Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-4013-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4013-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fertilization turns a rubber plantation from sink to methane source
Daniel Epron
CORRESPONDING AUTHOR
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
Rawiwan Chotiphan
Sithiporn Kridakara Research Station, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Prachuap Khiri Khan 77170, Thailand
Zixiao Wang
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
Ornuma Duangngam
DORAS Centre, Kasetsart University, Bangkok 10900, Thailand
Makoto Shibata
Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
Sumonta Kumar Paul
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
Takumi Mochidome
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
Jate Sathornkich
Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
Wakana A. Azuma
Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
Jun Murase
Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
Yann Nouvellon
DORAS Centre, Kasetsart University, Bangkok 10900, Thailand
UMR Eco&Sols, CIRAD, 2 Place Viala, 34060 Montpellier CEDEX 2, France
Poonpipope Kasemsap
Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
DORAS Centre, Kasetsart University, Bangkok 10900, Thailand
Kannika Sajjaphan
CORRESPONDING AUTHOR
Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
Related authors
Sumonta Kumar Paul, Keisuke Yuasa, Masako Dannoura, and Daniel Epron
EGUsphere, https://doi.org/10.5194/egusphere-2025-3449, https://doi.org/10.5194/egusphere-2025-3449, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study used a machine learning approach to scale soil CH4 fluxes over time in a topographically complex mountain forest. Within the landscape, predicted upland CH4 fluxes varied significantly across topographic positions, with the greater uptake on ridges and slopes than in the plain and foot slopes. Recent past precipitations significantly influenced seasonal CH4 uptake. Our findings highlight the role of topography and the potential of remote sensing and machine learning to map CH4 fluxes.
Jun Murase, Kannika Sajjaphan, Chatprawee Dechjiraratthanasiri, Ornuma Duangngam, Rawiwan Chotiphan, Wutthida Rattanapichai, Wakana Azuma, Makoto Shibata, Poonpipope Kasemsap, and Daniel Epron
SOIL, 11, 457–466, https://doi.org/10.5194/soil-11-457-2025, https://doi.org/10.5194/soil-11-457-2025, 2025
Short summary
Short summary
Tropical forest soils are vital for methane uptake, but deforestation and agriculture can alter soil methane oxidation. An experiment in Thailand shows that fertilization significantly suppresses methane oxidation in rubber plantation soils, affecting depths up to 60 cm. Without fertilization, deeper soil layers (below 10 cm) actively oxidize methane. These findings suggest that fertilization negatively impacts the methane uptake capacity of deep-layer soils in rubber plantations.
Sumonta Kumar Paul, Keisuke Yuasa, Masako Dannoura, and Daniel Epron
EGUsphere, https://doi.org/10.5194/egusphere-2025-3449, https://doi.org/10.5194/egusphere-2025-3449, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study used a machine learning approach to scale soil CH4 fluxes over time in a topographically complex mountain forest. Within the landscape, predicted upland CH4 fluxes varied significantly across topographic positions, with the greater uptake on ridges and slopes than in the plain and foot slopes. Recent past precipitations significantly influenced seasonal CH4 uptake. Our findings highlight the role of topography and the potential of remote sensing and machine learning to map CH4 fluxes.
Jun Murase, Kannika Sajjaphan, Chatprawee Dechjiraratthanasiri, Ornuma Duangngam, Rawiwan Chotiphan, Wutthida Rattanapichai, Wakana Azuma, Makoto Shibata, Poonpipope Kasemsap, and Daniel Epron
SOIL, 11, 457–466, https://doi.org/10.5194/soil-11-457-2025, https://doi.org/10.5194/soil-11-457-2025, 2025
Short summary
Short summary
Tropical forest soils are vital for methane uptake, but deforestation and agriculture can alter soil methane oxidation. An experiment in Thailand shows that fertilization significantly suppresses methane oxidation in rubber plantation soils, affecting depths up to 60 cm. Without fertilization, deeper soil layers (below 10 cm) actively oxidize methane. These findings suggest that fertilization negatively impacts the methane uptake capacity of deep-layer soils in rubber plantations.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
Biogeosciences, 20, 3093–3117, https://doi.org/10.5194/bg-20-3093-2023, https://doi.org/10.5194/bg-20-3093-2023, 2023
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Anteneh Getachew Mengistu, Gizaw Mengistu Tsidu, Gerbrand Koren, Maurits L. Kooreman, K. Folkert Boersma, Torbern Tagesson, Jonas Ardö, Yann Nouvellon, and Wouter Peters
Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, https://doi.org/10.5194/bg-18-2843-2021, 2021
Short summary
Short summary
In this study, we assess the usefulness of Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval (SIFTER) data from the GOME-2A instrument and near-infrared reflectance of vegetation (NIRv) from MODIS to capture the seasonality and magnitudes of gross primary production (GPP) derived from six eddy-covariance flux towers in Africa in the overlap years between 2007–2014. We also test the robustness of sun-induced fluoresence and NIRv to compare the seasonality of GPP for the major biomes.
