Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-3989-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3989-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Covariation of redox potential profiles and the water table level at peatland sites representing different drainage regimes: implications for ecological modelling
Markku Koskinen
CORRESPONDING AUTHOR
Department of Agricultural Sciences, Institute for Atmospheric and Earth System Research/Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
Jani Anttila
Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
Valerie Vranová
Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
Ladislav Holík
Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
Kevin Roche
Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
Michel Vorenhout
Institute for Biodiversity and Ecosystem Dynamics (IBED), Freshwater and Marine Ecology (FAME), University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
MVH Consulting, 2317 BD Leiden, the Netherlands
Mari Pihlatie
Department of Agricultural Sciences, Institute for Atmospheric and Earth System Research/Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
Raija Laiho
Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
Related authors
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025, https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Short summary
Our research explores diverse ecosystems’ roles in climate cooling via the concept of CarbonSink+ potential. We measured CO2 uptake and local aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that, while forests are vital with regard to CarbonSink+ potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resources to mitigate global warming.
Reija Kronberg, Sanna Kanerva, Markku Koskinen, Tatu Polvinen, Tuomas Mattila, and Mari Pihlatie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2801, https://doi.org/10.5194/egusphere-2025-2801, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied how off-season waterlogging affects CO2 and CH4 fluxes, and dissolved carbon dynamics in two cultivated boreal mineral soils. The study was conducted with intact soil profiles in a greenhouse. Waterlogging reduced immediate CO2 efflux, but CO2 accumulated in porewater and was released to the atmosphere upon soil drying. Cumulative emissions remained unaltered. Our results suggest that temporary waterlogging does not suppress CO2 production as much as conventionally assumed.
Lukas Kohl, Petri Kiuru, Marjo Palviainen, Maarit Raivonen, Markku Koskinen, Mari Pihlatie, and Annamari Laurén
Biogeosciences, 22, 1711–1727, https://doi.org/10.5194/bg-22-1711-2025, https://doi.org/10.5194/bg-22-1711-2025, 2025
Short summary
Short summary
We present an assay to illuminate heterogeneity in biogeochemical transformations within peat samples. For this, we injected isotope-labeled acetate into peat cores and monitored the release of label-derived gases, which we compared to microtomography images. The fraction of label converted to CO2 and the rapidness of this conversion were linked to injection depth and air-filled porosity.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Arta Bārdule, Raija Laiho, Jyrki Jauhiainen, Kaido Soosaar, Andis Lazdiņš, Kęstutis Armolaitis, Aldis Butlers, Dovilė Čiuldienė, Andreas Haberl, Ain Kull, Milda Muraškienė, Ivika Ostonen, Gristin Rohula-Okunev, Muhammad Kamil-Sardar, Thomas Schindler, Hanna Vahter, Egidijus Vigricas, and Ieva Līcīte
Biogeosciences, 22, 4241–4259, https://doi.org/10.5194/bg-22-4241-2025, https://doi.org/10.5194/bg-22-4241-2025, 2025
Short summary
Short summary
Estimates of CO2 fluxes from drained nutrient-rich organic soils in croplands and grasslands in the hemiboreal region of Europe revealed that annual net CO2 fluxes were lower than the latest (2014) IPCC (Intergovernmental Panel on Climate Change ) emission factors provided for the whole temperate zone, including the hemiboreal region. The contribution of CO2 fluxes from shallow highly decomposed organic soils, former peatlands that no longer meet the IPCC criterion for organic soils, to total emissions can be high and should not be underestimated.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025, https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Short summary
Our research explores diverse ecosystems’ roles in climate cooling via the concept of CarbonSink+ potential. We measured CO2 uptake and local aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that, while forests are vital with regard to CarbonSink+ potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resources to mitigate global warming.
