Articles | Volume 22, issue 19
https://doi.org/10.5194/bg-22-5535-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5535-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
N transformations in nitrate-rich groundwaters: combined isotope and microbial approach
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland
Mikk Espenberg
Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
Reinhard Well
Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
Michał Bucha
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland
Marta Jakubiak
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland
Ülo Mander
Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
Mariusz-Orion Jędrysek
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland
Dominika Lewicka-Szczebak
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland
Related authors
Michal Bucha, Piotr Siupka, Anna Detman-Ignatowska, Sushmita Deb, Agnieszka Bylina, Daria Kaim, Aleksandra Chojnacka, Dominika Kufka, Dominika Lewicka-Szczebak, Anna Sikora, and Leszek Marynowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-236, https://doi.org/10.5194/egusphere-2025-236, 2025
Short summary
Short summary
In this work, we show the evidences of anaerobic activity of nitrogen-processing microorganisms that naturally occurred in outcropped organic-rich sediments as Miocene lignites. The results presented in this paper indicate the important role of nitrogen supply processes in environments depleted in this element and at the same time rich in humic substances, such as peat bogs, wetlands, immature sediments containing organic carbon (e.g. gyttja, fossil wood, coal).
Alisa Krasnova, Kaido Soosaar, Svyatoslav Rogozin, Dmitrii Krasnov, and Ülo Mander
EGUsphere, https://doi.org/10.5194/egusphere-2025-1280, https://doi.org/10.5194/egusphere-2025-1280, 2025
Short summary
Short summary
Riparian grey alder forests are important for carbon and water cycling, yet their response to climate extremes is understudied. Using ecosystem flux measurements, we found that a mature alder forest in Estonia remained a strong carbon sink, even during drought. In 2018, carbon uptake peaked due to increased spring productivity and reduced summer respiration, accompanied by enhanced water use efficiency. These results highlight the resilience of alder forests and their role in climate mitigation.
Michał Bucha, Dominika Lewicka-Szczebak, and Piotr Wójtowicz
Atmos. Meas. Tech., 18, 897–908, https://doi.org/10.5194/amt-18-897-2025, https://doi.org/10.5194/amt-18-897-2025, 2025
Short summary
Short summary
We present a method for the determination of greenhouse gases (CH4, CO2, N2O) using a chromatographic system with a barrier ion discharge detector (BID) and a Carboxen 1010 capillary column. The system omits the need for an electron capture detector (ECD) containing radiogenic components for N2O analysis and a flame ionisation detector (FID) with a methaniser for CO2 samples. This simplification reduces analytical costs, facilitates instrument maintenance and improves measurement robustness.
Michal Bucha, Piotr Siupka, Anna Detman-Ignatowska, Sushmita Deb, Agnieszka Bylina, Daria Kaim, Aleksandra Chojnacka, Dominika Kufka, Dominika Lewicka-Szczebak, Anna Sikora, and Leszek Marynowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-236, https://doi.org/10.5194/egusphere-2025-236, 2025
Short summary
Short summary
In this work, we show the evidences of anaerobic activity of nitrogen-processing microorganisms that naturally occurred in outcropped organic-rich sediments as Miocene lignites. The results presented in this paper indicate the important role of nitrogen supply processes in environments depleted in this element and at the same time rich in humic substances, such as peat bogs, wetlands, immature sediments containing organic carbon (e.g. gyttja, fossil wood, coal).
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
SOIL, 11, 1–15, https://doi.org/10.5194/soil-11-1-2025, https://doi.org/10.5194/soil-11-1-2025, 2025
Short summary
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through an analysis of soil environmental characteristics and microbiomes, soil N2O and N2 emissions as well as biomass production. The results show that wheat grew well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climates.
Eliza Harris, Philipp Fischer, Maciej P. Lewicki, Dominika Lewicka-Szczebak, Stephen J. Harris, and Fernando Perez-Cruz
Biogeosciences, 21, 3641–3663, https://doi.org/10.5194/bg-21-3641-2024, https://doi.org/10.5194/bg-21-3641-2024, 2024
Short summary
Short summary
Greenhouse gases are produced and consumed via a number of pathways. Quantifying these pathways helps reduce the climate and environmental footprint of anthropogenic activities. The contribution of the pathways can be estimated from the isotopic composition, which acts as a fingerprint for these pathways. We have developed the Time-resolved FRactionation And Mixing Evaluation (TimeFRAME) model to simplify interpretation and estimate the contribution of different pathways and their uncertainty.
