Articles | Volume 22, issue 19
https://doi.org/10.5194/bg-22-5511-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5511-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A tracer study for the development of in-water monitoring, reporting, and verification (MRV) of ship-based ocean alkalinity enhancement
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Jennie E. Rheuban
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Zhaohui Aleck Wang
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Daniel C. McCorkle
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Anna P. M. Michel
Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Lukas Marx
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Chloe L. Dean
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
MIT-WHOI Joint Program in Oceanography, Massachusetts Institute of Technology, Cambridge, MA, USA
Kate Morkeski
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Matthew G. Hayden
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Mary Burkitt-Gray
Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Francis Elder
Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Yiming Guo
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Heather H. Kim
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Ke Chen
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Related authors
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Mohammed Hashim, Lukas Marx, Frieder Klein, Chloe Dean, Emily Burdige, Matthew Hayden, Daniel McCorkle, and Adam Subhas
EGUsphere, https://doi.org/10.5194/egusphere-2025-988, https://doi.org/10.5194/egusphere-2025-988, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a CO2 removal approach that involves the addition of alkaline substances to seawater that would allow it to absorb more atmospheric CO2. Increasing seawater alkalinity, however, can trigger mineral precipitation that decreases OAE efficiency. We conducted experiments to constrain the thermodynamic and kinetics of mineral precipitation.
Adam V. Subhas, Nadine Lehmann, and Rosalind E. M. Rickaby
State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023, https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023
Short summary
Short summary
In addition to emissions reductions, methods of actively removing carbon dioxide from the atmosphere must be considered. One of these methods, called ocean alkalinity enhancement, is currently being studied to evaluate its effectiveness and safety. This article details best practices for the study of natural systems to support the development of ocean alkalinity enhancement as a carbon dioxide removal strategy. Relevant Earth system processes are discussed, along with methods to study them.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Mohammed Hashim, Lukas Marx, Frieder Klein, Chloe Dean, Emily Burdige, Matthew Hayden, Daniel McCorkle, and Adam Subhas
EGUsphere, https://doi.org/10.5194/egusphere-2025-988, https://doi.org/10.5194/egusphere-2025-988, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a CO2 removal approach that involves the addition of alkaline substances to seawater that would allow it to absorb more atmospheric CO2. Increasing seawater alkalinity, however, can trigger mineral precipitation that decreases OAE efficiency. We conducted experiments to constrain the thermodynamic and kinetics of mineral precipitation.
Adam V. Subhas, Nadine Lehmann, and Rosalind E. M. Rickaby
State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023, https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023
Short summary
Short summary
In addition to emissions reductions, methods of actively removing carbon dioxide from the atmosphere must be considered. One of these methods, called ocean alkalinity enhancement, is currently being studied to evaluate its effectiveness and safety. This article details best practices for the study of natural systems to support the development of ocean alkalinity enhancement as a carbon dioxide removal strategy. Relevant Earth system processes are discussed, along with methods to study them.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Anna Kolomijeca, Lukas Marx, Sarah Reynolds, Thierry Cariou, Edward Mawji, and Cedric Boulart
Ocean Sci., 18, 1377–1388, https://doi.org/10.5194/os-18-1377-2022, https://doi.org/10.5194/os-18-1377-2022, 2022
Short summary
Short summary
More and more studies indicate that the open ocean can be a significant source of methane, the second greenhouse gas after CO2. Our study in the subtropical North Atlantic Ocean shows that a significant part of the methane flux to the atmosphere is related to cyanobacteria, which are ubiquitous phytoplankton that produce methane as part of their metabolic activity. This study is a response to the lack of data on the role of the oceans in the methane budget in the context of climate change.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Cited articles
Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J., Wolfe, K., Zhu, K., and Caldeira, K.: Reversal of ocean acidification enhances net coral reef calcification, Nature, 531, 362–365, https://doi.org/10.1038/nature17155, 2016.
Bach, L. T.: The additionality problem of ocean alkalinity enhancement, Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, 2024.
Bednarsek, N., Van de Mortel, H., Pelletier, G., García-Reyes, M., Feely, R. A., and Dickson, A.: Assessment framework to predict sensitivity of marine calcifiers to ocean alkalinity enhancement: identification of biological thresholds and importance of precautionary principle, One Ocean Science Congress 2025, Nice, France, 3–6 Jun 2025, OOS2025-809, https://doi.org/10.5194/oos2025-809, 2025.
Busch, J. A., Engel, J., Zielinski, O., and Friedrichs, A.: Citizens' observatory for coast and ocean optical monitoring, Citclops Report D2.2: Review of state of the art in affordable fluorescence sensors (308469), https://doi.org/10.3390/rs8110879, 2013.