Reija Kronberg, Sanna Kanerva, Markku Koskinen, Tatu Polvinen, Tuomas Mattila, and Mari Pihlatie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2801, https://doi.org/10.5194/egusphere-2025-2801, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied how off-season waterlogging affects CO2 and CH4 fluxes, and dissolved carbon dynamics in two cultivated boreal mineral soils. The study was conducted with intact soil profiles in a greenhouse. Waterlogging reduced immediate CO2 efflux, but CO2 accumulated in porewater and was released to the atmosphere upon soil drying. Cumulative emissions remained unaltered. Our results suggest that temporary waterlogging does not suppress CO2 production as much as conventionally assumed.
Asta Laasonen, Alexander Buzacott, Kukka-Maaria Kohonen, Erik Lundin, Alexander Meire, Mari Pihlatie, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2025-2094, https://doi.org/10.5194/egusphere-2025-2094, 2025
Short summary
Short summary
Carbon monoxide (CO) is an important indirect greenhouse gas, but its terrestrial sinks and sources are poorly understood. We present the first CO flux measurements using the eddy covariance method in an Arctic peatland. Our results show CO fluxes are dominated by two processes: radiation driven emissions and soil uptake. Dry peatland areas acted as CO sinks, while wetter areas were CO sources. Our findings suggest current global models may underestimate Arctic CO emissions.
Lukas Kohl, Petri Kiuru, Marjo Palviainen, Maarit Raivonen, Markku Koskinen, Mari Pihlatie, and Annamari Laurén
Biogeosciences, 22, 1711–1727, https://doi.org/10.5194/bg-22-1711-2025, https://doi.org/10.5194/bg-22-1711-2025, 2025
Short summary
Short summary
We present an assay to illuminate heterogeneity in biogeochemical transformations within peat samples. For this, we injected isotope-labeled acetate into peat cores and monitored the release of label-derived gases, which we compared to microtomography images. The fraction of label converted to CO2 and the rapidness of this conversion were linked to injection depth and air-filled porosity.
Aldis Butlers, Raija Laiho, Andis Lazdiņš, Thomas Schindler, Kaido Soosaar, Jyrki Jauhiainen, Arta Bārdule, Muhammad Kamil-Sardar, Ieva Līcīte, Valters Samariks, Andreas Haberl, Hanna Vahter, Dovilė Čiuldienė, Jani Anttila, and Kęstutis Armolaitis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1032, https://doi.org/10.5194/egusphere-2025-1032, 2025
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated the carbon balance of drained and undrained nutrient-rich forest organic soils, ranging from highly mineralized soils close to the threshold of organic soil definition to deep peat. The soils varied in pH, macronutrient levels, and C:N ratio, which contributed to the observed behavior of the soils demonstrating carbon sink and source dynamics under both drained and undrained conditions.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024, https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes, with important implications for climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands into a source of methane, but the magnitude varied regionally. In forests, changes in the water table level influenced methane fluxes, and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Aldis Butlers, Raija Laiho, Kaido Soosaar, Jyrki Jauhiainen, Thomas Schindler, Arta Bārdule, Muhammad Kamil-Sardar, Andreas Haberl, Valters Samariks, Hanna Vahter, Andis Lazdiņš, Dovilė Čiuldienė, Kęstutis Armolaitis, and Ieva Līcīte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1397, https://doi.org/10.5194/egusphere-2024-1397, 2024
Preprint archived
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated forest organic soil carbon balance and the impact of drainage. CO2 emissions from soil did not significantly differ, showing a uniform methodology should be applied in national greenhouse gas inventories. Neither drained or undrained soils lost carbon during the study period. However, it was estimated that the negative impact of drainage on carbon sequestration in hemiboreal forest soils is 0.43±2.69 t C ha−1 year−1.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Elisa Vainio, Olli Peltola, Ville Kasurinen, Antti-Jussi Kieloaho, Eeva-Stiina Tuittila, and Mari Pihlatie
Biogeosciences, 18, 2003–2025, https://doi.org/10.5194/bg-18-2003-2021, https://doi.org/10.5194/bg-18-2003-2021, 2021
Short summary
Short summary
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The results demonstrate high spatial variability in soil moisture and consequently in the methane flux. We detected wet patches emitting high amounts of methane in the early summer; however, these patches turned to methane uptake in the autumn. We concluded that the small-scale spatial variability of the boreal forest methane flux highlights the importance of soil chamber placement in similar studies.
