Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zinc stimulation of phytoplankton in a low-carbon-dioxide, coastal Antarctic environment: evidence for the Zn hypothesis
Riss M. Kell
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
now at: Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
previously published under the name Riss Kellogg
Adam V. Subhas
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Nicole L. Schanke
Hollings Marine Laboratory, College of Charleston, Charleston, SC 29424, USA
Lauren E. Lees
Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697, USA
Rebecca J. Chmiel
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Deepa Rao
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Margaret M. Brisbin
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Dawn M. Moran
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Matthew R. McIlvin
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Francesco Bolinesi
Department of Biology, Università degli Studi di Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
Olga Mangoni
Department of Biology, Università degli Studi di Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
Raffaella Casotti
Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
Cecilia Balestra
National Institute of Oceanography and Applied Geophysics, 34010, Sgonico (TS), Italy
Tristan J. Horner
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Robert B. Dunbar
Doerr School of Sustainability, Stanford University, Stanford, CA 94305, USA
Andrew E. Allen
Microbial & Environmental Genomics, J. Craig Venter Institute, San Diego, CA 92093, USA
Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, CA 92037, USA
Giacomo R. DiTullio
Hollings Marine Laboratory, College of Charleston, Charleston, SC 29424, USA
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Adam V. Subhas, Jennie E. Rheuban, Zhaohui Aleck Wang, Daniel C. McCorkle, Anna P. M. Michel, Lukas Marx, Chloe L. Dean, Kate Morkeski, Matthew G. Hayden, Mary Burkitt-Gray, Francis Elder, Yiming Guo, Heather H. Kim, and Ke Chen
Biogeosciences, 22, 5511–5534, https://doi.org/10.5194/bg-22-5511-2025, https://doi.org/10.5194/bg-22-5511-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a carbon removal approach in which alkaline materials are added to the marine environment, increasing the ocean's ability to store carbon dioxide. We conducted an open-water experiment releasing and tracking a fluorescent water tracer. Under the right conditions, in-water monitoring of OAE does appear to be possible. We conclude with a series of practical recommendations for open-water OAE monitoring.
Mohammed Hashim, Lukas Marx, Frieder Klein, Chloe Dean, Emily Burdige, Matthew Hayden, Daniel McCorkle, and Adam Subhas
EGUsphere, https://doi.org/10.5194/egusphere-2025-988, https://doi.org/10.5194/egusphere-2025-988, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a CO2 removal approach that involves the addition of alkaline substances to seawater that would allow it to absorb more atmospheric CO2. Increasing seawater alkalinity, however, can trigger mineral precipitation that decreases OAE efficiency. We conducted experiments to constrain the thermodynamic and kinetics of mineral precipitation.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Robert Lampe, Ariel Rabines, Steffaney Wood, Anne Schulberg, Ralf Goericke, Pratap Venepally, Hong Zheng, Michael Stukel, Michael Landry, Andrew Barton, and Andrew Allen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3285, https://doi.org/10.5194/egusphere-2024-3285, 2024
Short summary
Short summary
With the likely emergence of satellite-based phytoplankton pigment data, it is increasingly important to examine relationships between phytoplankton pigments and other metrics of phytoplankton community composition. By using quantitative approaches, we show that phytoplankton pigments correlate with DNA- and RNA-based abundances, and examine how integration of these data addresses ecological questions relating to diversity patterns, harmful algal blooms, and inferring cellular activity.
Andrew N. Hennig, David A. Mucciarone, Stanley S. Jacobs, Richard A. Mortlock, and Robert B. Dunbar
The Cryosphere, 18, 791–818, https://doi.org/10.5194/tc-18-791-2024, https://doi.org/10.5194/tc-18-791-2024, 2024
Short summary
Short summary
A total of 937 seawater paired oxygen isotope (δ18O)–salinity samples collected during seven cruises on the SE Amundsen Sea between 1994 and 2020 reveal a deep freshwater source with δ18O − 29.4±1.0‰, consistent with the signature of local ice shelf melt. Local mean meteoric water content – comprised primarily of glacial meltwater – increased between 1994 and 2020 but exhibited greater interannual variability than increasing trend.