Jaan Pärn, Mikk Espenberg, Kaido Soosaar, Kuno Kasak, Sandeep Thayamkottu, Thomas Schindler, Reti Ranniku, Kristina Sohar, Lizardo Fachín Malaverri, Lulie Melling, and Ülo Mander
EGUsphere, https://doi.org/10.5194/egusphere-2024-24, https://doi.org/10.5194/egusphere-2024-24, 2024
Preprint archived
Short summary
Short summary
Earth’s climate largely depends on greenhouse gas exchange in tropical peatland ecosystems. Its relationships with tropical peatland conditions are poorly understood. We analysed natural peat swamp forests and fens, moderately drained and dry peatlands under a wide variety of land uses. The tropical peat swamp forests were large greenhouse gas sinks while tropical peatlands under moderate and low soil moisture levels emitted carbon dioxide and nitrous oxide.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Jaan Pärn, Kaido Soosaar, Thomas Schindler, Katerina Machacova, Waldemar Alegría Muñoz, Lizardo Fachín, José Luis Jibaja Aspajo, Robinson I. Negron-Juarez, Martin Maddison, Jhon Rengifo, Danika Journeth Garay Dinis, Adriana Gabriela Arista Oversluijs, Manuel Calixto Ávila Fucos, Rafael Chávez Vásquez, Ronal Huaje Wampuch, Edgar Peas García, Kristina Sohar, Segundo Cordova Horna, Tedi Pacheco Gómez, Jose David Urquiza Muñoz, Rodil Tello Espinoza, and Ülo Mander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-46, https://doi.org/10.5194/bg-2021-46, 2021
Manuscript not accepted for further review
Short summary
Short summary
Despite alarming forecasts for the Amazonian peat swamp forests, greenhouse gas emissions from the different peat environments have rarely been compared. We measured CO2, CH4 and N2O emissions from the soil in 3 sites around Iquitos, Peru: a pristine swamp forest, a young forest and a slash-and-burn manioc field. We saw a devastating effect on global climate from a slight water-table drawdown in the peat swamp forests, while the manioc field emitted moderate amounts of the greenhouse gases.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary
Short summary
We present the first validation of N2O isotopic approaches for estimating N2O source pathways and N2O reduction. These approaches are widely used for tracing soil nitrogen cycling, but the results of these estimations are very uncertain. Here we report the results from parallel treatments allowing for precise validation of these approaches, and we propose the best strategies for results interpretation, including the new idea of an isotope model integrating three isotopic signatures of N2O.
Cited articles
Böhlke, J. K., Smith, R. L., and Hannon, J. E.: Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N2O, Anal. Chem., 79, 5888–5895, https://doi.org/10.1021/ac070176k, 2007.
Boumaiza, L., Stotler, R. L., Mayer, B., Matiatos, I., Sacchi, E., Otero, N., Johannesson, K. H., Huneau, F., Chesnaux, R., Blarasin, M., Re, V., and Knöller, K.: How the δ18O–NO3 versus δ15N–NO3 plot can be used to identify a typical expected isotopic range of denitrification for NO3-impacted groundwaters, ACS ES&T Water, 4, 5243–5254, https://doi.org/10.1021/acsestwater.4c00796, 2024.
Brettar, I., Sanchez-Perez, J.-M., and Trémolières, M.: Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain – correlation with redox potential and organic matter, Hydrobiologia, 469, 11–21, https://doi.org/10.1023/A:1015527611350, 2002.
Broman, E., Zilius, M., Samuiloviene, A., Vybernaite-Lubiene, I., Politi, T., Klawonn, I., Voss, M., Nascimento, F. J. A., and Bonaglia, S.: Active DNRA and denitrification in oxic hypereutrophic waters, Water Res., 194, 116954, https://doi.org/10.1016/j.watres.2021.116954, 2021.
Bucha, M., Lewicka-Szczebak, D., and Wójtowicz, P.: Simultaneous measurement of greenhouse gases (CH4, CO2 and N2O) at atmospheric levels using a gas chromatography system, Atmos. Meas. Tech., 18, 897–908, https://doi.org/10.5194/amt-18-897-2025, 2025.