Cai, W.-J., Xu, Y.-Y., Feely, R. A., Wanninkhof, R., Jönsson, B., Alin, S. R., Barbero, L., Cross, J. N., Azetsu-Scott, K., Fassbender, A. J., Carter, B. R., Jiang, L.-Q., Pepin, P., Chen, B., Hussain, N., Reimer, J. J., Xue, L., Salisbury, J. E., Hernández-Ayón, J. M., Langdon, C., Li, Q., Sutton, A. J., Chen, C.-T. A., and Gledhill, D. K.: Controls on surface water carbonate chemistry along North American ocean margins, Nat. Commun., 11, 2691, https://doi.org/10.1038/s41467-020-16530-z, 2020.
Camatti, E., Valsecchi, S., Caserini, S., Barbaccia, E., Santinelli, C., Basso, D., and Azzellino, A.: Short-term impact assessment of ocean liming: A copepod exposure test, Mar. Pollut. Bull., 198, 115833, https://doi.org/10.1016/j.marpolbul.2023.115833, 2024.
Chen, K., Gawarkiewicz, G., and Yang, J.: Mesoscale and Submesoscale Shelf-Ocean Exchanges Initialize an Advective Marine Heatwave, J. Geophys. Res.-Oceans, 127, https://doi.org/10.1029/2021jc017927, 2022.
Chou, H.-T.: On the dilution of liquid waste in ships' wakes, J. Mar. Sci. Technol., 1, 149–154, https://doi.org/10.1007/bf02391175, 1996.
Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L., Poteau, A., D'Ortenzio, F., Gentili, B., and Schmechtig, C.: Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics, Global Biogeochem. Cy., 35, e2020GB006759, https://doi.org/10.1029/2020gb006759, 2021.
Cyronak, T., Albright, R., and Bach, L. T.: Field experiments in ocean alkalinity enhancement research, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 7, https://doi.org/10.5194/sp-2-oae2023-7-2023, 2023.
Davis, R. E.: Drifter observations of coastal surface currents during CODE: The method and descriptive view, J. Geophys. Res.-Oceans, 90, 4741–4755, https://doi.org/10.1029/jc090ic03p04741, 1985.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to Best Practices for Ocean CO2, ISBN 1-897176-07-4, https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/Handbook_2007.html (last access: 4 October 2025), 2007.
Doney, S. C., Wolfe, W. H., McKee, D. C., and Fuhrman, J. G.: The Science, Engineering, and Validation of Marine Carbon Dioxide Removal and Storage, Annu. Rev. Mar. Sci., https://doi.org/10.1146/annurev-marine-040523-014702, 2024.
Eisaman, M. D., Geilert, S., Renforth, P., Bastianini, L., Campbell, J., Dale, A. W., Foteinis, S., Grasse, P., Hawrot, O., Löscher, C. R., Rau, G. H., and Rønning, J.: Assessing the technical aspects of ocean-alkalinity-enhancement approaches, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023.
Feely, R. A., Sabine, C. L., Lee, K., Millero, F. J., Lamb, M. F., Greeley, D., Bullister, J. L., Key, R. M., Peng, T. H., Kozyr, A., Ono, T., and Wong, C. S.: In situ calcium carbonate dissolution in the Pacific Ocean, Global Biogeochemical Cycles, 16, 1–12, https://doi.org/10.1029/2002gb001866, 2002.
Ferderer, A., Chase, Z., Kennedy, F., Schulz, K. G., and Bach, L. T.: Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community, Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, 2022.
Goldenberg, S. U., Riebesell, U., Brüggemann, D., Börner, G., Sswat, M., Folkvord, A., Couret, M., Spjelkavik, S., Sánchez, N., Jaspers, C., and Moyano, M.: Early life stages of fish under ocean alkalinity enhancement in coastal plankton communities, Biogeosciences, 21, 4521–4532, https://doi.org/10.5194/bg-21-4521-2024, 2024.
Guo, Y., Chen, K., Subhas, A. V., Rheuban, J. E., Wang, Z. A., McCorkle, D. C., Michel, A., and Kim, H. H.: Site selection for ocean alkalinity enhancement informed by passive tracer simulations, Commun. Earth Environ., 6, 535, https://doi.org/10.1038/s43247-025-02480-1, 2025.
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage, Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, 2023.
He, J. and Tyka, M. D.: Limits and CO2 equilibration of near-coast alkalinity enhancement, Biogeosciences, 20, 27–43, https://doi.org/10.5194/bg-20-27-2023, 2023.