Adam V. Subhas, Nadine Lehmann, and Rosalind E. M. Rickaby
State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023, https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023
Short summary
Short summary
In addition to emissions reductions, methods of actively removing carbon dioxide from the atmosphere must be considered. One of these methods, called ocean alkalinity enhancement, is currently being studied to evaluate its effectiveness and safety. This article details best practices for the study of natural systems to support the development of ocean alkalinity enhancement as a carbon dioxide removal strategy. Relevant Earth system processes are discussed, along with methods to study them.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Cited articles
Allen, A. E., LaRoche, J., Maheswari, U., Lommer, M., Schauer, N., Lopez, P. J., Finazzi, G., Fernie, A. R., and Bowler, C.: Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation, P. Natl. Acad. Sci. USA, 105, 10438–10443, https://doi.org/10.1073/pnas.0711370105, 2008.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.: Basic local alignment search tool, J. Mol. Biol., 215, 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2, 1990.
Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kanehisa, M., Goto, S., and Ogata, H.: KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold, Bioinformatics, 36, 2251–2252, https://doi.org/10.1093/bioinformatics/btz859, 2020.
Arrigo, K. R., Lowry, K. E., and van Dijken, G. L.: Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica, Deep-Sea Res. Part II Top. Stud. Oceanogr., 71–76, 5–15, https://doi.org/10.1016/j.dsr2.2012.03.006, 2012.
Baars, O. and Croot, P. L.: The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean, Deep-Sea Res. Part II Top. Stud. Oceanogr., 58, 2720–2732, https://doi.org/10.1016/j.dsr2.2011.02.003, 2011.
Balestra, C., Alonso-Sáez, L., Gasol, J. M., and Casotti, R.: Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms, Aquat. Microb. Ecol., 63, 123–131, https://doi.org/10.3354/ame01486, 2011.
Behnke, J. and LaRoche, J.: Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs), Eur. J. Phycol., 55, 339–360, https://doi.org/10.1080/09670262.2020.1744039, 2020.
Bender, S. J., Moran, D. M., McIlvin, M. R., Zheng, H., McCrow, J. P., Badger, J., DiTullio, G. R., Allen, A. E., and Saito, M. A.: Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry, Biogeosciences, 15, 4923–4942, https://doi.org/10.5194/bg-15-4923-2018, 2018.
Blaby-Haas, C. E. and Merchant, S. S.: The ins and outs of algal metal transport, Biochim. Biophys. Acta - Mol. Cell Res., 1823, 1531–1552, https://doi.org/10.1016/j.bbamcr.2012.04.010, 2012.
Bolger, A. M., Lohse, M., and Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114–2120, https://doi.org/10.1093/bioinformatics/btu170, 2014.
Browning, T. J. and Moore, C. M.: Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation, Nat. Commun., 14, 5014, https://doi.org/10.1038/s41467-023-40774-0, 2023.
Bruland, K. W.: Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific, Earth Planet. Sci. Lett., 47, 176–198, https://doi.org/10.1016/0012-821X(80)90035-7, 1980.
Bruland, K. W.: Complexation of zinc by natural organic ligands in the central North Pacific, Limnol. Oceanogr., 34, 269–285, https://doi.org/10.4319/lo.1989.34.2.0269, 1989.
Buitenhuis, E. T., Timmermans, K. R., and de Baar, H. J. W.: Zinc-bicarbonate colimitation of Emiliania huxleyi, Limnol. Oceanogr., 48, 1575–1582, https://doi.org/10.4319/lo.2003.48.4.1575, 2003.
Chavez, F. P., Sevadjian, J., Wahl, C., Friederich, J., and Friederich, G. E.: Measurements of pCO2 and pH from an autonomous surface vehicle in a coastal upwelling system, Deep-Sea Res. Part II Top. Stud. Oceanogr., 151, 137–146, https://doi.org/10.1016/j.dsr2.2017.01.001, 2018.