Cited articles
Aalto, J., Aalto, P., Keronen, P., Kolari, P., Rantala, P., Taipale, R., Kajos, M., Patokoski, J., Rinne, J., Ruuskanen, T., Leskinen, M., Laakso, H., Levula, J., Pohja, T., Siivola, E., Kulmala, M., and Ylivinkka, I.: SMEAR II Hyytiälä forest meteorology, greenhouse gases, air quality and soil, University of Helsinki, Institute for Atmospheric and Earth System Research [data set], https://doi.org/10.23729/23dd00b2-b9d7-467a-9cee-b4a122486039, 2023. a
Aeschbacher, M., Vergari, D., Schwarzenbach, R. P., and Sander, M.: Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids, Environ. Sci. Technol., 45, 8385–8394, https://doi.org/10.1021/es201981g, 2011. a
Alef, K. and Kleiner, D.: Arginine ammonification, a simple method to estimate microbial activity potentials in soils, Soil Biol. Biochem., 18, 233–235, https://doi.org/10.1016/0038-0717(86)90033-7, 1986. a
Alef, K. and Kleiner, D.: Applicability of arginine ammonification as indicator of microbial activity in different soils, Biol. Fert. Soils, 5, 148–151, https://doi.org/10.1007/BF00257650, 1987a. a
Alef, K. and Kleiner, D.: Estimation of anaerobic microbial activities in soils by arginine ammonification and glucose-dependent CO2-production, Soil Biol. Biochem., 19, 683–686, https://doi.org/10.1016/0038-0717(87)90048-4, 1987b. a
Allison, S. D.: Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes, Biogeochemistry, 81, 361–373, https://doi.org/10.1007/s10533-006-9046-2, 2006. a
Belyea, L. R.: A novel indicator of reducing conditions and water-table depth in mires, Funct. Ecol., 13, 431–434, https://doi.org/10.1046/j.1365-2435.1999.00333.x, 1999. a
Blodau, C., Basiliko, N., and Moore, T. R.: Carbon turnover in peatland mesocosms exposed to different water table levels, Biogeochemistry, 67, 331–351, https://doi.org/10.1023/B:BIOG.0000015788.30164.e2, 2004. a
Bonnett, S. A. F., Ostle, N., and Freeman, C.: Seasonal variations in decomposition processes in a valley-bottom riparian peatland, Sci. Total Environ., 370, 561–573, https://doi.org/10.1016/j.scitotenv.2006.08.032, 2006. a, b
Boonman, J., Harpenslager, S. F., van Dijk, G., Smolders, A. J. P., Hefting, M. M., van de Riet, B., and van der Velde, Y.: Redox potential is a robust indicator for decomposition processes in drained agricultural peat soils: a valuable tool in monitoring peatland wetting efforts, Geoderma, 441, 116728, https://doi.org/10.1016/j.geoderma.2023.116728, 2024. a, b
Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. V., Ginder-Vogel, M., Voegelin, A., and Campbell, K.: Biogeochemical redox processes and their impact on contaminant dynamics, Environ. Sci. Technol., 44, 15–23, https://doi.org/10.1021/es9026248, 2010. a, b
Burgin, A. J. and Loecke, T. D.: The biogeochemical redox paradox: how can we make a foundational concept more predictive of biogeochemical state changes?, Biogeochemistry, 164, 349–370, https://doi.org/10.1007/s10533-023-01036-9, 2023. a
de Mars, H. and Wassen, M. J.: Redox potentials in relation to water levels in different mire types in the Netherlands and Poland, Plant Ecol., 140, 41–51, https://doi.org/10.1023/A:1009733113927, 1999. a
Dinsmore, K. J., Billett, M. F., Dyson, K. E., Harvey, F., Thomson, A. M., Piirainen, S., and Kortelainen, P.: Stream water hydrochemistry as an indicator of carbon flow paths in Finnish peatland catchments during a spring snowmelt event, Sci. Total Environ., 409, 4858–4867, https://doi.org/10.1016/j.scitotenv.2011.07.063, 2011. a