Hixson, J. L. and Ward, A. S.: Hardware Selection and Performance of Low-Cost Fluorometers, Sensors, 22, 2319, https://doi.org/10.3390/s22062319, 2022.
Ho, D. T., Wanninkhof, R., Schlosser, P., Ullman, D. S., Hebert, D., and Sullivan, K. F.: Toward a universal relationship between wind speed and gas exchange: Gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment, J. Geophys. Res.-Oceans, 116, https://doi.org/10.1029/2010jc006854, 2011.
Ho, D. T., Bopp, L., Palter, J. B., Long, M. C., Boyd, P. W., Neukermans, G., and Bach, L. T.: Monitoring, reporting, and verification for ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023.
Hunt, C. W., Salisbury, J. E., Vandemark, D., Aßmann, S., Fietzek, P., Melrose, C., Wanninkhof, R., and Azetsu-Scott, K.: Variability of USA East Coast surface total alkalinity distributions revealed by automated instrument measurements, Mar. Chem., 232, 103960, https://doi.org/10.1016/j.marchem.2021.103960, 2021.
IPCC: Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Lee, H. and Romero, J., IPCC, Geneva, Switzerland, 35-115, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Isometric: MRV Protocol for Ocean Alkalinity Enhancement from Coastal Outfalls, v1.0, https://registry.isometric.com/protocol/ocean-alkalinity-enhancement (last access: 4 October 2025), 2024.
Johansen, K., Dunne, A. F., Tu, Y.-H., Almashharawi, S., Jones, B. H., and McCabe, M. F.: Dye tracing and concentration mapping in coastal waters using unmanned aerial vehicles, Sci. Rep., 12, 1141, https://doi.org/10.1038/s41598-022-05189-9, 2022a.
Johansen, K., Dunne, A. F., Tu, Y.-H., Jones, B. H., and McCabe, M. F.: Monitoring coastal water flow dynamics using sub-daily high-resolution SkySat satellite and UAV-based imagery, Water Res., 219, 118531, https://doi.org/10.1016/j.watres.2022.118531, 2022b.
Jones, D. C., Ito, T., Takano, Y., and Hsu, W.: Spatial and seasonal variability of the air‐sea equilibration timescale of carbon dioxide, Global Biogeochem. Cy., 28, 1163–1178, https://doi.org/10.1002/2014gb004813, 2014.
Kitidis, V., Rackley, Stephen. A., Burt, William. J., Rau, Greg. H., Fawcett, S., Taylor, Matthew., Tarran, G., Woodward, E. M. S., Harris, C., and Fileman, T.: Magnesium hydroxide addition reduces aqueous carbon dioxide in wastewater discharged to the ocean, Commun. Earth Environ., 5, 354, https://doi.org/10.1038/s43247-024-01506-4, 2024.
Lamb, W. F., Gasser, T., Roman-Cuesta, R. M., Grassi, G., Gidden, M. J., Powis, C. M., Geden, O., Nemet, G., Pratama, Y., Riahi, K., Smith, S. M., Steinhauser, J., Vaughan, N. E., Smith, H. B., and Minx, J. C.: The carbon dioxide removal gap, Nat. Clim. Change, 14, 644–651, https://doi.org/10.1038/s41558-024-01984-6, 2024.
Lehmann, N. and Bach, L. T.: Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement, Nat. Geosci., 1–7, https://doi.org/10.1038/s41561-025-01644-0, 2025.
Long, M. H. and Nicholson, D. P.: Surface gas exchange determined from an aquatic eddy covariance floating platform, Limnol. Oceanogr. Meth., 16, 145–159, https://doi.org/10.1002/lom3.10233, 2018.
Manning, J. P., McGillicuddy, D. J., Pettigrew, N. R., Churchill, J. H., and Incze, L. S.: Drifter observations of the Gulf of Maine Coastal Current, Cont. Shelf Res., 29, 835–845, https://doi.org/10.1016/j.csr.2008.12.008, 2009.
McGarry, K., Siedlecki, S. A., Salisbury, J., and Alin, S. R.: Multiple Linear Regression Models for Reconstructing and Exploring Processes Controlling the Carbonate System of the Northeast US From Basic Hydrographic Data, J. Geophys. Res.-Oceans, 126, https://doi.org/10.1029/2020jc016480, 2021.
Millero, F. J.: The Marine Inorganic Carbon Cycle, Chem. Rev., 107, 308–341, https://doi.org/10.1021/cr0503557, 2007.
Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., and Schulz, K. G.: Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, 2022.
National Academies of Sciences, Engineering, and Medicine (NASEM): A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration, Washington, DC, The National Academies Press, https://doi.org/10.17226/26278, 2021.