Buchen-Tschiskale, C., Well, R., and Flessa, H.: Tracing nitrogen transformations during spring development of winter wheat induced by 15N labeled cattle slurry applied with different techniques, Sci. Total Environ., 871, 162061, https://doi.org/10.1016/j.scitotenv.2023.162061, 2023.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Chen, G., Zhao, W., Yang, Y., Chen, D., Wang, Y., Li, F., Zhao, Z., Cao, F., and Liu, T.: Chemodenitrification by Fe(II) and nitrite: effects of temperature and dual N–O isotope fractionation, Chem. Geol., 575, 120258, https://doi.org/10.1016/j.chemgeo.2021.120258, 2021.
Clague, J. C., Stenger, R., and Morgenstern, U.: The influence of unsaturated zone drainage status on denitrification and the redox succession in shallow groundwater, Sci. Total Environ., 660, 1232–1244, https://doi.org/10.1016/j.scitotenv.2018.12.383, 2019.
Cui, Y.-X., Biswal, B. K., Guo, G., Deng, Y.-F., Huang, H., Chen, G.-H., and Wu, D.: Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification, Appl. Microbiol. Biotechnol., 103, 6023–6039, https://doi.org/10.1007/s00253-019-09935-4, 2019.
Deb, S. and Lewicka-Szczebak, D.: Comprehensive protocol for isotopic analysis of mineral nitrogen forms using bacterial denitrification techniques W: [Pikomolowe puzzle funkcjonowania Wszechświata – Hołd dla Stanisława Hałasa i trzydziestolecie Pracowni Geologii Izotopowej i Geoekologii], Red. Mariusz O. Jędrysek, Wyd. Uniwersytetu Wrocławskiego i Wyd. “Szermierz” sp. zo.o., Acta Universitas Wratislaviensis No 4238, str. 205-212, Wrocław, ISBN 978-83-229-3888-1, 2024.
Deb, S. and Lewicka-Szczebak, D.: Simplified bacterial denitrification method using Stenotrophomonas nitritireducens for nitrite dual isotope analysis in low-concentration environmental samples, Frontiers in Environ. Sci., 13, 1536882, https://doi.org/10.3389/fenvs.2025.1536882, 2025.
Deb, S., Lewicka-Szczebak, D., and Rohe, L.: Microbial nitrogen transformations tracked by natural abundance isotope studies and microbiological methods: a review, Sci. Total Environ., 926, 172073, https://doi.org/10.1016/j.scitotenv.2024.172073, 2024.
Denk, T. R. A., Mohn, J., Decock, C., Lewicka-Szczebak, D., Harris, E., Butterbach-Bahl, K., Kiese, R., and Wolf, B.: The nitrogen cycle: a review of isotope effects and isotope modeling approaches, Soil Biol. Biochem., 105, 121–137, https://doi.org/10.1016/j.soilbio.2016.11.015, 2017.
Ding, B., Li, Z., Cai, M., Lu, M., and Liu, W.: Feammox is more important than anammox in anaerobic ammonium loss in farmland soils around Lake Taihu, China, Chemosphere, 305, 135412, https://doi.org/10.1016/j.chemosphere.2022.135412, 2022.
Einsiedl, F., Wunderlich, A., Sebilo, M., Coskun, Ö. K., Orsi, W. D., and Mayer, B.: Biogeochemical evidence of anaerobic methane oxidation and anaerobic ammonium oxidation in a stratified lake using stable isotopes, Biogeosciences, 17, 5149–5161, https://doi.org/10.5194/bg-17-5149-2020, 2020.
Espenberg, M., Pille, K., Yang, B., Maddison, M., Abdalla, M., Smith, P., Li, X., Chan, P.-L., and Mander, Ü.: Towards an integrated view on microbial CH4, N2O and N2 cycles in brackish coastal marsh soils: a comparative analysis of two sites, Sci. Total Environ., 918, 170641, https://doi.org/10.1016/j.scitotenv.2024.170641, 2024.
Espenberg, M., Truu, M., Mander, Ü., Kasak, K., Nõlvak, H., Ligi, T., Oopkaup, K., Maddison, M., and Truu, J.: Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils, Sci. Rep., 8, 4742, https://doi.org/10.1038/s41598-018-23032-y, 2018.
Harris, S. J., Liisberg, J., Xia, L., Wei, J., Zeyer, K., Yu, L., Barthel, M., Wolf, B., Kelly, B. F. J., Cendón, D. I., Blunier, T., Six, J., and Mohn, J.: N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison, Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, 2020.
Heil, J., Vereecken, H., and Brüggemann, N.: A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil, Eur. J. Soil Sci., 67, 23–39, https://doi.org/10.1111/ejss.12306, 2016.