Coale, K. H., Wang, X., Tanner, S. J., and Johnson, K. S.: Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170° W, Deep-Sea Res. Part II Top. Stud. Oceanogr., 50, 635–653, https://doi.org/10.1016/S0967-0645(02)00588-X, 2003.
Coale, K. H., Michael Gordon, R., and Wang, X.: The distribution and behavior of dissolved and particulate iron and zinc in the Ross Sea and Antarctic circumpolar current along 170° W, Deep Sea Res. Part Oceanogr. Res. Pap., 52, 295–318, https://doi.org/10.1016/j.dsr.2004.09.008, 2005.
Cohen, N. R., McIlvin, M. R., Moran, D. M., Held, N. A., Saunders, J. K., Hawco, N. J., Brosnahan, M., DiTullio, G. R., Lamborg, C., McCrow, J. P., Dupont, C. L., Allen, A. E., and Saito, M. A.: Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean, Nat. Microbiol., 6, 173–186, https://doi.org/10.1038/s41564-020-00814-7, 2021.
Cox, A. D., Noble, A. E., and Saito, M. A.: Cadmium enriched stable isotope uptake and addition experiments with natural phytoplankton assemblages in the Costa Rica Upwelling Dome, Mar. Chem., 166, 70–81, https://doi.org/10.1016/j.marchem.2014.09.009, 2014.
Crameri, F.: Scientific colour maps (8.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.8409685, 2023.
Crawford, D. W., Lipsen, M. S., Purdie, D. A., Lohan, M. C., Statham, P. J., Whitney, F. A., Putland, J. N., Johnson, W. K., Sutherland, N., Peterson, T. D., Harrison, P. J., and Wong, C. S.: Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific, Limnol. Oceanogr., 48, 1583–1600, https://doi.org/10.4319/lo.2003.48.4.1583, 2003.
Cullen, J. T., Lane, T. W., Morel, F. M. M., and Sherrell, R. M.: Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration, Nature, 402, 165–167, https://doi.org/10.1038/46007, 1999.
Cutter, G. A. and Bruland, K. W.: Rapid and noncontaminating sampling system for trace elements in global ocean surveys, Limnol. Oceanogr.-Methods, 10, 425–436, https://doi.org/10.4319/lom.2012.10.425, 2012.
Dai, M., Su, J., Zhao, Y., Hofmann, E. E., Cao, Z., Cai, W.-J., Gan, J., Lacroix, F., Laruelle, G. G., Meng, F., Müller, J. D., Regnier, P. A. G., Wang, G., and Wang, Z.: Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary Processes, and Future Trends, Annu. Rev. Earth Planet. Sci., 50, 593–626, https://doi.org/10.1146/annurev-earth-032320-090746, 2022.
DeJong, H. B., Dunbar, R. B., Mucciarone, D., and Koweek, D. A.: Carbonate saturation state of surface waters in the Ross Sea and Southern Ocean: controls and implications for the onset of aragonite undersaturation, Biogeosciences, 12, 6881–6896, https://doi.org/10.5194/bg-12-6881-2015, 2015.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurement, North Pacific Marine Science Organization, https://doi.org/10.25607/OBP-1342, 2007.
DiTullio, G.: pCO2 (LDEO pCO2) data as collected during the cruise NBP1801, Ditullio/B-007; Dunbar/O-131; Saba/B-050, Rolling Deck to Repository (R2R) [data set], https://doi.org/10.7284/139318, 2017.
DiTullio, G.: Nathaniel B. Palmer CRUISE ID NBP1801, Rolling Deck to Repository (R2R) [data set], https://doi.org/10.7284/907753, 2018.
DiTullio, G. and Lee, P.: Hydrographic data collected by CTD during RVIB Nathaniel B. Palmer cruise in the Ross Sea, Southern Ocean from 2017-2018, Biological and Chemical Oceanography Data Management Office [data set], https://doi.org/10.1575/1912/bco-dmo.783911.1, 2020.