National Research Council, Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, Washington, DC, The National Academies Press, https://doi.org/10.17226/18805, 2015.
Nylund, A. T., Arneborg, L., Tengberg, A., Mallast, U., and Hassellöv, I.-M.: In situ observations of turbulent ship wakes and their spatiotemporal extent, Ocean Sci., 17, 1285–1302, https://doi.org/10.5194/os-17-1285-2021, 2021.
Oschlies, A., Bach, L. T., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P.: Climate targets, carbon dioxide removal, and the potential role of ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023.
Proehl, J. A., Lynch, D. R., McGillicuddy, D. J., and Ledwell, J. R.: Modeling turbulent dispersion on the North Flank of Georges Bank using Lagrangian Particle Methods, Cont. Shelf Res., 25, 875–900, https://doi.org/10.1016/j.csr.2004.09.022, 2005.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55, 636–674, https://doi.org/10.1002/2016rg000533, 2017.
Rypina, I. I., Kirincich, A., and Peacock, T.: Horizontal and vertical spreading of dye in the coastal ocean of the northern Mid-Atlantic bight, Cont. Shelf Res., 230, 104567, https://doi.org/10.1016/j.csr.2021.104567, 2021.
Schulz, K. G., Bach, L. T., and Dickson, A. G.: Seawater carbonate chemistry considerations for ocean alkalinity enhancement research: theory, measurements, and calculations, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023.
Seelmann, K., Aßmann, S., and Körtzinger, A.: Characterization of a novel autonomous analyzer for seawater total alkalinity: Results from laboratory and field tests, Limnol. Oceanogr. Meth., 17, 515–532, https://doi.org/10.1002/lom3.10329, 2019.
Seelmann, K., Steinhoff, T., Aßmann, S., and Körtzinger, A.: Enhance Ocean Carbon Observations: Successful Implementation of a Novel Autonomous Total Alkalinity Analyzer on a Ship of Opportunity, Front. Mar. Sci., 7, 571301, https://doi.org/10.3389/fmars.2020.571301, 2020.
Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C., Lewis, E. R., and Wallace, D. W. R.: CO2SYSv3 for MATLAB (Version v3.2.1), Zenodo [code], https://doi.org/10.5281/zenodo.3950562, 2023.
Su, J., Cai, W.-J., Hussain, N., Brodeur, J., Chen, B., and Huang, K.: Simultaneous determination of dissolved inorganic carbon (DIC) concentration and stable isotope (δ13C-DIC) by Cavity Ring-Down Spectroscopy: Application to study carbonate dynamics in the Chesapeake Bay, Mar. Chem., 215, 103689, https://doi.org/10.1016/j.marchem.2019.103689, 2019.
Subhas, A. V., Rollins, N. E., Berelson, W. M., Dong, S., Erez, J., and Adkins, J. F.: A novel determination of calcite dissolution kinetics in seawater, Geochim. Cosmochim. Ac., 170, 51–68, https://doi.org/10.1016/j.gca.2015.08.011, 2015.
Subhas, A. V., McCorkle, D. C., Quizon, A., McNichol, A. P., and Long, M. H.: Selective Preservation of Coccolith Calcite in Ontong-Java Plateau Sediments, Paleoceanogr. Paleoclim., https://doi.org/10.1029/2019pa003731, 2019.
Subhas, A. V., Marx, L., Reynolds, S., Flohr, A., Mawji, E. W., Brown, P. J., and Cael, B. B.: Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre, Frontiers Clim., 4, 784997, https://doi.org/10.3389/fclim.2022.784997, 2022a.
Subhas, A. V., Dong, S., Naviaux, J. D., Rollins, N. E., Ziveri, P., Gray, W., Rae, J. W. B., Liu, X., Byrne, R. H., Chen, S., Moore, C., Martell-Bonet, L., Steiner, Z., Antler, G., Hu, H., Lunstrum, A., Hou, Y., Kemnitz, N., Stutsman, J., Pallacks, S., Dugenne, M., Quay, P. D., Berelson, W. M., and Adkins, J. F.: Shallow Calcium Carbonate Cycling in the North Pacific Ocean, Global Biogeochem. Cy., 36, https://doi.org/10.1029/2022gb007388, 2022b.
Subhas, A. V., Lehmann, N., and Rickaby, R. E. M.: Natural analogs to ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023.
Sulpis, O., Jeansson, E., Dinauer, A., Lauvset, S. K., and Middelburg, J. J.: Calcium carbonate dissolution patterns in the ocean, Nat Geosci, 14, 423–428, https://doi.org/10.1038/s41561-021-00743-y, 2021.