Hommes, N. G., Sayavedra-Soto, L. A., and Arp, D. J.: Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose, J. Bacteriol., 185, 6809–6814, https://doi.org/10.1128/JB.185.23.6809-6814.2003, 2003.
Hu, J., Tian, J., Deng, X., Liu, X., Zhou, F., Yu, J., Chi, R., and Xiao, C.: Heterotrophic nitrification processes driven by glucose and sodium acetate: new insights into microbial communities, functional genes and nitrogen metabolism from metagenomics and metabolomics, Bioresour. Technol., 408, 131226, https://doi.org/10.1016/j.biortech.2024.131226, 2024.
Kendall, C. and Aravena, R.: Nitrate isotopes in groundwater systems, in: Environmental Tracers in Subsurface Hydrology, Springer US, Boston, MA, 261–297, https://doi.org/10.1007/978-1-4615-4557-6_9, 2000.
Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs of nitrogen to ecosystems, in: Stable Isotopes in Ecology and Environmental Science, Wiley, 375–449, https://doi.org/10.1002/9780470691854.ch12, 2007.
Kuusemets, L., Mander, Ü., Escuer-Gatius, J., Astover, A., Kauer, K., Soosaar, K., and Espenberg, M.: Interactions of fertilisation and crop productivity on soil nitrogen cycle microbiome and gas emissions, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-593, 2024.
Levy-Booth, D. J., Prescott, C. E., and Grayston, S. J.: Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems, Soil Biol. Biochem., 75, 11–25, https://doi.org/10.1016/j.soilbio.2014.03.021, 2014.
Lewicki, M. P.: Software: Isotopes fractionation and mixing FRAME, GitHub [code], https://malewick.github.io/frame/, last access: 15 January 2025.
Lewicka-Szczebak, D. and Deb, S.: Dataset: Enhanced isotopic approach combined with microbiological analyses for more precise distinction of various N transformation processes in contaminated aquifer – a groundwater incubation study, Zenodo [data set], https://doi.org/10.5281/zenodo.15076761, 2025.
Lewicka-Szczebak, D., Dyckmans, J., Kaiser, J., Marca, A., Augustin, J., and Well, R.: Oxygen isotope fractionation during N2O production by soil denitrification, Biogeosciences, 13, 1129–1144, https://doi.org/10.5194/bg-13-1129-2016, 2016.
Lewicka-Szczebak, D., Lewicki, M. P., and Well, R.: N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies, Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, 2020.
Lewicka-Szczebak, D., Jansen-Willems, A., Müller, C., Dyckmans, J., and Well, R.: Nitrite isotope characteristics and associated soil N transformations, Sci. Rep., 11, 5008, https://doi.org/10.1038/s41598-021-83786-w, 2021.
Lewicki, M. P., Lewicka-Szczebak, D., and Skrzypek, G.: FRAME – Monte Carlo model for evaluation of the stable isotope mixing and fractionation, PLoS One, 17, e0277204, https://doi.org/10.1371/journal.pone.0277204, 2022.
Liu, R., Xia, L., Liu, M., Gao, Z., Feng, J., You, H., Qu, W., Xing, T., Wang, J., and Zhao, Y.: Influence of the carbon source concentration on the nitrate removal rate in groundwater, Environ. Technol.-UK, 43, 3355–3365, https://doi.org/10.1080/09593330.2021.1921053, 2022.
Sainju, U. M., Ghimire, R., and Pradhan, G. P.: Nitrogen fertilization I: impact on crop, soil, and environment, in: Nitrogen Fixation, IntechOpen, https://doi.org/10.5772/intechopen.86028, 2020.
Mander, Ü., Well, R., Weymann, D., Soosaar, K., Maddison, M., Kanal, A., Lõhmus, K., Truu, J., Augustin, J., and Tournebize, J.: Isotopologue ratios of N2O and N2 measurements underpin the importance of denitrification in differently N-loaded riparian alder forests, Environ. Sci. Technol., 48, 11910–11918, https://doi.org/10.1021/es501727h, 2014.
Masta, M., Espenberg, M., Kuusemets, L., Pärn, J., Thayamkottu, S., Sepp, H., Kirsimäe, K., Sgouridis, F., Kasak, K., Soosaar, K., and Mander, Ü.: 15N tracers and microbial analyses reveal in situ N2O sources in contrasting water regimes of a drained peatland forest, Pedosphere, 34, 749–758, https://doi.org/10.1016/j.pedsph.2023.06.006, 2024.