Elzhov, T. V., Mullen, K. M., Spiess, A.-N., and Bolker, B.: minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds, r package version 1.2-2, https://CRAN.R-project.org/package=minpack.lm (last access: 3 October 2022), 2022. a
Eskelinen, R., Ronkanen, A.-K., Marttila, H., Isokangas, E., and Kløve, B.: Effect of soil frost on snow-melt runoff generation: stable isotope study in drained peatlands, Boreal Environ. Res., 21, 556–570, 2016. a
Estop-Aragonés, C., Knorr, K.-H., and Blodau, C.: Controls on in situ oxygen and dissolved inorganic carbon dynamics in peats of a temperate fen, J. Geophys. Res.-Biogeo., 117, G02002, https://doi.org/10.1029/2011JG001888, 2012. a
Estop-Aragonés, C., Knorr, K.-H., and Blodau, C.: Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding, Biogeosciences, 10, 421–436, https://doi.org/10.5194/bg-10-421-2013, 2013. a
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., and Kartal, B.: Archaea catalyze iron-dependent anaerobic oxidation of methane, P. Natl. Acad. Sci. USA, 113, 12792–12796, https://doi.org/10.1073/pnas.1609534113, 2016. a
Fenner, N. and Freeman, C.: Drought-induced carbon loss in peatlands, Nat. Geosci., 4, 895–900, https://doi.org/10.1038/ngeo1323, 2011. a
Fenner, N., Williams, R., Toberman, H., Hughes, S., Reynolds, B., and Freeman, C.: Decomposition `hotspots' in a rewetted peatland: implications for water quality and carbon cycling, Hydrobiologia, 674, 51–66, https://doi.org/10.1007/s10750-011-0733-1, 2011. a
Freeman, C., Liska, G., Ostle, N. J., Lock, M. A., Reynolds, B., and Hudson, J.: Microbial activity and enzymic decomposition processes following peatland water table drawdown, Plant Soil, 180, 121–127, https://doi.org/10.1007/BF00015418, 1996. a
Freeman, C., Ostle, N., and Kang, H.: An Enzymic “latch” on a global carbon store, Nature, 409, 149, https://doi.org/10.1038/35051650, 2001. a, b, c
Freeman, C., Ostle, N. J., Fenner, N., and Kang, H.: A regulatory role for phenol oxidase during decomposition in peatlands, Soil Biol. Biochem., 36, 1663–1667, https://doi.org/10.1016/j.soilbio.2004.07.012, 2004. a
Fujii, K., Yamada, T., Hayakawa, C., Nakanishi, A., and Funakawa, S.: Kinetics of arginine ammonification to estimate microbial activity of N mineralization in forest and cropland soils, Eur. J. Soil Biol., 92, 1–7, https://doi.org/10.1016/j.ejsobi.2019.03.001, 2019. a
Gong, J., Kellomäki, S., Wang, K., Zhang, C., Shurpali, N., and Martikainen, P. J.: Modeling CO2 and CH4 flux changes in pristine peatlands of Finland under changing climate conditions, Ecol. Model., 263, 64–80, https://doi.org/10.1016/j.ecolmodel.2013.04.018, 2013. a, b
Green, J. and Paget, M. S.: Bacterial redox sensors, Nat. Rev. Microbiol., 2, 954–966, https://doi.org/10.1038/nrmicro1022, 2004. a
Haas, E., Klatt, S., Fröhlich, A., Kraft, P., Werner, C., Kiese, R., Grote, R., Breuer, L., and Butterbach-Bahl, K.: LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale, Landscape Ecol., 28, 615–636, https://doi.org/10.1007/s10980-012-9772-x, 2013. a
Hall, S. J. and Silver, W. L.: Iron oxidation stimulates organic matter decomposition in humid tropical forest soils, Glob. Change Biol., 19, 2804–2813, https://doi.org/10.1111/gcb.12229, 2013. a, b