Rosa M. Poch, Lucia H. C. dos Anjos, Rafla Attia, Megan Balks, Adalberto Benavides-Mendoza, Martha M. Bolaños-Benavides, Costanza Calzolari, Lydia M. Chabala, Peter C. de Ruiter, Samuel Francke-Campaña, Fernando García Préchac, Ellen R. Graber, Siosiua Halavatau, Kutaiba M. Hassan, Edmond Hien, Ke Jin, Mohammad Khan, Maria Konyushkova, David A. Lobb, Matshwene E. Moshia, Jun Murase, Generose Nziguheba, Ashok K. Patra, Gary Pierzynski, Natalia Rodríguez Eugenio, and Ronald Vargas Rojas
SOIL, 6, 541–547, https://doi.org/10.5194/soil-6-541-2020, https://doi.org/10.5194/soil-6-541-2020, 2020
Short summary
Short summary
Humanity depends on the existence of healthy soils, both for the production of food and for ensuring a healthy, biodiverse environment. In the face of global crises like the COVID-19 pandemic, a sustainable soil management strategy is essential to ensure food security based on more diverse, locally oriented, and resilient food production systems through improving access to land, sound land use planning, sustainable soil management, enhanced research, and investment in education and extension.
Cited articles
Abalos, D., Liang, Z., Dörsch, P., and Elsgaard, L.: Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: Role of microbial structure and functioning, Soil Biol. Biochem., 150, 108006, https://doi.org/10.1016/j.soilbio.2020.108006, 2020.
Aini, F. K., Hergoualc'h, K., Smith, J. U., Verchot, L., and Martius, C.: How does replacing natural forests with rubber and oil palm plantations affect soil respiration and methane fluxes?, Ecosphere, 11, e03284, https://doi.org/10.1002/ecs2.3284, 2020.
Allen, D., Dalal, R. C., Rennenberg, H., and Schmidt, S.: Seasonal variation in nitrous oxide and methane emissions from subtropical estuary and coastal mangrove sediments, Australia, Plant Biol., 13, 126–133, https://doi.org/10.1111/j.1438-8677.2010.00331.x, 2011.
Annamalainathan, K., Krishnakumar, R., and Jacob, J.: Tapping-induced changes in respiratory metabolism, ATP production and reactive oxygen species scavenging in Hevea, J. Rubber Res., 4, 245–254, 2001.
Aronson, E. L. and Helliker, B. R.: Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis, Ecology, 91, 3242–3251, https://doi.org/10.1890/09-2185.1, 2010.
Banger, K., Tian, H., and Lu, C.: Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?, Glob. Change Biol., 18, 3259–3267, https://doi.org/10.1111/j.1365-2486.2012.02762.x, 2012.
Barba, J., Poyatos, R., and Vargas, R.: Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers, Sci. Rep., 9, 4005, https://doi.org/10.1038/s41598-019-39663-8, 2019a.
Barba, J., Bradford, M. A., Brewer, P. E., Bruhn, D., Covey, K., van Haren, J., Megonigal, J. P., Mikkelsen, T. N., Pangala, S. R., Pihlatie, M., Poulter, B., Rivas-Ubach, A., Schadt, C. W., Terazawa, K., Warner, D. L., Zhang, Z., and Vargas, R.: Methane emissions from tree stems: a new frontier in the global carbon cycle, New Phytol., 222, 18–28, https://doi.org/10.1111/nph.15582, 2019b.
Bartoń, K.: MuMIn: Multi-Model Inference, R package version 1.47.5, https://CRAN.R-project.org/package=MuMIn, (last access: 8 January 2024), 2023.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting linear mixed-effects models using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Beaulieu, J. J., DelSontro, T., and Downing, J. A.: Eutrophication will increase methane emissions from lakes and impoundments during the 21st century, Nat. Commun., 10, 1375, https://doi.org/10.1038/s41467-019-09100-5, 2019.
Bédard, C. and Knowles, R.: Physiology, biochemistry, and specific inhibitors of CH4, NH , and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev., 53, 68–84, 1989.
Benstead, J. and King, G. M.: The effect of soil acidification on atmospheric methane uptake by a Maine forest soil, FEMS Microbiol. Ecol., 34, 207–212, https://doi.org/10.1111/j.1574-6941.2001.tb00771.x, 2001.
Bertora, C., Cucu, M. A., Lerda, C., Peyron, M., Bardi, L., Gorra, R., Sacco, D., Celi, L., and Said-Pullicino, D.: Dissolved organic carbon cycling, methane emissions and related microbial populations in temperate rice paddies with contrasting straw and water management, Agr. Ecosyst. Environ., 265, 292–306, https://doi.org/10.1016/j.agee.2018.06.004, 2018.
Bodelier, P. L. E. and Laanbroek, H. J.: Nitrogen as a regulatory factor of methane oxidation in soils and sediments, FEMS Microbiol. Ecol., 47, 265–277, https://doi.org/10.1016/S0168-6496(03)00304-0, 2004.
Börjesson, G. and Nohrstedt, H.-Ö.: Fast recovery of atmospheric methane consumption in a Swedish forest soil after single-shot N-fertilization, Forest Ecol. Manag., 134, 83–88, https://doi.org/10.1016/S0378-1127(99)00249-2, 2000.
Borken, W., Davidson, E. A., Savage, K., Sundquist, E. T., and Steudler, P.: Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil, Soil Biol. Biochem., 38, 1388–1395, https://doi.org/10.1016/j.soilbio.2005.10.011, 2006.
Bras, N., Plain, C., and Epron, D.: Potential soil methane oxidation in naturally regenerated oak-dominated temperate deciduous forest stands responds to soil water status regardless of their age – an intact core incubation study, Ann. For. Sci., 79, 29, https://doi.org/10.1186/s13595-022-01145-9, 2022.