Mohn, J., Wolf, B., Toyoda, S., Lin, C. T., Liang, M. C., Brüggemann, N., Wissel, H., Steiker, A. E., Dyckmans, J., Szwec, L., Ostrom, N. E., Casciotti, K. L., Forbes, M., Giesemann, A., Well, R., Doucett, R. R., Yarnes, C. T., Ridley, A. R., Kaiser, J., and Yoshida, N.: Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives, Rapid Commun. Mass Spectrom., 28, 1995–2007, https://doi.org/10.1002/rcm.6982, 2014.
Moore, K. B., Ekwurzel, B., Esser, B. K., Hudson, G. B., and Moran, J. E.: Sources of groundwater nitrate revealed using residence time and isotope methods, Appl. Geochem., 21, 1016–1029, https://doi.org/10.1016/j.apgeochem.2006.03.008, 2006.
Mosley, O. E., Gios, E., Close, M., Weaver, L., Daughney, C., and Handley, K. M.: Nitrogen cycling and microbial cooperation in the terrestrial subsurface, ISME J., 16, 2561–2573, https://doi.org/10.1038/s41396-022-01300-0, 2022.
Müller, C., Stevens, R. J., and Laughlin, R. J.: A 15N tracing model to analyse N transformations in old grassland soil, Soil Biol. Biochem., 36, 619–632, https://doi.org/10.1016/j.soilbio.2003.12.006, 2004.
Müller, C., Laughlin, R. J., Spott, O., and Rütting, T.: Quantification of N2O emission pathways via a 15N tracing model, Soil Biol. Biochem., 72, 44–54, https://doi.org/10.1016/j.soilbio.2014.01.013, 2014.
Nikolenko, O., Jurado, A., Borges, A. V., Knöller, K., and Brouyère, S.: Isotopic composition of nitrogen species in groundwater under agricultural areas: a review, Sci. Total Environ., 621, 141–153, https://doi.org/10.1016/j.scitotenv.2017.10.086, 2018.
Olichwer, T., Wcisło, M., Staśko, S., Buczyński, S., Modelska, M., and Tarka, R.: Numerical model of the catchments of the Oziąbel and Wołczyński Strumień rivers – Wołczyn municipality, Stud. Geotech. Mech., 34, 43–54, 2012.
Rohe, L., Oppermann, T., Well, R., and Horn, M. A.: Nitrite induced transcription of p450nor during denitrification by Fusarium oxysporum correlates with the production of N2O with a high 15N site preference, Soil Biol. Biochem., 151, 108043, https://doi.org/10.1016/j.soilbio.2020.108043, 2020.
Rütting, T. and Müller, C.: Process-specific analysis of nitrite dynamics in a permanent grassland soil by using a Monte Carlo sampling technique, Eur. J. Soil Sci., 59, 208–215, https://doi.org/10.1111/j.1365-2389.2007.00976.x, 2008.
Rütting, T., Aronsson, H., and Delin, S.: Efficient use of nitrogen in agriculture, Nutr. Cycl. Agroecosyst., 110, 1–15, https://doi.org/10.1007/s10705-017-9900-8, 2018.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153, https://doi.org/10.1021/ac010088e, 2001.
Stock, P., Roder, S., and Burghardt, D.: Further optimisation of the denitrifier method for the rapid 15N and 18O analysis of nitrate in natural water samples, Rapid Commun. in Mass Spectrom., 35, e88931, https://doi.org/10.1002/rcm.8931, 2020.
Wang, P., Li, J. L., Luo, X. Q., Ahmad, M., Duan, L., Yin, L. Z., Fang, B. Z., Li, S. H., Yang, Y., Jiang, L., and Li, W. J.: Biogeographical distributions of nitrogen-cycling functional genes in a subtropical estuary, Funct. Ecol., 36, 187–201, https://doi.org/10.1111/1365-2435.13949, 2022.
Wang, X., Wells, N. S., Xiao, W., Hamilton, J. L., Jones, A. M., and Collins, R. N.: Mackinawite (FeS) chemodenitrification of nitrate (NO ) under acidic to neutral pH conditions and its stable N and O isotope dynamics, ACS Earth Space Chem., 6, 2801–2811, https://doi.org/10.1021/acsearthspacechem.2c00158, 2022.
Ward, M. H., Jones, R. R., Brender, J. D., De Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., and Van Breda, S. G.: Drinking water nitrate and human health: an updated review, Int. J. Environ. Res. Public Health, 15, 1557, https://doi.org/10.3390/ijerph15071557, 2018.