Sundermeyer, M. A., Terray, E. A., Ledwell, J. R., Cunningham, A. G., LaRocque, P. E., Banic, J., and Lillycrop, W. J.: Three-Dimensional Mapping of Fluorescent Dye Using a Scanning, Depth-Resolving Airborne Lidar, J. Atmos. Ocean. Technol., 24, 1050–1065, https://doi.org/10.1175/jtech2027.1, 2007.
Subhas, A. V., Rheuban, J. E., Wang, Z. A., McCorkle, D. C., Michel, A. P. M., Marx, L., Dean, C. L., Morkeski, K., Hayden, M.G., Burkitt-Gray, M., Elder, F., Guo, Y., Kim, H. H., and Chen, K.: Dissolved inorganic carbon, total alkalinity, sensor pH, pCO2, rhodamine concentration, nutrients, and other variables obtained from a tracer study for the development of in-water monitoring, reporting, and verification (MRV) of ship-based ocean alkalinity enhancement aboard the R/V Connecticut crise (EXPOCODE 33LQ20230901) in the North Atlantic Ocean, Northeast U.S. Shelf in from 2023-09-02 to 2023-09-04 (NCEI Accession 0305856), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/jssj-aw56, 2025.
Turner Designs: Cyclops submersible sensors user's manual, P/N 998-2100 Revision 4.0, Turner Designs, https://docs.turnerdesigns.com/t2/doc/manuals/998-2100.pdf (last access: 10 February 2025), 5 September 2023.
Wang, Z. A., Wanninkhof, R., Cai, W.-J., Byrne, R. H., Hu, X., Peng, T.-H., and Huang, W.-J.: The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study, Limnol. Oceanogr., 58, 325–342, https://doi.org/10.4319/lo.2013.58.1.0325, 2013.
Wang, Z. A., Lawson, G. L., Pilskaln, C. H., and Maas, A. E.: Seasonal controls of aragonite saturation states in the Gulf of Maine, J. Geophys. Res.-Oceans, 122, 372–389, https://doi.org/10.1002/2016jc012373, 2017.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr. Meth., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y., and Liang, C.: Effects of Typhoons on Surface Seawater pCO2 and Air-Sea CO2 Fluxes in the Northern South China Sea, J. Geophys. Res.-Oceans, 125, https://doi.org/10.1029/2020jc016258, 2020.
Zeebe, R. E.: On the molecular diffusion coefficients of dissolved , and and their dependence on isotopic mass, Geochimica et Cosmochimica Acta, 75, 2483–2498, https://doi.org/10.1016/j.gca.2011.02.010, 2011.
Zhou, M., Tyka, M. D., Ho, D. T., Yankovsky, E., Bachman, S., Nicholas, T., Karspeck, A. R., and Long, M. C.: Mapping the global variation in the efficiency of ocean alkalinity enhancement for carbon dioxide removal, Nat. Clim. Change, 15, 59–65, https://doi.org/10.1038/s41558-024-02179-9, 2025.
Ziveri, P., Gray, W. R., Anglada-Ortiz, G., Manno, C., Grelaud, M., Incarbona, A., Rae, J. W. B., Subhas, A. V., Pallacks, S., White, A., Adkins, J. F., and Berelson, W.: Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean, Nat. Commun., 14, 805, https://doi.org/10.1038/s41467-023-36177-w, 2023.
Co-editor-in-chief
This study represents a pioneering step in the development of in situ monitoring, reporting, and verification (MRV) frameworks for ocean alkalinity enhancement (OAE), a leading marine carbon dioxide removal strategy. The authors conducted one of the first open-ocean rhodamine tracer release experiments explicitly designed to simulate alkalinity enhancement, demonstrating a scalable and practical approach for tracking the fate of alkalinity additions in dynamic marine environments. By moving beyond theoretical modeling and implementing real world testing, this work establishes a critical methodological foundation for future field trials and offers a replicable strategy for validating carbon removal through OAE.
This study represents a pioneering step in the development of in situ monitoring, reporting, and...
Short summary
Ocean alkalinity enhancement (OAE) is a carbon removal approach in which alkaline materials are added to the marine environment, increasing the ocean's ability to store carbon dioxide. We conducted an open-water experiment releasing and tracking a fluorescent water tracer. Under the right conditions, in-water monitoring of OAE does appear to be possible. We conclude with a series of practical recommendations for open-water OAE monitoring.
Ocean alkalinity enhancement (OAE) is a carbon removal approach in which alkaline materials are...
Altmetrics
Final-revised paper
Preprint