Bréchet, L. M., Daniel, W., Stahl, C., Burban, B., Goret, J., Salomn, R. L., and Janssens, I. A.: Simultaneous tree stem and soil greenhouse gas (CO2, CH4, N2O) flux measurements: a novel design for continuous monitoring towards improving flux estimates and temporal resolution, New Phytol., 230, 2487–2500, https://doi.org/10.1111/nph.17352, 2021.
Byun, E., Rezanezhad, F., Slowinski, S., Lam, C., Bhusal, S., Wright, S., Quinton, W. L., Webster, K. L., and Van Cappellen, P.: Effects of nitrogen and phosphorus amendments on CO2 and CH4 production in peat soils of Scotty Creek, Northwest Territories: potential considerations for wildfire and permafrost thaw impacts on peatland carbon exchanges, SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025, 2025.
Caiafa, L., Barros, N. O., and Lopes, J. F. S.: Greenhouse gas emissions from ant nests: A systematic review, Ecol. Entomol., 48, 397–408, https://doi.org/10.1111/een.13238, 2023.
Castro, M. S., Peterjohn, W. T., Melillo, J. M., Steudler, P. A., Gholz, H. L., and Lewis, D.: Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2 from soils in a Florida slash pine plantation, Can. J. Forest Res., 24, 9–13, https://doi.org/10.1139/x94-002, 1994.
Cen, X., He, N., Li, M., Xu, L., Yu, X., Cai, W., Li, X., and Butterbach-Bahl, K.: Suppression of nitrogen deposition on global forest soil CH4 uptake depends on nitrogen status, Global Biogeochem. Cy., 38, e2024GB008098, https://doi.org/10.1029/2024GB008098, 2024.
Chambon, B., Dao, X. L., Tongkaemkaew, U., and Gay, F.: What determine smallholders' fertilization practices during the mature period of rubber plantations in Thailand?, Ex. Agric., 54, 824–841, https://doi.org/10.1017/S0014479717000400, 2018.
Chan, A. S. K., Steudler, P. A., Bowden, R. D., Gulledge, J., and Cavanaugh, C. M.: Consequences of nitrogen fertilization on soil methane consumption in a productive temperate deciduous forest, Biol Fertil Soils, 41, 182–189, https://doi.org/10.1007/s00374-004-0822-7, 2005.
Chen, G., Veldkamp, E., Damris, M., Irawan, B., Tjoa, A., and Corre, M. D.: Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices, Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, 2024.
Chotiphan, R., Vaysse, L., Lacote, R., Gohet, E., Thaler, P., Sajjaphan, K., Bottier, C., Char, C., Liengprayoon, S., and Gay, F.: Can fertilization be a driver of rubber plantation intensification?, Ind. Crop. Prod., 141, 111813, https://doi.org/10.1016/j.indcrop.2019.111813, 2019.
Chowdhury, T. R. and Dick, R. P.: Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands, Appl. Soil Ecol., 65, 8–22, https://doi.org/10.1016/j.apsoil.2012.12.014, 2013.
Conover, W. J. and Iman, R. L.: Rank transformations as a bridge between parametric and nonparametric statistics, Am. Stat., 35, 124–129, https://doi.org/10.1080/00031305.1981.10479327, 1981.
Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M.: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide, Ecol. Lett., 11, 1065–1071, https://doi.org/10.1111/j.1461-0248.2008.01219.x, 2008.
Covey, K. R. and Megonigal, J. P.: Methane production and emissions in trees and forests, New Phytol., 222, 35–51, https://doi.org/10.1111/nph.15624, 2019.
Epron, D.: Fertilization turns a rubber plantation from sink to methane source, KURENAI [data set], https://doi.org/10.57723/kds591970, 2025.
Epron, D. and Mochidome, T.: Methane concentration in the heartwood of living trees in a cold temperate mountain forest: variation, transport and emission, Tree Physiol., tpae122, https://doi.org/10.1093/treephys/tpae122, 2024.
Epron, D., Plain, C., Ndiaye, F.-K., Bonnaud, P., Pasquier, C., and Ranger, J.: Effects of compaction by heavy machine traffic on soil fluxes of methane and carbon dioxide in a temperate broadleaved forest, Forest Ecol. Manag., 382, 1–9, https://doi.org/10.1016/j.foreco.2016.09.037, 2016.
Epron, D., Mochidome, T., Tanabe, T., Dannoura, M., and Sakabe, A.: Variability in stem methane emissions and wood methane production of different tree species in a cold temperate mountain forest, Ecosystems, 26, 784–799, https://doi.org/10.1007/s10021-022-00795-0, 2023.
Fonseca de Souza, L., Nakamura, F. M., Kroeger, M., Obregon, D., de Moraes, M. T., Vicente, M. G., Moreira, M. Z., Pellizari, V. H., Tsai, S. M., and Nüsslein, K.: Soil pH modulates the activity of low-affinity methane oxidation in soils from the Amazon region, J. Appl. Microbiol., 136, lxae303, https://doi.org/10.1093/jambio/lxae303, 2025.
Fox, J. M., Castella, J.-C., Ziegler, A. D., and Westley, S. B.: Rubber plantations expand in mountainous Southeast Asia: what are the consequences for the environment?, Asia Pacific Issues, 114, 1–8, 2014.