Watanabe, Y., Aoki, W., and Ueda, M.: Ammonia production using bacteria and yeast toward a sustainable society, Bioengineering, 10, 82, https://doi.org/10.3390/bioengineering10010082, 2023.
Wei, J., Ibraim, E., Brüggemann, N., Vereecken, H., and Mohn, J.: First real-time isotopic characterisation of N2O from chemodenitrification, Geochim. Cosmochim. Ac., 267, 17–32, https://doi.org/10.1016/j.gca.2019.09.018, 2019.
Well, R., Weymann, D., Kahle, P., Maddison, M., Mander, Ü., Soosaar, K., and Flessa, H.: Isotopologue signatures of N2O from groundwater, tile drainage water, riparian wetlands and waste water treatment wetlands, Geophys. Res. Abstr., 12, EGU2010-11601, 2010.
Well, R., Eschenbach, W., Flessa, H., von der Heide, C., and Weymann, D.: Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers?, Geochim. Cosmochim. Acta, 90, 265–282, https://doi.org/10.1016/j.gca.2012.04.045, 2012.
Well, R., Burkart, S., Giesemann, A., Grosz, B., Köster, J. R., and Lewicka-Szczebak, D.: Improvement of the 15N gas flux method for in situ measurement of soil denitrification and its product stoichiometry, Rapid Commun. Mass Spectrom., 33, 437–448, https://doi.org/10.1002/rcm.8363, 2019.
Well, R., Buchen-Tschiskale, C., Burbank, J., Dannenmann, M., Lewicka-Szczebak, D., Mohn, J., Rohe, L., Scheer, C., Tuzzeo, S., and Wolf, B.: Production of standard gases for routine calibration of stable isotope ratios of N2 and N2O , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11996, https://doi.org/10.5194/egusphere-egu24-11996, 2024.
Weymann, D., Well, R., Flessa, H., von der Heide, C., Deurer, M., Meyer, K., Konrad, C., and Walther, W.: Groundwater N2O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N2O accumulation, Biogeosciences, 5, 1215–1226, https://doi.org/10.5194/bg-5-1215-2008, 2008.
Wolters, T., Bach, T., Eisele, M., Eschenbach, W., Kunkel, R., McNamara, I., Well, R., and Wendland, F.: The derivation of denitrification conditions in groundwater: Combined method approach and application for Germany, Ecol. Indic., 144, 109564, https://doi.org/10.1016/j.ecolind.2022.109564, 2022.
Yu, L., Harris, E., Lewicka-Szczebak, D., Barthel, M., Blomberg, M. R. A., Harris, S. J., Johnson, M. S., Lehmann, M. F., Liisberg, J., Müller, C., Ostrom, N. E., Six, J., Toyoda, S., Yoshida, N., and Mohn, J.: What can we learn from N2O isotope data? – Analytics, processes and modelling, Rapid Commun. Mass Spectrom., 34, e8858, https://doi.org/10.1002/rcm.8858, 2020.
Zhang, Y., Cai, Z., Zhang, J., and Müller, C.: The controlling factors and the role of soil heterotrophic nitrification from a global review, Appl. Soil Ecol., 182, 104698, https://doi.org/10.1016/j.apsoil.2022.104698, 2023.
Zheng, J., Fujii, K., Koba, K., Wanek, W., Müller, C., Jansen-Willems, A. B., Nakajima, Y., Wagai, R., and Canarini, A.: Revisiting process-based simulations of soil nitrite dynamics: Tighter cycling between nitrite and nitrate than considered previously, Soil Biol. Biochem., 178, 108958, https://doi.org/10.1016/j.soilbio.2023.108958, 2023.
Zhu-Barker, X., Cavazos, A. R., Ostrom, N. E., Horwath, W. R., and Glass, J. B.: The importance of abiotic reactions for nitrous oxide production, Biogeochemistry, 126, 251–267, https://doi.org/10.1007/s10533-015-0166-4, 2015.
Short summary
This study investigates nitrogen cycling in groundwater from an agricultural area using organic fertilizer. The research combines isotope and microbial studies to track transformations. High-nitrate samples were incubated with a low addition of 15N tracer. Results showed a shift from archaeal nitrification to bacterial denitrification under low oxygen with glucose, confirmed by isotope and microbial analyses. The findings offer insights for improving water quality and pollution management.
This study investigates nitrogen cycling in groundwater from an agricultural area using organic...
Altmetrics
Final-revised paper
Preprint