Jaatinen, K., Fritze, H., Laine, J., and Laiho, R.: Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland, Glob. Change Biol., 13, 491–510, https://doi.org/10.1111/j.1365-2486.2006.01312.x, 2007. a
Kaila, A., Asam, Z., Koskinen, M., Uusitalo, R., Smolander, A., Kiikkilä, O., Sarkkola, S., O'Driscoll, C., Kitunen, V., Fritze, H., Nousiainen, H., Tervahauta, A., Xiao, L., and Nieminen, M.: Impact of re-wetting of forestry-drained peatlands on water quality – a laboratory approach assessing the release of P, N, Fe, and dissolved organic carbon, Water Air Soil Poll., 227, 292, https://doi.org/10.1007/s11270-016-2994-9, 2016. a
Kandeler, E. and Gerber, H.: Short-term assay of soil urease activity using colorimetric determination of ammonium, Biol. Fert. Soils, 6, 68–72, https://doi.org/10.1007/BF00257924, 1988. a
Kane, E. S., Veverica, T. J., Tfaily, M. M., Lilleskov, E. A., Meingast, K. M., Kolka, R. K., Daniels, A. L., and Chimner, R. A.: Reduction-oxidation potential and dissolved organic matter composition in northern peat soil: interactive controls of water table position and plant functional groups, J. Geophys. Res.-Biogeo., 124, 3600–3617, https://doi.org/10.1029/2019JG005339, 2019. a
Keller, J. K. and Takagi, K. K.: Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil, Ecosphere, 4, 54, https://doi.org/10.1890/ES12-00382.1, 2013. a
Kiuru, P., Palviainen, M., Marchionne, A., Grönholm, T., Raivonen, M., Kohl, L., and Laurén, A.: Pore network modeling as a new tool for determining gas diffusivity in peat, Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, 2022. a
Kjaergaard, C., Heiberg, L., Jensen, H. S., and Hansen, H. C. B.: Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes, Geoderma, 173–174, 311–321, https://doi.org/10.1016/j.geoderma.2011.12.029, 2012. a
Klüpfel, L., Piepenbrock, A., Kappler, A., and Sander, M.: Humic substances as fully regenerable electron acceptors in recurrently anoxic environments, Nat. Geosci., 7, 195–200, https://doi.org/10.1038/ngeo2084, 2014. a
Knorr, K. H. and Blodau, C.: Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil, Soil Biol. Biochem., 41, 1187–1198, https://doi.org/10.1016/j.soilbio.2009.02.030, 2009. a
Kokkonen, N. A. K., Laine, A. M., Laine, J., Vasander, H., Kurki, K., Gong, J., and Tuittila, E.-S.: Responses of peatland vegetation to 15 year water level drawdown as mediated by fertility level, J. Veg. Sci., 30, 1206–1216, https://doi.org/10.1111/jvs.12794, 2019. a, b, c
Korkiakoski, M., Tuovinen, J.-P., Aurela, M., Koskinen, M., Minkkinen, K., Ojanen, P., Penttilä, T., Rainne, J., Laurila, T., and Lohila, A.: Methane exchange at the peatland forest floor – automatic chamber system exposes the dynamics of small fluxes, Biogeosciences, 14, 1947–1967, https://doi.org/10.5194/bg-14-1947-2017, 2017. a
Koskinen, M., Maanavilja, L., Nieminen, M., Minkkinen, K., and Tuittila, E.-S.: High methane emissions from restored norway spruce swamps in Southern Finland over one growing season, Mires Peat, 17, 1–13, 2016. a
Koskinen, M. I. K., Vorenhout, M., Vranová, V., Straková, P., and Laiho, R.: Redox potential and related ancillary measurements from Lakkasuo raised mire in 2014–2016, Zenodo [data set], https://doi.org/10.5281/zenodo.12544806, 2024. a
Kumaraswamy, S., Ramakrishnan, B., and Sethunathan, N.: Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species, J. Environ. Qual., 30, 2195, https://doi.org/10.2134/jeq2001.2195, 2001. a