Gana, C., Nouvellon, Y., Marron, N., Stape, J. L., and Epron, D.: Sampling and interpolation strategies derived from the analysis of continuous soil CO2 flux, J. Plant Nutr. Soil Sc., 181, 12–20, https://doi.org/10.1002/jpln.201600133, 2018.
Gao, J., Zhou, W., Liu, Y., Sha, L., Song, Q., Lin, Y., Yu, G., Zhang, J., Zheng, X., Fang, Y., Grace, J., Zhao, J., Xu, J., Gui, H., Sinclair, F., and Zhang, Y.: Litter-derived nitrogen reduces methane uptake in tropical rainforest soils, Sci. Total Environ., 849, 157891, https://doi.org/10.1016/j.scitotenv.2022.157891, 2022.
Garcia, J.-L., Patel, B. K. C., and Ollivier, B.: Taxonomic, Phylogenetic, and Ecological Diversity of Methanogenic Archaea, Anaerobe, 6, 205–226, https://doi.org/10.1006/anae.2000.0345, 2000.
Gauci, V., Gowing, D. J. G., Hornibrook, E. R. C., Davis, J. M., and Dise, N. B.: Woody stem methane emission in mature wetland alder trees, Atmos. Environ., 44, 2157–2160, https://doi.org/10.1016/j.atmosenv.2010.02.034, 2010.
Gauci, V., Pangala, S. R., Shenkin, A., Barba, J., Bastviken, D., Figueiredo, V., Gomez, C., Enrich-Prast, A., Sayer, E., Stauffer, T., Welch, B., Elias, D., McNamara, N., Allen, M., and Malhi, Y.: Global atmospheric methane uptake by upland tree woody surfaces, Nature, 631, 796–800, https://doi.org/10.1038/s41586-024-07592-w, 2024.
Giambelluca, T. W., Mudd, R. G., Liu, W., Ziegler, A. D., Kobayashi, N., Kumagai, T., Miyazawa, Y., Lim, T. K., Huang, M., Fox, J., Yin, S., Mak, S. V., and Kasemsap, P.: Evapotranspiration of rubber (Hevea brasiliensis) cultivated at two plantation sites in Southeast Asia, Water Resour. Res., 52, 660–679, https://doi.org/10.1002/2015WR017755, 2016.
Gohet, E., Saaban, I., Soumahoro, M., Uche, E., Soumahoro, B., and Cauchy, T.: Sustainable rubber production through good latex harvesting practices: an update on mature rubber fertilization effects on latex cell biochemistry and rubber yield potential., in: IRRDB Workshop on Latex Harvesting Technology, Vietname, Binh Duong, 19–22 November 2013, https://publications.cirad.fr/une_notice.php?dk=574668 (last access: 26 September 2024), 2013.
Guardiola-Claramonte, M., Troch, P. A., Ziegler, A. D., Giambelluca, T. W., Vogler, J. B., and Nullet, M. A.: Local hydrologic effects of introducing non-native vegetation in a tropical catchment, Ecohydrology, 1, 13–22, https://doi.org/10.1002/eco.3, 2008.
Hackstein, J. H. and Stumm, C. K.: Methane production in terrestrial arthropods., Proc. Natl. Acad. Sci. USA, 91, 5441–5445, https://doi.org/10.1073/pnas.91.12.5441, 1994.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60, 439–471, 1996.
Hassler, E., Corre, M. D., Tjoa, A., Damris, M., Utami, S. R., and Veldkamp, E.: Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations, Biogeosciences, 12, 5831–5852, https://doi.org/10.5194/bg-12-5831-2015, 2015.
Hobbie, S. E.: Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition, Ecosystems, 8, 644–656, https://doi.org/10.1007/s10021-003-0110-7, 2005.
Hu, R., Hirano, T., Sakaguchi, K., Yamashita, S., Cui, R., Sun, L., and Liang, N.: Spatiotemporal variation in soil methane uptake in a cool-temperate immature deciduous forest, Soil Biol. Biochem., 184, 109094, https://doi.org/10.1016/j.soilbio.2023.109094, 2023.
Hütsch, B. W., Webster, C. P., and Powlson, D. S.: Methane oxidation in soil as affected by land use, soil pH and N fertilization, Soil Biol. Biochem., 26, 1613–1622, https://doi.org/10.1016/0038-0717(94)90313-1, 1994.
Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., and Martikainen, P. J.: Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52, 609–621, https://doi.org/10.1016/S0045-6535(03)00243-1, 2003.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, https://doi.org/10.1017/9781009157896, 2021.
IRSG: Rubber Statistical Bulletin, 78 (1-3), The International Rubber Study Group, Singapore, https://www.rubberstudy.org/reports (last access: 10 August 2025), 2023.
Ishizuka, S., Tsuruta, H., and Murdiyarso, D.: An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia, Global Biogeochem. Cy., 16, 22-1–22–11, https://doi.org/10.1029/2001GB001614, 2002.
Ishizuka, S., Iswandi, A., Nakajima, Y., Yonemura, S., Sudo, S., Tsuruta, H., and Murdiyarso, D.: The variation of greenhouse gas emissions from soils of various land-use/cover types in Jambi province, Indonesia, Nutr. Cycl. Agroecosys., 71, 17–32, https://doi.org/10.1007/s10705-004-0382-0, 2005.