DiTullio, G. R. and Smith, W. O.: Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea, J. Geophys. Res.-Oceans, 101, 18467–18477, https://doi.org/10.1029/96JC00034, 1996.
DiTullio, G. R., Grebmeier, J. M., Arrigo, K. R., Lizotte, M. P., Robinson, D. H., Leventer, A., Barry, J. P., VanWoert, M. L., and Dunbar, R. B.: Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica, Nature, 404, 595–598, https://doi.org/10.1038/35007061, 2000.
DiTullio, G. R., Geesey, M. E., Leventer, A., and Lizotte, M. P.: Algal pigment ratios in the Ross Sea: Implications for Chemtax analysis of Southern Ocean data, in: Biogeochemistry of the Ross Sea, 78, 35–51, https://doi.org/10.1029/078ARS03, 2003.
DiTullio, G. R., Garcia, N., Riseman, S. F., and Sedwick, P. N.: Effects of iron concentration on pigment composition in Phaeocystis antarctica grown at low irradiance, Biogeochemistry, 83, 71–81, https://doi.org/10.1007/s10533-007-9080-8, 2007.
Dreux Chappell, P., Vedmati, J., Selph, K. E., Cyr, H. A., Jenkins, B. D., Landry, M. R., and Moffett, J. W.: Preferential depletion of zinc within Costa Rica upwelling dome creates conditions for zinc co-limitation of primary production, J. Plankton Res., 38, 244–255, https://doi.org/10.1093/plankt/fbw018, 2016.
Eddy, S. R.: Accelerated Profile HMM Searches, PLoS Comput. Biol., 7, e1002195, https://doi.org/10.1371/journal.pcbi.1002195, 2011.
Edmonds, K. A., Jordan, M. R., and Giedroc, D. P.: COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man, Metallomics, 13, mfab046, https://doi.org/10.1093/mtomcs/mfab046, 2021.
Ellwood, M. J.: Zinc and cadmium speciation in subantarctic waters east of New Zealand, Mar. Chem., 87, 37–58, https://doi.org/10.1016/j.marchem.2004.01.005, 2004.
Emms, D. M. and Kelly, S.: SHOOT: phylogenetic gene search and ortholog inference, Genome Biol., 23, 85, https://doi.org/10.1186/s13059-022-02652-8, 2022.
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M., and Morgan, V. I.: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res.-Atmos., 101, 4115–4128, https://doi.org/10.1029/95JD03410, 1996.
Fitzwater, S. E., Johnson, K. S., Gordon, R. M., Coale, K. H., and Smith, W. O.: Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth, Deep-Sea Res. Part II Top. Stud. Oceanogr., 47, 3159–3179, https://doi.org/10.1016/S0967-0645(00)00063-1, 2000.
Fourquez, M., Bressac, M., Deppeler, S. L., Ellwood, M., Obernosterer, I., Trull, T. W., and Boyd, P. W.: Microbial Competition in the Subpolar Southern Ocean: An Fe–C Co-limitation Experiment, Front. Mar. Sci., 6, 776, https://doi.org/10.3389/fmars.2019.00776, 2020.
Franck, V., Bruland, K., Hutchins, D., and Brzezinski, M.: Iron and zinc effects on silicic acid and nitrate uptake kinetics in three high-nutrient, low-chlorophyll (HNLC) regions, Mar. Ecol. Prog. Ser., 252, 15–33, https://doi.org/10.3354/meps252015, 2003.
Harrison, C. S., Long, M. C., Lovenduski, N. S., and Moore, J. K.: Mesoscale Effects on Carbon Export: A Global Perspective, Global Biogeochem. Cy., 32, 680–703, https://doi.org/10.1002/2017GB005751, 2018.