Laiho, R. and Laine, J.: Changes in mineral element concentrations in peat soils drained for forestry in Finland, Scand. J. Forest Res., 10, 218–224, https://doi.org/10.1080/02827589509382887, 1995. a
Laiho, R., Peltoniemi, K., and Fritze, H.: Peat characteristics, microbial PLFA, and fungal and actinobacterial sequences from Lakkasuo peatland drainage experiment, year 2004, Zenodo [code], https://doi.org/10.5281/zenodo.12566743, 2024. a
Lalonde, K., Mucci, A., Ouellet, A., and Gélinas, Y.: Preservation of organic matter in sediments promoted by iron, Nature, 483, 198–200, https://doi.org/10.1038/nature10855, 2012. a
Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., and O'Leary, A.: Pywavelets: a Python package for wavelet analysis, Journal of Open Source Software, 4, 1237, https://doi.org/10.21105/joss.01237, 2019. a
Li, Y., Yu, S., Strong, J., and Wang, H.: Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments?, J. Soil. Sediment., 12, 683–693, https://doi.org/10.1007/s11368-012-0507-z, 2012. a
Liang, J., Bi, G., and Zhan, C.: Multinomial and ordinal logistic regression analyses with multi-categorical variables using R, Annals of Translational Medicine, 8, 982, https://doi.org/10.21037/atm-2020-57, 2020. a
Lin, Q. and Brookes, P. C.: Arginine ammonification as a method to estimate soil microbial biomass and microbial community structure, Soil Biol. Biochem., 31, 1985–1997, https://doi.org/10.1016/S0038-0717(99)00121-2, 1999. a
Lloyd, A. B. and Sheaffe, M. J.: Urease activity in soils, Plant Soil, 39, 71–80, https://doi.org/10.1007/BF00018046, 1973. a
Mainiero, R. and Kazda, M.: Effects of Carex rostrata on soil oxygen in relation to soil moisture, Plant Soil, 270, 311–320, https://doi.org/10.1007/s11104-004-1724-z, 2005. a
Marttunen, S.: Impacts of Controlled Redox Conditions on Greenhouse Gas Dynamics from Peat, MS thesis, University of Helsinki, Faculty of Biological and Environmental Sciences, Helsinki, Finland, https://helda.helsinki.fi/server/api/core/bitstreams/e3d04603-e63a-42d8-a955-fc78cf2957a4/content (last access: 5 May 2024), 2024. a
Mchergui, C., Besaury, L., Langlois, E., Aubert, M., Akpa-Vinceslas, M., Buatois, B., Quillet, L., and Bureau, F.: A comparison of permanent and fluctuating flooding on microbial properties in an ex-situ estuarine riparian system, Appl. Soil Ecol., 78, 1–10, https://doi.org/10.1016/j.apsoil.2014.01.012, 2014. a
Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., and Kappler, A.: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle, Nat. Rev. Microbiol., 12, 797–808, https://doi.org/10.1038/nrmicro3347, 2014. a
Minkkinen, K., Vasander, H., Jauhiainen, S., Karsisto, M., and Laine, J.: Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland, Plant Soil, 207, 107–120, https://doi.org/10.1023/a:1004466330076, 1999. a
Mitchell, C. P. J. and Branfireun, B. A.: Hydrogeomorphic controls on reduction–oxidation conditions across boreal upland–peatland interfaces, Ecosystems, 8, 731–747, https://doi.org/10.1007/s10021-005-1792-9, 2005. a
Palviainen, M., Pumpanen, J., Mosquera, V., Hasselquist, E. M., Laudon, H., Ostonen, I., Kull, A., Wilson, F. R., Peltomaa, E., Könönen, M., Launiainen, S., Peltola, H., Ojala, A., and Laurén, A.: Extending the SUSI peatland simulator to include dissolved organic carbon formation, transport and biodegradation – proper water management reduces lateral carbon fluxes and improves carbon balance, Sci. Total Environ., 950, 175173, https://doi.org/10.1016/j.scitotenv.2024.175173, 2024. a