IUSS Working Group WRB: World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition, International Union of Soil Sciences (IUSS), Vienna, Austria, 236 pp., ISBN 979-8-9862451-1-9, 2022.
Jackson, R. B., Abernethy, S., Canadell, J. G., Cargnello, M., Davis, S. J., Féron, S., Fuss, S., Heyer, A. J., Hong, C., Jones, C. D., Damon Matthews, H., O'Connor, F. M., Pisciotta, M., Rhoda, H. M., De Richter, R., Solomon, E. I., Wilcox, J. L., and Zickfeld, K.: Atmospheric methane removal: a research agenda, Philos. T. R. Soc. A., 379, 20200454, https://doi.org/10.1098/rsta.2020.0454, 2021.
Jassal, R. S., Black, T. A., Roy, R., and Ethier, G.: Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration, Geoderma, 162, 182–186, https://doi.org/10.1016/j.geoderma.2011.02.002, 2011.
Jeffrey, L. C., Maher, D. T., Chiri, E., Leung, P. M., Nauer, P. A., Arndt, S. K., Tait, D. R., Greening, C., and Johnston, S. G.: Bark-dwelling methanotrophic bacteria decrease methane emissions from trees, Nat. Commun., 12, 2127, https://doi.org/10.1038/s41467-021-22333-7, 2021.
Kammann, C., Hepp, S., Lenhart, K., and Müller, C.: Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil, Soil Biol. Biochem., 41, 622–629, https://doi.org/10.1016/j.soilbio.2008.12.025, 2009.
Kim, S. Y., Veraart, A. J., Meima-Franke, M., and Bodelier, P. L. E.: Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments, Geoderma, 259–260, 354–361, https://doi.org/10.1016/j.geoderma.2015.03.015, 2015.
King, G. M. and Schnell, S.: Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations, Appl. Environ. Microbiol., 60, 3508–3513, https://doi.org/10.1128/aem.60.10.3508-3513.1994, 1994.
King, G. M. and Schnell, S.: Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and maine forest soils, Appl. Environ. Microb., 64, 253–257, https://doi.org/10.1128/AEM.64.1.253-257.1998, 1998.
Kruse, C. W., Moldrup, P., and Iversen, N.: Modeling diffusion and reaction in soils: ii. atmospheric methane diffusion and consumption in a forest soil, Soil Sci., 161, 355–365, 1996.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest package: Tests in linear mixed effects models, J. Stat. Soft., 82, 1–26, https://doi.org/10.18637/jss.v082.i13, 2017.
Lacroix, E. M., Aeppli, M., Boye, K., Brodie, E., Fendorf, S., Keiluweit, M., Naughton, H. R., Noël, V., and Sihi, D.: Consider the anoxic microsite: acknowledging and appreciating spatiotemporal redox heterogeneity in soils and sediments, ACS Earth Space Chem., 7, 1592–1609, https://doi.org/10.1021/acsearthspacechem.3c00032, 2023.
Lang, R., Blagodatsky, S., Xu, J., and Cadisch, G.: Seasonal differences in soil respiration and methane uptake in rubber plantation and rainforest, Agr. Ecosyst. Environ., 240, 314–328, https://doi.org/10.1016/j.agee.2017.02.032, 2017.
Lang, R., Goldberg, S., Blagodatsky, S., Piepho, H., Harrison, R. D., Xu, J., and Cadisch, G.: Converting forests into rubber plantations weakened the soil CH4 sink in tropical uplands, Land Degrad. Dev., 30, 2311–2322, https://doi.org/10.1002/ldr.3417, 2019.
Lang, R., Goldberg, S. D., Blagodatsky, S., Piepho, H.-P., Hoyt, A. M., Harrison, R. D., Xu, J., and Cadisch, G.: Mechanism of methane uptake in profiles of tropical soils converted from forest to rubber plantations, Soil Biol. Biochem., 145, 107796, https://doi.org/10.1016/j.soilbio.2020.107796, 2020.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of methane by soils: A review, Eur. J. Soil Biol., 37, 25–50, https://doi.org/10.1016/S1164-5563(01)01067-6, 2001.
Lee, J., Yun, J., Yang, Y., Jung, J. Y., Lee, Y. K., Yuan, J., Ding, W., Freeman, C., and Kang, H.: Attenuation of methane oxidation by nitrogen availability in arctic tundra soils, Environ. Sci. Technol., 57, 2647–2659, https://doi.org/10.1021/acs.est.2c05228, 2023.
Liu, D. Y., Ding, W. X., Jia, Z. J., and Cai, Z. C.: Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China, Biogeosciences, 8, 329–338, https://doi.org/10.5194/bg-8-329-2011, 2011.
Lu, Y. and Conrad, R.: In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere, Science, 309, 1088–1090, https://doi.org/10.1126/science.1113435, 2005.
Machacova, K., Borak, L., Agyei, T., Schindler, T., Soosaar, K., Mander, Ü., and Ah-Peng, C.: Trees as net sinks for methane (CH4) and nitrous oxide (N2O) in the lowland tropical rain forest on volcanic Réunion Island, New Phytol., 229, 1983–1994, https://doi.org/10.1111/nph.17002, 2021.
Martinson, G. O., Müller, A. K., Matson, A. L., Corre, M. D., and Veldkamp, E.: Nitrogen and phosphorus control soil methane uptake in tropical montane forests, J. Geophys. Res.-Biogeo., 126, e2020JG005970, https://doi.org/10.1029/2020JG005970, 2021.