Jakuba, R. W., Saito, M. A., Moffett, J. W., and Xu, Y.: Dissolved zinc in the subarctic North Pacific and Bering Sea: Its distribution, speciation, and importance to primary producers, Global Biogeochem. Cy., 26, GB2015, https://doi.org/10.1029/2010GB004004, 2012.
Jensen, E. L., Maberly, S. C., and Gontero, B.: Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae, Int. J. Mol. Sci., 21, 2922, https://doi.org/10.3390/ijms21082922, 2020a.
Jensen, L. T., Wyatt, N. J., Landing, W. M., and Fitzsimmons, J. N.: Assessment of the stability, sorption, and exchangeability of marine dissolved and colloidal metals, Mar. Chem., 220, 103754, https://doi.org/10.1016/j.marchem.2020.103754, 2020b.
Jiang, L., Dunne, J., Carter, B. R., Tjiputra, J. F., Terhaar, J., Sharp, J. D., Olsen, A., Alin, S., Bakker, D. C. E., Feely, R. A., Gattuso, J., Hogan, P., Ilyina, T., Lange, N., Lauvset, S. K., Lewis, E. R., Lovato, T., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Strand, G., Swart, N., Tanhua, T., Tsujino, H., Wanninkhof, R., Watanabe, M., Yamamoto, A., and Ziehn, T.: Global Surface Ocean Acidification Indicators From 1750 to 2100, J. Adv. Model. Earth Syst., 15, e2022MS003563, https://doi.org/10.1029/2022MS003563, 2023.
Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R., Waterman, L. S., and Chin, J. F. S.: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus Dyn. Meteorol. Oceanogr., 28, 538, https://doi.org/10.3402/tellusa.v28i6.11322, 1976.
Kell, R. M., Chmiel, R. J., Rao, D., Moran, D. M., McIlvin, M. R., Horner, T. J., Schanke, N. L., Sugiyama, I., Dunbar, R. B., DiTullio, G. R., and Saito, M. A.: High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements, Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, 2024.
Kellogg, R. M., McIlvin, M. R., Vedamati, J., Twining, B. S., Moffett, J. W., Marchetti, A., Moran, D. M., and Saito, M. A.: Efficient zinc/cobalt inter-replacement in northeast Pacific diatoms and relationship to high surface dissolved Co: Zn ratios, Limnol. Oceanogr., 65, 2557–2582, https://doi.org/10.1002/lno.11471, 2020.
Kellogg, R. M., Moosburner, M. A., Cohen, N. R., Hawco, N. J., McIlvin, M. R., Moran, D. M., DiTullio, G. R., Subhas, A. V., Allen, A. E., and Saito, M. A.: Adaptive responses of marine diatoms to zinc scarcity and ecological implications, Nature Communications, 13, 1–13, https://doi.org/10.1038/s41467-022-29603-y, 2022a.
Kellogg, R. M., Moran, D. M., McIlvin, M. R., Subhas, A. V., Allen, A. E., and Saito, M. A.: Lack of a substitution ability in the polar diatom Chaetoceros neogracile RS19, Limnol. Oceanogr., 67, 2265–2280, https://doi.org/10.1002/lno.12201, 2022b.
Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. L.: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes, J. Mol. Biol., 305, 567–580, https://doi.org/10.1006/jmbi.2000.4315, 2001.
Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D., and Kleypas, J. A.: Coccolithophore growth and calcification in a changing ocean, Prog. Oceanogr., 159, 276–295, https://doi.org/10.1016/j.pocean.2017.10.007, 2017.
Lampe, R. and Allen, A.: Metatranscriptome assembly and annotations for CICLOPS (NBP1801), Zenodo [data set], https://doi.org/10.5281/zenodo.17307449, 2025.
Lampe, R., Kell, R. M., and Saito, M.: CICLOPS Project (Cruise NBP1801) Data Overview, Zenodo [data set], https://doi.org/10.5281/zenodo.17287908, 2025.
