Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5833-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5833-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The use of newly assimilated photosynthates by soil autotrophic and heterotrophic respiration on a diurnal scale
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
Bhaskar Mitra
Information and Computational Science Department, The James Hutton Institute, Aberdeen, UK
Benju Baniya
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
Dohee Kim
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
Asko Noormets
CORRESPONDING AUTHOR
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
Related authors
No articles found.
Linqing Yang and Asko Noormets
Earth Syst. Sci. Data, 13, 1461–1475, https://doi.org/10.5194/essd-13-1461-2021, https://doi.org/10.5194/essd-13-1461-2021, 2021
Short summary
Short summary
We present a flux seasonality metrics database (FSMD) depicting a set of standardized metrics of ecosystem biogeochemical fluxes of CO2, water, and energy, including transition dates, phase lengths, and rates of change with uncertainty estimates. FSMD allows assessment of spatial and temporal patterns in developmental dynamics, validation of novel aspects of phenology product, and process models. It is calculated from FLUXNET2015 data product and will be updated with new FLUXNET data releases.
Cited articles
Baniya, B., Kim, D., Nkrumah, M., Ono, M., Miao, G., and Noormets, A.: Carbon Dynamics in a Shortleaf Pine Forest Amidst a Two-Year Drought, ESS Open Archive, https://doi.org/10.22541/essoar.175611350.04251050/v1, 2025.
Bond-Lamberty, B., Bronson, D., Bladyka, E., and Gower, S. T.: A comparison of trenched plot techniques for partitioning soil respiration, Soil Biology and Biochemistry, 43, 2108–2114, https://doi.org/10.1016/j.soilbio.2011.06.011, 2011.
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.: Globally rising soil heterotrophic respiration over recent decades, Nature, 560, 80–83, https://doi.org/10.1038/s41586-018-0358-x, 2018.
Braga, S. R., Oliveira, M. L. R. D., and Gorgens, E. B.: forestmangr: Forest Mensuration and Management (0.9.6), https://doi.org/10.32614/CRAN.package.forestmangr, 2023.
Canarini, A., Kaiser, C., Merchant, A., Richter, A., and Wanek, W.: Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli, Frontiers in Plant Science, 10, https://doi.org/10.3389/fpls.2019.00157, 2019.
Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S., McNickle, G. G., Brzostek, E., and Jastrow, J. D.: Synthesis and modeling perspectives of rhizosphere priming, New Phytologist, 201, 31–44, https://doi.org/10.1111/nph.12440, 2014.
Davidson, E. A., Belk, E., and Boone, R. D.: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Global Change Biology, 4, 217–227, https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998.
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the variability of respiration in terrestrial ecosystems: moving beyond Q10, Global Change Biology, 12, 154–164, https://doi.org/10.1111/j.1365-2486.2005.01065.x, 2006.
Epron, D., Bahn, M., Derrien, D., Lattanzi, F. A., Pumpanen, J., Gessler, A., Högberg, P., Maillard, P., Dannoura, M., Gérant, D., and Buchmann, N.: Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects, Tree Physiology, 32, 776–798, https://doi.org/10.1093/treephys/tps057, 2012.
Fenn, K. M., Malhi, Y., and Morecroft, M. D.: Soil CO2 efflux in a temperate deciduous forest: Environmental drivers and component contributions, Soil Biology and Biochemistry, 42, 1685–1693, https://doi.org/10.1016/j.soilbio.2010.05.028, 2010.
Gessler, A. and Zweifel, R.: Beyond source and sink control – toward an integrated approach to understand the carbon balance in plants, New Phytologist, https://doi.org/10.1111/nph.19611, 2024.
Gessler, A., Keitel, C., Kodama, N., Weston, C., Winters, A. J., Keith, H., Grice, K., Leuning, R., and Farquhar, G. D.: δ13C of organic matter transported from the leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2, Functional Plant Biology, 34, 692–706, https://doi.org/10.1071/FP07064, 2007.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Hagenbo, A., Hadden, D., Clemmensen, K. E., Grelle, A., Manzoni, S., Molder, M., Ekblad, A., and Fransson, P.: Carbon use efficiency of mycorrhizal fungal mycelium increases during the growing season but decreases with forest age across a Pinus sylvestris chronosequence, Journal of Ecology, 107, 2808–2822, https://doi.org/10.1111/1365-2745.13209, 2019.
Han, G., Luo, Y., Li, D., Xia, J., Xing, Q., and Yu, J.: Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland, Soil Biology and Biochemistry, 68, 85–94, https://doi.org/10.1016/j.soilbio.2013.09.024, 2014.