Mehring, A. S., Martin, R. M., Delavaux, C. S., James, E. B., Quispe, J. J., and Yaffar, D.: Leaf-cutting ant (Atta cephalotes) nests may be hotspots of methane and carbon dioxide emissions in tropical forests, Pedobiologia, 87–88, 150754, https://doi.org/10.1016/j.pedobi.2021.150754, 2021.
Melillo, J. M., Aber, J. D., and Muratore, J. F.: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics, Ecology, 63, 621–626, https://doi.org/10.2307/1936780, 1982.
Minoda, T. and Kimura, M.: Contribution of photosynthesized carbon to the methane emitted from paddy fields, Geophys. Res. Lett., 21, 2007–2010, https://doi.org/10.1029/94GL01595, 1994.
Minoda, T., Kimura, M., and Wada, E.: Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields, J. Geophys. Res, 101, 21091–21097, https://doi.org/10.1029/96JD01710, 1996.
Mochizuki, Y., Koba, K., and Yoh, M.: Strong inhibitory effect of nitrate on atmospheric methane oxidation in forest soils, Soil Biol. Biochem., 50, 164–166, https://doi.org/10.1016/j.soilbio.2012.03.013, 2012.
Murase, J., Sajjaphan, K., Dechjiraratthanasiri, C., Duangngam, O., Chotiphan, R., Rattanapichai, W., Azuma, W., Shibata, M., Kasemsap, P., and Epron, D.: Methane oxidation potential of soils in a rubber plantation in Thailand affected by fertilization, SOIL, 11, 457–466, https://doi.org/10.5194/soil-11-457-2025, 2025.
Nakagawa, S. and Schielzeth, H.: A general and simple method for obtaining R2 from generalized linear mixed-effects models, Meth. Ecol. Evol., 4, 133–142, https://doi.org/10.1111/j.2041-210x.2012.00261.x, 2013.
Niu, F., Röll, A., Meijide, A., Hendrayanto, and Hölscher, D.: Rubber tree transpiration in the lowlands of Sumatra, Ecohydrology, 10, e1882, https://doi.org/10.1002/eco.1882, 2017.
O'Neill, J. G. and Wilkinson, J. F.: Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation, J. Gen. Microbiol., 100, 407–412, 1977.
Pangala, S. R., Moore, S., Hornibrook, E. R. C., and Gauci, V.: Trees are major conduits for methane egress from tropical forested wetlands, New Phytol., 197, 524–531, https://doi.org/10.1111/nph.12031, 2013.
Papen, H., Daum, M., Steinkamp, R., and Butterbach-Bahl, K.: N2O- and CH4-fluxes from soils of a N-limited and N-fertilized spruce forest ecosystem of the temperate zone, J. Appl. Bot., 75, 159–163, 2001.
Phelps, T. J. and Zeikus, J. G.: Influence of ph on terminal carbon metabolism in anoxic sediments from a mildly acidic lake, Appl. Environ. Microb., 48, 1088–1095, https://doi.org/10.1128/aem.48.6.1088-1095.1984, 1984.
Pitz, S. L., Megonigal, J. P., Chang, C.-H., and Szlavecz, K.: Methane fluxes from tree stems and soils along a habitat gradient, Biogeochemistry, 137, 307–320, https://doi.org/10.1007/s10533-017-0400-3, 2018.
Plain, C., Ndiaye, F.-K., Bonnaud, P., Ranger, J., and Epron, D.: Impact of vegetation on the methane budget of a temperate forest, New Phytol., 221, 1447–1456, https://doi.org/10.1111/nph.15452, 2019.
Purvaja, R. and Ramesh, R.: Natural and anthropogenic methane emission from coastal wetlands of south india, Environ. Manage., 27, 547–557, https://doi.org/10.1007/s002670010169, 2001.
Qiu, Q., Ding, C., Mgelwa, A. S., Feng, J., Lei, M., Gan, Z., Zhu, B., and Hu, Y.: Contrasting impacts of fertilization on topsoil and subsoil greenhouse gas fluxes in a thinned Chinese fir plantation, J. Environ. Manage., 359, 121055, https://doi.org/10.1016/j.jenvman.2024.121055, 2024.
Qu, Z., Wang, J., Almøy, T., and Bakken, L. R.: Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils, Glob. Change Biol., 20, 1685–1698, https://doi.org/10.1111/gcb.12461, 2014.
R Core Team: R: A language and environment for statistical computing, http://www.R-project.org/ (last access: 16 February 2024), 2023.
Rabbai, A., Barba, J., Canducci, M., Hart, K. M., MacKenzie, A. R., Kettridge, N., Curioni, G., Ullah, S., and Krause, S.: Fertilization-induced greenhouse gas emissions partially offset carbon sequestration during afforestation, Soil Biol. Biochem., 199, 109577, https://doi.org/10.1016/j.soilbio.2024.109577, 2024.
Räsänen, M., Vesala, R., Rönnholm, P., Arppe, L., Manninen, P., Jylhä, M., Rikkinen, J., Pellikka, P., and Rinne, J.: Carbon dioxide and methane fluxes from mounds of African fungus-growing termites, Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, 2023.
Rasmussen, R. A. and Khalil, M. A. K.: Global production of methane by termites, Nature, 301, 700–702, https://doi.org/10.1038/301700a0, 1983.