Lampe, R. H., Mann, E. L., Cohen, N. R., Till, C. P., Thamatrakoln, K., Brzezinski, M. A., Bruland, K. W., Twining, B. S., and Marchetti, A.: Different iron storage strategies among bloom-forming diatoms, P. Natl. Acad. Sci. USA, 115, E12275–E12284, https://doi.org/10.1073/pnas.1805243115, 2018.
Lane, T. W. and Morel, F. M.: A biological function for cadmium in marine diatoms, P. Natl. Acad. Sci. USA, 97, 4627–31, https://doi.org/10.1073/pnas.090091397, 2000a.
Lane, T. W. and Morel, F. M. M.: Regulation of Carbonic Anhydrase Expression by Zinc, Cobalt, and Carbon Dioxide in the Marine Diatom Thalassiosira weissflogii, Plant Physiol., 123, 345–352, https://doi.org/10.1104/pp.123.1.345, 2000b.
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Alin, S., Álvarez, M., Azetsu-Scott, K., Barbero, L., Becker, S., Brown, P. J., Carter, B. R., da Cunha, L. C., Feely, R. A., Hoppema, M., Humphreys, M. P., Ishii, M., Jeansson, E., Jiang, L.-Q., Jones, S. D., Lo Monaco, C., Murata, A., Müller, J. D., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Ulfsbo, A., Velo, A., Woosley, R. J., and Key, R. M.: GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product, Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, 2022.
Lhospice, S., Gomez, N. O., Ouerdane, L., Brutesco, C., Ghssein, G., Hajjar, C., Liratni, A., Wang, S., Richaud, P., Bleves, S., Ball, G., Borezée-Durant, E., Lobinski, R., Pignol, D., Arnoux, P., and Voulhoux, R.: Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline, Sci. Rep.-UK, 7, 17132, https://doi.org/10.1038/s41598-017-16765-9, 2017.
Li, B. and Dewey, C. N.: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, 12, 323, https://doi.org/10.1186/1471-2105-12-323, 2011.
Lohan, M. C., Statham, P. J., and Crawford, D. W.: Total dissolved zinc in the upper water column of the subarctic North East Pacific, Deep-Sea Res. Part II Top. Stud. Oceanogr., 49, 5793–5808, https://doi.org/10.1016/S0967-0645(02)00215-1, 2002.
Lu, X. and Zhu, H.: Tube-Gel Digestion, Mol. Cell. Proteomics, 4, 1948–1958, https://doi.org/10.1074/mcp.m500138-mcp200, 2005.
Mangoni, O., Saggiomo, M., Bolinesi, F., Castellano, M., Povero, P., Saggiomo, V., and DiTullio, G. R.: Phaeocystis antarctica unusual summer bloom in stratified antarctic coastal waters (Terra Nova Bay, Ross Sea), Mar. Environ. Res., 151, 104733, https://doi.org/10.1016/j.marenvres.2019.05.012, 2019.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4, 5–12, https://doi.org/10.1029/GB004i001p00005, 1990.
Mazzotta, M. G., McIlvin, M. R., Moran, D. M., Wang, D. T., Bidle, K. D., Lamborg, C. H., and Saito, M. A.: Characterization of the metalloproteome of Pseudoalteromonas (BB2-AT2): biogeochemical underpinnings for zinc, manganese, cobalt, and nickel cycling in a ubiquitous marine heterotroph, Metallomics, 13, mfab060, https://doi.org/10.1093/mtomcs/mfab060, 2021.
McIlvin, M. R. and Saito, M. A.: Online Nanoflow Two-Dimension Comprehensive Active Modulation Reversed Phase–Reversed Phase Liquid Chromatography High-Resolution Mass Spectrometry for Metaproteomics of Environmental and Microbiome Samples, J. Proteome Res., 20, 4589–4597, https://doi.org/10.1021/acs.jproteome.1c00588, 2021.
