284–299, https://doi.org/10.1016/j.scitotenv.2018.08.251, 2019. a
Boonman, J., Hefting, M. M., Huissteden, C. J. V., van den Berg, M., Huissteden, J. V., Erkens, G., Melman, R., and van der Velde, Y.: Cutting peatland CO2 emissions with water management practices, Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, 2022. a, b, c, d, e, f
Download
Short summary
We combine two types of carbon dioxide (CO2) data from Dutch peatlands in a machine learning model: from fixed measurement towers and from a light research aircraft. We find that emissions increase with deeper water table depths (WTDs) by 4.6 tons of CO2 per hectare per year for each 10 cm deeper WTD on average. The effect is stronger in winter than in summer and varies between locations. This variability should be taken into account when developing mitigation measures.
Share
Altmetrics
Final-revised paper
Preprint