Reay, D. S. and Nedwell, D. B.: Methane oxidation in temperate soils: effects of inorganic N, Soil Biol. Biochem., 36, 2059–2065, https://doi.org/10.1016/j.soilbio.2004.06.002, 2004.
Roy, R. and Conrad, R.: effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil, FEMS Microbiol. Ecol., https://doi.org/10.1111/j.1574-6941.1999.tb00560.x, 1999.
Saiyasitpanich, P., Ratisoonthorn, J., and Panmanee, N.: Thailand's Fourth National Communication (NC4), Ministry of Natural Resources and Environment, Bangkok, Thailand, https://unfccc.int/documents/624738 (last access: 27 September 2024), 2024.
Sakabe, A., Takahashi, K., Azuma, W., Itoh, M., Tateishi, M., and Kosugi, Y.: Controlling factors of seasonal variation of stem methane emissions from Alnus japonica in a riparian wetland of a temperate forest, J. Geophys. Res.-Biogeo., 126, e2021JG006326, https://doi.org/10.1029/2021JG006326, 2021.
Schnell, S. and King, G. M.: Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils, Appl. Environ. Microb., 60, 3514–3521, https://doi.org/10.1128/aem.60.10.3514-3521.1994, 1994.
Sexstone, A. J., Revsbech, N. P., Parkin, T. B., and Tiedje, J. M.: Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil Sci. Soc. Am. J., 49, 645–651, https://doi.org/10.2136/sssaj1985.03615995004900030024x, 1985.
Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey, A.: Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes, Eur. J. Soil Sci., 54, 779–791, https://doi.org/10.1046/j.1351-0754.2003.0567.x, 2003.
Smith, P., Reay, D., and Smith, J.: Agricultural methane emissions and the potential for mitigation, Philos. T. R. Soc. A., 379, 20200451, https://doi.org/10.1098/rsta.2020.0451, 2021.
Soil Survey Staff: Keys to Soil Taxonomy, 13th edition, USDA Natural Resources Conservation Service, 410 pp., https://www.nrcs.usda.gov/resources/guides-and-instructions/keys-to-soil-taxonomy (last access: 3 October 2014) 2022.
Sotomayor, D., Corredor, J. E., and Morell, J. M.: Methane flux from mangrove sediments along the southwestern coast of Puerto Rico, Estuaries, 17, 140, https://doi.org/10.2307/1352563, 1994.
Steudler, P. A., Bowden, R. D., Melillo, J. M., and Aber, J. D.: Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature, 341, 314–316, https://doi.org/10.1038/341314a0, 1989.
Tan, Z.-H., Zhang, Y.-P., Song, Q.-H., Liu, W.-J., Deng, X.-B., Tang, J.-W., Deng, Y., Zhou, W.-J., Yang, L.-Y., Yu, G.-R., Sun, X.-M., and Liang, N.-S.: Rubber plantations act as water pumps in tropical China, Geophys. Res. Lett., 38, L24406, https://doi.org/10.1029/2011GL050006, 2011.
Tang, J., Qian, H., Zhu, X., Liu, Z., Kuzyakov, Y., Zou, J., Wang, J., Xu, Q., Li, G., Liu, Z., Wang, S., Zhang, W., Zhang, J., Huang, S., Ding, Y., Van Groenigen, K. J., and Jiang, Y.: Soil pH determines nitrogen effects on methane emissions from rice paddies, Glob. Change Biol., 30, e17577, https://doi.org/10.1111/gcb.17577, 2024.
Teh, Y. A., Silver, W. L., and Conrad, M. E.: Oxygen effects on methane production and oxidation in humid tropical forest soils, Glob. Change Biol., 11, 1283–1297, https://doi.org/10.1111/j.1365-2486.2005.00983.x, 2005.
Terazawa, K., Yamada, K., Ohno, Y., Sakata, T., and Ishizuka, S.: Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest, Biogeochemistry, 123, 349–362, https://doi.org/10.1007/s10533-015-0070-y, 2015.
Veldkamp, E., Koehler, B., and Corre, M. D.: Indications of nitrogen-limited methane uptake in tropical forest soils, Biogeosciences, 10, 5367–5379, https://doi.org/10.5194/bg-10-5367-2013, 2013.
Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y., and Bodelier, P. L. E.: Beyond nitrogen: The importance of phosphorus for CH4 oxidation in soils and sediments, Geoderma, 259–260, 337–346, https://doi.org/10.1016/j.geoderma.2015.03.025, 2015.
von Fischer, J. C. and Hedin, L. O.: Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers, Global Biogeochem. Cy., 21, GB2007, https://doi.org/10.1029/2006GB002687, 2007.
von Fischer, J. C., Butters, G., Duchateau, P. C., Thelwell, R. J., and Siller, R.: In situ measures of methanotroph activity in upland soils: A reaction-diffusion model and field observation of water stress, J. Geophys. Res.-Biogeo., 114, G01015, https://doi.org/10.1029/2008JG000731, 2009.
Wachinger, G., Fiedler, S., Zepp, K., Gattinger, A., Sommer, M., and Roth, K.: Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations, Soil Biol. Biochem., 32, 1121–1130, https://doi.org/10.1016/S0038-0717(00)00024-9, 2000.