Middag, R., De Baar, H. J. W., and Bruland, K. W.: The Relationships Between Dissolved Zinc and Major Nutrients Phosphate and Silicate Along the GEOTRACES GA02 Transect in the West Atlantic Ocean, Global Biogeochem. Cy., 33, 63–84, https://doi.org/10.1029/2018GB006034, 2019.
Milner, M. J., Seamon, J., Craft, E., and Kochian, L. V.: Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis, J. Exp. Bot., 64, 369–381, https://doi.org/10.1093/jxb/ers315, 2013.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Morel, F. M. M., Reinfelder, J. R., Roberts, S. B., Chamberlain, C. P., Lee, J. G., and Yee, D.: Zinc and carbon co-limitation of marine phytoplankton, Nature, 369, 740–742, https://doi.org/10.1038/369740A0, 1994.
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B.: Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat. Methods, 5, 621–628, https://doi.org/10.1038/nmeth.1226, 2008.
Obernosterer, I., Fourquez, M., and Blain, S.: Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands, Biogeosciences, 12, 1983–1992, https://doi.org/10.5194/bg-12-1983-2015, 2015.
Podell, S. and Gaasterland, T.: DarkHorse: a method for genome-wide prediction of horizontal gene transfer, Genome Biol., 8, R16, https://doi.org/10.1186/gb-2007-8-2-r16, 2007.
Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M., and Achterberg, E. P.: Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry, Anal. Chim. Acta, 976, 1–13, https://doi.org/10.1016/j.aca.2017.05.008, 2017.
Redfield, A. C.: The Biological Control of Chemical Factors in the Environment, Am. Sci., 46, 230A, 205–221, https://www.jstor.org/stable/27827150 (last access: 17 October 2025), 1958.
Rho, M., Tang, H., and Ye, Y.: FragGeneScan: predicting genes in short and error-prone reads, Nucleic Acids Res., 38, e191–e191, https://doi.org/10.1093/nar/gkq747, 2010.
Riebesell, U., Wolf-Gladrow, D. A., and Smetacek, V.: Carbon dioxide limitation of marine phytoplankton growth rates, Nature, 361, 249–251, https://doi.org/10.1038/361249a0, 1993.
Robbins, L. L., Daly, K. L., Barbero, L., Wanninkhof, R., He, R., Zong, H., Lisle, J. T., Cai, W. -J., and Smith, C. G.: Spatial and Temporal Variability of pCO2, Carbon Fluxes, and Saturation State on the West Florida Shelf, J. Geophys. Res.-Oceans, 123, 6174–6188, https://doi.org/10.1029/2018JC014195, 2018.
Roshan, S., DeVries, T., Wu, J., and Chen, G.: The Internal Cycling of Zinc in the Ocean, Global Biogeochem. Cy., 32, 1833–1849, https://doi.org/10.1029/2018GB006045, 2018.
Saito, M. A. and Goepfert, T. J.: Zinc-cobalt colimitation of Phaeocystis antarctica, Limnol. Oceanogr., 53, 266–275, https://doi.org/10.4319/lo.2008.53.1.0266, 2008.
Saito, M. A., Goepfert, T. J., and Ritt, J. T.: Some thoughts on the concept of colimitation: Three definitions and the importance of bioavailability, Limnol. Oceanogr., 53, 276–290, https://doi.org/10.4319/lo.2008.53.1.0276, 2008.
Schanke, N. L., Bolinesi, F., Mangoni, O., Katlein, C., Anhaus, P., Hoppmann, M., Lee, P. A., and DiTullio, G. R.: Biogeochemical and ecological variability during the late summer–early autumn transition at an ice-floe drift station in the Central Arctic Ocean, Limnol. Oceanogr., 66, S363–S382, https://doi.org/10.1002/lno.11676, 2021.
Scharek, R., Van Leeuwe, M. A., and De Baar, H. J. W.: Responses of Southern Ocean phytoplankton to the addition of trace metals, Deep-Sea Res. Part II Top. Stud. Oceanogr., 44, 209–227, https://doi.org/10.1016/S0967-0645(96)00074-4, 1997.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 29 September 2025), 2025.