Hashimoto, S., Ito, A., and Nishina, K.: Divergent data-driven estimates of global soil respiration, Communications Earth & Environment, 4, 460, https://doi.org/10.1038/s43247-023-01136-2, 2023.
Heinemeyer, A., Wilkinson, M., Vargas, R., Subke, J.-A., Casella, E., Morison, J. I. L., and Ineson, P.: Exploring the “overflow tap” theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis, Biogeosciences, 9, 79–95, https://doi.org/10.5194/bg-9-79-2012, 2012.
Herms, D. A. and Mattson, W. J.: The Dilemma of Plants: To Grow or Defend, Quarterly Review of Biology, 67, 283–335, https://doi.org/10.1086/417659, 1992.
Högberg, P., Högberg, M. N., Göttlicher, S. G., Betson, N. R., Keel, S. G., Metcalfe, D. B., Campbell, C., Schindlbacher, A., Hurry, V., Lundmark, T., Linder, S., and Näsholm, T.: High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms, New Phytologist, 177, 220–228, https://doi.org/10.1111/j.1469-8137.2007.02238.x, 2008.
Jian, J., Vargas, R., Anderson-Teixeira, K. J., Stell, E., Herrmann, V., Horn, M., Kholod, N., Manzon, J., Marchesi, R., Paredes, D., and Bond-Lamberty, B. P.: A Global Database of Soil Respiration Data, Version 5.0, ORNL Distributed Active Archive Center [data set], https://doi.org/10.3334/ORNLDAAC/1827, 2021.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L., Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson, K. M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S. N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries, L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J., Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J., Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M., Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B., Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S., and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon dioxide enrichment, Nature, 580, 227–231, https://doi.org/10.1038/s41586-020-2128-9, 2020.
Jilling, A., Grandy, A. S., Daly, A. B., Hestrin, R., Possinger, A., Abramoff, R., Annis, M., Cates, A. M., Dynarski, K., Georgiou, K., Heckman, K., Keiluweit, M., Lang, A. K., Phillips, R. P., Rocci, K., Shabtai, I. A., Sokol, N. W., and Whalen, E. D.: Evidence for the existence and ecological relevance of fast-cycling mineral-associated organic matter, Communications Earth & Environment, 6, 690, https://doi.org/10.1038/s43247-025-02681-8, 2025.
Klein, T., Bader, M. K. F., Leuzinger, S., Mildner, M., Schleppi, P., Siegwolf, R. T. W., and Körner, C.: Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment, Journal of Ecology, 104, 1720–1733, https://doi.org/10.1111/1365-2745.12621, 2016.
Kodama, N., Barnard, R. L., Salmon, Y., Weston, C., Ferrio, J. P., Holst, J., Werner, R. A., Saurer, M., Rennenberg, H., Buchmann, N., and Gessler, A.: Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide, Oecologia, 156, 737–750, https://doi.org/10.1007/s00442-008-1030-1, 2008.
Körner, C.: Paradigm shift in plant growth control, Current Opinion in Plant Biology, 25, 107–114, https://doi.org/10.1016/j.pbi.2015.05.003, 2015.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in soil: Concept & review, Soil Biology and Biochemistry, 83, 184–199, https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Kuzyakov, Y. and Gavrichkova, O.: REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls, Global Change Biology, 16, 3386–3406, https://doi.org/10.1111/j.1365-2486.2010.02179.x, 2010.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty, Journal of Advances in Modeling Earth Systems, 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Li, H.-J., Yan, J.-X., Yue, X.-F., and Wang, M.-B.: Significance of soil temperature and moisture for soil respiration in a Chinese mountain area, Agricultural and Forest Meteorology, 148, 490–503, https://doi.org/10.1016/j.agrformet.2007.10.009, 2008.
Liesche, J., Windt, C., Bohr, T., Schulz, A., and Jensen, K. H.: Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance, Tree Physiology, 35, 376–386, https://doi.org/10.1093/treephys/tpv020, 2015.
Liu, Q., Edwards, N. T., Post, W. M., Gu, L., Ledford, J., and Lenhart, S.: Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest, Global Change Biology, 12, 2136–2145, https://doi.org/10.1111/j.1365-2486.2006.01245.x, 2006.
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil Respiration, Functional Ecology, 8, 315–323, https://doi.org/10.2307/2389824, 1994.