Wang, Y., Hollingsworth, P. M., Zhai, D., West, C. D., Green, J. M. H., Chen, H., Hurni, K., Su, Y., Warren-Thomas, E., Xu, J., and Ahrends, A.: High-resolution maps show that rubber causes substantial deforestation, Nature, 623, 340–346, https://doi.org/10.1038/s41586-023-06642-z, 2023.
Wang, Z. P., DeLaune, R. D., Patrick, W. H., and Masscheleyn, P. H.: Soil redox and pH effects on methane production in a flooded rice soil, Soil Sci. Soc. Am. J., 57, 382–385, https://doi.org/10.2136/sssaj1993.03615995005700020016x, 1993.
Wang, Z.-P. and Ineson, P.: Methane oxidation in a temperate coniferous forest soil: effects of inorganic N, Soil Biol. Biochem., 35, 427–433, https://doi.org/10.1016/S0038-0717(02)00294-8, 2003.
Wang, Z.-P., Han, S.-J., Li, H.-L., Deng, F.-D., Zheng, Y.-H., Liu, H.-F., and Han, X.-G.: Methane production explained largely by water content in the heartwood of living trees in upland forests, J. Geophys. Res.-Biogeo., 122, 2479–2489, https://doi.org/10.1002/2017JG003991, 2017.
Werner, C., Zheng, X., Tang, J., Xie, B., Liu, C., Kiese, R., and Butterbach-Bahl, K.: N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in southwest china, Plant Soil, 289, 335–353, https://doi.org/10.1007/s11104-006-9143-y, 2006.
Whiting, G. J. and Chanton, J. P.: Primary production control of methane emission from wetlands, Nature, 364, 794–795, https://doi.org/10.1038/364794a0, 1993.
Whittenbury, R., Phillips, K. C., and Wilkinson, J. F.: Enrichment, isolation and some properties of methane-utilizing bacteria, J. Gen. Microbiol., 61, 205–218, https://doi.org/10.1099/00221287-61-2-205, 1970.
Wobbrock, J. O., Findlater, L., Gergle, D., and Higgins, J. J.: The aligned rank transform for nonparametric factorial analyses using only anova procedures, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '11: CHI Conference on Human Factors in Computing Systems, Vancouver BC Canada, 7–12 May 2011, 143–146, https://doi.org/10.1145/1978942.1978963, 2011.
Yao, X., Wang, J., and Hu, B.: How methanotrophs respond to pH: A review of ecophysiology, Front. Microbiol., 13, 1034164, https://doi.org/10.3389/fmicb.2022.1034164, 2023.
Ye, R., Jin, Q., Bohannan, B., Keller, J. K., McAllister, S. A., and Bridgham, S. D.: pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient, Soil Biol. Biochem., 54, 36–47, https://doi.org/10.1016/j.soilbio.2012.05.015, 2012.
Zhang, L., Yuan, F., Bai, J., Duan, H., Gu, X., Hou, L., Huang, Y., Yang, M., He, J., Zhang, Z., Yu, L., Song, C., Lipson, D. A., Zona, D., Oechel, W., Janssens, I. A., and Xu, X.: Phosphorus alleviation of nitrogen-suppressed methane sink in global grasslands, Ecol. Lett., 23, 821–830, https://doi.org/10.1111/ele.13480, 2020.
Zhang, T., Zhu, W., Mo, J., Liu, L., and Dong, S.: Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China, Biogeosciences, 8, 2805–2813, https://doi.org/10.5194/bg-8-2805-2011, 2011.
Zhang, W., Mo, J., Zhou, G., Gundersen, P., Fang, Y., Lu, X., Zhang, T., and Dong, S.: Methane uptake responses to nitrogen deposition in three tropical forests in southern China, J. Geophys. Res., 113, D11116, https://doi.org/10.1029/2007JD009195, 2008.
Zheng, M., Zhang, T., Liu, L., Zhang, W., Lu, X., and Mo, J.: Effects of nitrogen and phosphorus additions on soil methane uptake in disturbed forests: N and P regulate CH4 uptake in forests, J. Geophys. Res.-Biogeo., 121, 3089–3100, https://doi.org/10.1002/2016JG003476, 2016.
Zhou, W., Zhu, J., Ji, H., Grace, J., Sha, L., Song, Q., Liu, Y., Bai, X., Lin, Y., Gao, J., Fei, X., Zhou, R., Tang, J., Deng, X., Yu, G., Zhang, J., Zheng, X., Zhao, J., and Zhang, Y.: Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils, Agr. Forest Meteorol., 304–305, 108391, https://doi.org/10.1016/j.agrformet.2021.108391, 2021.
Zhu, F., Yoh, M., Gilliam, F. S., Lu, X., and Mo, J.: Nutrient limitation in three lowland tropical forests in Southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions, PLoS ONE, 8, e82661, https://doi.org/10.1371/journal.pone.0082661, 2013.
Short summary
The rapid expansion of rubber cultivation constitutes a significant land-use change in Southeast Asia. Despite fertilization being a common practice in rubber plantations, its impact on soil methane (CH4) dynamics has remained poorly understood. Our study demonstrates that fertilization not only reduces soil CH4 consumption but also increases CH4 production, transforming rubber plantations from a net CH4 sink to a source. Implementing rational fertilization could enhance atmospheric CH4 removal.
The rapid expansion of rubber cultivation constitutes a significant land-use change in Southeast...
Altmetrics
Final-revised paper
Preprint