Peltoniemi, K., Straková, P., Fritze, H., Iráizoz, P. A., Pennanen, T., and Laiho, R.: How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands, Soil Biol. Biochem., 51, 20–34, https://doi.org/10.1016/j.soilbio.2012.04.013, 2012. a
Pyzola, S. M., Dhakal, P., Coyne, M. S., Grove, J. H., Vandiviere, M. M., and Matocha, C. J.: Transformation of organic matter under anoxic conditions in soils, Sci. Total Environ., 970, 178899, https://doi.org/10.1016/j.scitotenv.2025.178899, 2025. a
Rejsek, K., Formanek, P., and Pavelka, M.: Estimation of protease activity in soils at low temperatures by casein amendment and with substitution of buffer by demineralized water, Amino Acids, 35, 411–417, https://doi.org/10.1007/s00726-007-0601-5, 2008. a
Riedel, T., Zak, D., Biester, H., and Dittmar, T.: Iron traps terrestrially derived dissolved organic matter at redox interfaces, P. Natl. Acad. Sci. USA, 110, 10101–10105, https://doi.org/10.1073/pnas.1221487110, 2013. a, b
Romanowicz, K. J., Kane, E. S., Potvin, L. R., Daniels, A. L., Kolka, R. K., and Lilleskov, E. A.: Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis, Plant Soil, 397, 371–386, https://doi.org/10.1007/s11104-015-2746-4, 2015. a
Sallantaus, T. and Kaipainen, H.: Water-Carried Element Balances of Peatlands, Northern peatlands in global climatic change, edited by: Laiho, R., Laine, J., and Vasander, H., Publications of the Academy of Finland, Edita, Helsinki, 197–203, ISBN 951-37-1865-4, 1996. a
Sanchez-Julia, M. and Turner, B. L.: Abiotic contribution to phenol oxidaseactivity across a manganese gradient in tropical forest soils, Biogeochemistry, 153, 33–45, https://doi.org/10.1007/s10533-021-00764-0, 2021. a
Schmidbauer, A. R. a. H.: WaveletComp: Computational Wavelet Analysis, CRAN [code], https://doi.org/10.32614/CRAN.package.WaveletComp, 2018. a
Seybold, C. A., Mersie, W., Huang, J., and McNamee, C.: Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland, Wetlands, 22, 149–158, https://doi.org/10.1672/0277-5212(2002)022[0149:SRPTAW]2.0.CO;2, 2002. a
Singh, D. K. and Kumar, S.: Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments, Chemosphere, 71, 412–418, https://doi.org/10.1016/j.chemosphere.2007.11.005, 2008. a
Sinsabaugh, R. L.: Phenol oxidase, peroxidase and organic matter dynamics of soil, Soil Biol. Biochem., 42, 391–404, https://doi.org/10.1016/j.soilbio.2009.10.014, 2010. a, b
Straková, P., Niemi, R. M., Freeman, C., Peltoniemi, K., Toberman, H., Heiskanen, I., Fritze, H., and Laiho, R.: Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes, Biogeosciences, 8, 2741–2755, https://doi.org/10.5194/bg-8-2741-2011, 2011. a
Straková, P., Penttilä, T., Laine, J., and Laiho, R.: Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands, Glob. Change Biol., 18, 322–335, https://doi.org/10.1111/j.1365-2486.2011.02503.x, 2012. a, b
Sun, X., Xiang, W., He, L., and Zhao, Y.: Impacts of hydrological conditions on enzyme activities and phenolic concentrations in peatland soil: an experimental simulation, Front. Earth Sci.-PRC, 4, 463–470, https://doi.org/10.1007/s11707-010-0140-3, 2010. a
Tang, G., Zheng, J., Xu, X., Yang, Z., Graham, D. E., Gu, B., Painter, S. L., and Thornton, P. E.: Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms, Biogeosciences, 13, 5021–5041, https://doi.org/10.5194/bg-13-5021-2016, 2016. a