Martin, J. G., Phillips, C. L., Schmidt, A., Irvine, J., and Law, B. E.: High-frequency analysis of the complex linkage between soil CO2 fluxes, photosynthesis and environmental variables, Tree Physiology, 32, 49–64, https://doi.org/10.1093/treephys/tpr134, 2012.
McClain, A. M. and Sharkey, T. D.: Triose phosphate utilization and beyond: from photosynthesis to end product synthesis, Journal of Experimental Botany, 70, 1755–1766, https://doi.org/10.1093/jxb/erz058, 2019.
McElligott, K. M., Seiler, J. R., and Strahm, B. D.: Partitioning soil respiration across four age classes of loblolly pine (Pinus taeda L.) on the Virginia Piedmont, Forest Ecology and Management, 378, 173–180, https://doi.org/10.1016/j.foreco.2016.07.026, 2016.
Meier, I. C., Finzi, A. C., and Phillips, R. P.: Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools, Soil Biology and Biochemistry, 106, 119–128, https://doi.org/10.1016/j.soilbio.2016.12.004, 2017.
Mencuccini, M. and Hölttä, T.: The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked, New Phytologist, 185, 189–203, https://doi.org/10.1111/j.1469-8137.2009.03050.x, 2010.
Mitra, B., Miao, G., Minick, K., McNulty, S. G., Sun, G., Gavazzi, M., King, J. S., and Noormets, A.: Disentangling the Effects of Temperature, Moisture, and Substrate Availability on Soil CO2 Efflux, Journal of Geophysical Research: Biogeosciences, 124, 2060–2075, https://doi.org/10.1029/2019jg005148, 2019.
Mitra, B., Minick, K., Miao, G., Domec, J.-C., Prajapati, P., McNulty, S. G., Sun, G., King, J. S., and Noormets, A.: Spectral evidence for substrate availability rather than environmental control of methane emissions from a coastal forested wetland, Agricultural and Forest Meteorology, 291, https://doi.org/10.1016/j.agrformet.2020.108062, 2020.
Moyano, F. E., Kutsch, W. L., and Rebmann, C.: Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands, Agricultural and Forest Meteorology, 148, 135–143, https://doi.org/10.1016/j.agrformet.2007.09.006, 2008.
Myneni, R., Knyazikhin, Y., and Park, T.: MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V061, NASA Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MCD15A3H.061, 2021.
Noormets, A.: AmeriFlux BASE US-CRK Davy Crockett National Forest (5-5), AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2204055, 2024.
Noormets, A., Gavazzi, M. J., McNulty, S. G., Domec, J.-C., Sun, G. E., King, J. S., and Chen, J.: Response of carbon fluxes to drought in a coastal plain loblolly pine forest, Global Change Biology, 16, 272–287, https://doi.org/10.1111/j.1365-2486.2009.01928.x, 2010.
O'Sullivan, M., Friedlingstein, P., Sitch, S., Anthoni, P., Arneth, A., Arora, V. K., Bastrikov, V., Delire, C., Goll, D. S., Jain, A., Kato, E., Kennedy, D., Knauer, J., Lienert, S., Lombardozzi, D., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, J., Poulter, B., Séférian, R., Tian, H., Vuichard, N., Walker, A. P., Yuan, W., Yue, X., and Zaehle, S.: Process-oriented analysis of dominant sources of uncertainty in the land carbon sink, Nature Communications, 13, 4781, https://doi.org/10.1038/s41467-022-32416-8, 2022.
Ono, M. and Noormets, A.: Data and Software From: The use of newly assimilated photosynthates by soil autotrophic and heterotrophic respiration on a diurnal scale, Zenodo [code and data set], https://doi.org/10.5281/zenodo.17176648, 2025.
Ono, M., Noormets, A., and Mitchell, S.: The effect of the frequency of prescribed burning on annual soil carbon balance in a loblolly-shortleaf pine forest in East Texas, Frontiers in Forests and Global Change, 8, https://doi.org/10.3389/ffgc.2025.1602557, 2025.
Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R., Still, C. J., Buchmann, N., Kaplan, J. O., and Berry, J. A.: The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochemical Cycles, 17, https://doi.org/10.1029/2001GB001850, 2003.
Phillips, R. P., Erlitz, Y., Bier, R., and Bernhardt, E. S.: New approach for capturing soluble root exudates in forest soils, Functional Ecology, 22, 990–999, https://doi.org/10.1111/j.1365-2435.2008.01495.x, 2008.
Posit team: RStudio: Integrated Development Environment for R (2023.12.1.402), Posit Software, PBC [code], http://www.posit.co/ (last access: 11 September 2025), 2024.