Toberman, H., Laiho, R., Evans, C. D., Artz, R. R. E., Fenner, N., Straková, P., and Freeman, C.: Long-term drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat, Eur. J. Soil Sci., 61, 950–957, https://doi.org/10.1111/j.1365-2389.2010.01292.x, 2010. a
Torrence, C. and Compo, G. P.: A Practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Vorenhout, M., van der Geest, H. G., van Marum, D., Wattel, K., Eijsackers, H. J. P., and July, P.: Automated and continuous redox potential measurements in soil, J. Environ. Qual., 33, 1562–1567, https://doi.org/10.2134/jeq2004.1562, 2004. a, b, c
Vorenhout, M., van der Geest, H. G., and Hunting, E. R.: An improved datalogger and novel probes for continuous redox measurements in wetlands, Int. J. Environ. An. Ch., 91, 801–810, https://doi.org/10.1080/03067319.2010.535123, 2011. a
Wang, Y.: Frequencies of the Ricker wavelet, Geophysics, 80, A31–A37, https://doi.org/10.1190/geo2014-0441.1, 2015. a
Wang, Y., Wang, H., He, J.-S., and Feng, X.: Iron-mediated soil carbon response to water-table decline in an Alpine wetland, Nat. Commun., 8, 15972, https://doi.org/10.1038/ncomms15972, 2017. a, b, c
Wen, Y., Zang, H., Ma, Q., Evans, C. D., Chadwick, D. R., and Jones, D. L.: Is the `enzyme latch' or `iron gate' the key to protecting soil organic carbon in peatlands?, Geoderma, 349, 107–113, https://doi.org/10.1016/j.geoderma.2019.04.023, 2019. a
Wojciech, S. L. and Styła, K.: Changes of urease activity in peat profile of peatland by Nierybno Lake in “Bory Tucholskie” National Park, Journal ProEnvironment Promedieu, 4, 436–439, 2011. a
Wriedt, G. and Rode, M.: Modelling nitrate transport and turnover in a lowland catchment system, J. Hydrol., 328, 157–176, https://doi.org/10.1016/j.jhydrol.2005.12.017, 2006. a
Xiang, W. and Freeman, C.: Annual variation of temperature sensitivity of soil organic carbon decomposition in north peatlands: implications for thermal responses of carbon cycling to global warming, Environ. Geol., 58, 499–508, https://doi.org/10.1007/s00254-008-1523-6, 2009. a
Yu, K., Faulkner, S. P., and Baldwin, M. J.: Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration, Glob. Change Biol., 14, 798–812, https://doi.org/10.1111/j.1365-2486.2008.01545.x, 2008. a
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the last glacial maximum, Geophys. Res. Lett., 37, L13402, https://doi.org/10.1029/2010GL043584, 2010. a
Zak, D., Gelbrecht, J., and Steinberg, C. E. W.: Phosphorus retention at the redox interface of peatlands adjacent to surface waters in Northeast Germany, Biogeochemistry, 70, 357–368, https://doi.org/10.1007/s10533-003-0895-7, 2004. a, b
Zhang, Z. and Furman, A.: Soil redox dynamics under dynamic hydrologic regimes – a review, Sci. Total Environ., 763, 143026, https://doi.org/10.1016/j.scitotenv.2020.143026, 2021. a
Short summary
Redox potential, indicative of the active pathways of organic matter decomposition, was monitored for 2 years in a boreal peatland with three drainage regimes. Contrary to expectations, the water table level and redox potential were not found to be correlated in a monotonic fashion; thus, the relationship between the water table level and redox conditions is not modellable using non-dynamic models.
Redox potential, indicative of the active pathways of organic matter decomposition, was...
Altmetrics
Final-revised paper
Preprint