Prescott, C. E.: Sinks for plant surplus carbon explain several ecological phenomena, Plant and Soil, https://doi.org/10.1007/s11104-022-05390-9, 2022.
Prescott, C. E., Grayston, S. J., Helmisaari, H.-S., Kaštovská, E., Körner, C., Lambers, H., Meier, I. C., Millard, P., and Ostonen, I.: Surplus Carbon Drives Allocation and Plant–Soil Interactions, Trends in Ecology & Evolution, 35, 1110–1118, https://doi.org/10.1016/j.tree.2020.08.007, 2020.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing [code], https://www.R-project.org/ (last access: 11 September 2025), 2024.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biology, 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Roesch, A. and Schmidbauer, H.: WaveletComp: Computational Wavelet Analysis (1.1), https://CRAN.R-project.org/package=WaveletComp (last access: 11 September 2025), 2018.
Savage, K., Davidson, E. A., and Tang, J.: Diel patterns of autotrophic and heterotrophic respiration among phenological stages, Global Change Biology, 19, 1151–1159, https://doi.org/10.1111/gcb.12108, 2013.
Sevanto, S. and Dickman, L. T.: Where does the carbon go? – Plant carbon allocation under climate change, Tree Physiology, 35, 581–584, https://doi.org/10.1093/treephys/tpv059, 2015.
Tang, J., Baldocchi, D. D., and Xu, L.: Tree photosynthesis modulates soil respiration on a diurnal time scale, Global Change Biology, 11, 1298–1304, https://doi.org/10.1111/j.1365-2486.2005.00978.x, 2005.
Thompson, M. V. and Holbrook, N. M.: Scaling phloem transport: information transmission, Plant Cell Environment, 27, 509–519, https://doi.org/10.1111/j.1365-3040.2003.01148.x, 2004.
van't Hoff, J. H.: Lectures on theoretical and physical chemistry Part I. chemical dynamics, E. Arnold, 1898.
Vargas, R., Detto, M., Baldocchi, D. D., and Allen, M. F.: Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation, Global Change Biology, 16, 1589–1605, https://doi.org/10.1111/j.1365-2486.2009.02111.x, 2010.
Vargas, R., Baldocchi, D. D., Bahn, M., Hanson, P. J., Hosman, K. P., Kulmala, L., Pumpanen, J., and Yang, B.: On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations, New Phytol, 191, 1006–1017, https://doi.org/10.1111/j.1469-8137.2011.03771.x, 2011.
Wingate, L., Ogée, J., Burlett, R., Bosc, A., Devaux, M., Grace, J., Loustau, D., and Gessler, A.: Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration, New Phytologist, 188, 576–589, https://doi.org/10.1111/j.1469-8137.2010.03384.x, 2010.
Wutzler, T., Reichstein, M., Moffat, A. M., and Migliavacca, M.: REddyProc: Post Processing of (Half-)Hourly Eddy-Covariance Measurements, R package version 1.3.2 [code], https://CRAN.R-project.org/package=REddyProc (last access: 15 June 2025), 2022.
Yang, Z. J., Lin, T. C., Wang, L. X., Chen, S. D., Liu, X. F., Xiong, D. C., Xu, C., Arthur, M., McCulley, R., Shi, S. H., and Yang, Y. S.: Recent Photosynthates Are the Primary Carbon Source for Soil Microbial Respiration in Subtropical Forests, Geophysical Research Letters, 49, https://doi.org/10.1029/2022gl101147, 2022.
Yin, H., Wheeler, E., and Phillips, R. P.: Root-induced changes in nutrient cycling in forests depend on exudation rates, Soil Biology and Biochemistry, 78, 213–221, https://doi.org/10.1016/j.soilbio.2014.07.022, 2014.
Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R. L., Walthert, L., Wilhelm, M., Ziemińska, K., and Etzold, S.: Why trees grow at night, New Phytologist, 231, 2174–2185, https://doi.org/10.1111/nph.17552, 2021.
Short summary
Cospectral analysis was used to quantify coupling of autotrophic and heterotrophic soil respiration (Ra and Rh) to plant carbohydrate status in a subtropical pine forest in the southern US. Rh showed stronger diurnal links with gross primary productivity (GPP) than Ra, and lagged GPP by 2–4 h, suggesting rapid transfer of carbohydrates to the soil. Soil temperature and moisture had strong cospectral peaks at synoptic scales, but were not causal drivers at the diurnal scale.
Cospectral analysis was used to quantify coupling of autotrophic and heterotrophic soil...
Altmetrics
Final-revised paper
Preprint