Schmieder, R., Lim, Y. W., and Edwards, R.: Identification and removal of ribosomal RNA sequences from metatranscriptomes, Bioinformatics, 28, 433–435, https://doi.org/10.1093/bioinformatics/btr669, 2012.
Schneider, B. and Müller, J. D.: Biogeochemical Transformations in the Baltic Sea: Observations Through Carbon Dioxide Glasses, Springer International Publishing AG, Cham, ISBN 978-3-319-61699-5, https://doi.org/10.1007/978-3-319-61699-5, 110 pp., 2018.
Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar-Islas, A. M., Lohan, M. C., Long, M. C., Arrigo, K. R., Dunbar, R. B., Saito, M. A., Smith, W. O., and DiTullio, G. R.: Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf, J. Geophys. Res., 116, C12019, https://doi.org/10.1029/2010JC006553, 2011.
Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C., Lewis, E. R., and Wallace, D. W. R.: CO2SYSv3 for MATLAB, Zenodo [code], https://doi.org/10.5281/ZENODO.3950562, 2023.
Shim, J., Kim, D., Kang, Y. C., Lee, J. H., Jang, S.-T., and Kim, C.-H.: Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea, Cont. Shelf Res., 27, 2623–2636, https://doi.org/10.1016/j.csr.2007.07.005, 2007.
Sieber, M., Conway, T. M., de Souza, G. F., Hassler, C. S., Ellwood, M. J., and Vance, D.: Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: Insights from the Antarctic Circumnavigation Expedition, Geochim. Cosmochim. Acta, 268, 310–324, https://doi.org/10.1016/j.gca.2019.09.039, 2020.
Smith, W. O., Shields, A. R., Peloquin, J. A., Catalano, G., Tozzi, S., Dinniman, M. S., and Asper, V. A.: Interannual variations in nutrients, net community production, and biogeochemical cycles in the Ross Sea, Deep-Sea Res. Part II Top. Stud. Oceanogr., 53, 815–833, https://doi.org/10.1016/j.dsr2.2006.02.014, 2006.
Sperfeld, E., Raubenheimer, D., and Wacker, A.: Bridging factorial and gradient concepts of resource co-limitation: towards a general framework applied to consumers, Ecol. Lett., 19, 201–215, https://doi.org/10.1111/ele.12554, 2016.
Subhas, A. V., Adkins, J. F., Dong, S., Rollins, N. E., and Berelson, W. M.: The carbonic anhydrase activity of sinking and suspended particles in the North Pacific Ocean, Limnol. Oceanogr., 65, 637–651, https://doi.org/10.1002/lno.11332, 2019.
Sun, Y., Debeljak, P., and Obernosterer, I.: Microbial iron and carbon metabolism as revealed by taxonomy-specific functional diversity in the Southern Ocean, ISME J., 15, 2933–2946, https://doi.org/10.1038/s41396-021-00973-3, 2021.
Sunda, W. G. and Huntsman, S. A.: Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications, Limnol. Oceanogr., 40, 1404–1417, https://doi.org/10.4319/lo.1995.40.8.1404, 1995.
Sunda, W. G. and Huntsman, S. A.: Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: Implications for oceanic Cd cycling, Limnol. Oceanogr., 45, 1501–1516, https://doi.org/10.4319/lo.2000.45.7.1501, 2000.
Sunda, W. G. and Huntsman, S. A.: Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom, Limnol. Oceanogr., 50, 1181–1192, https://doi.org/10.4319/lo.2005.50.4.1181, 2005.
Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global Ocean Surface Water Partial Pressure of CO2 Database (LDEO Database Version 2019): Measurements Performed During 1957–2019 (NCEI Accession 0160492), NOAA Natl. Cent. Environ. Inf., 2020.
Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., and Natale, D. A.: The COG database: an updated version includes eukaryotes, BMC Bioinformatics, 4, 41, https://doi.org/10.1186/1471-2105-4-41, 2003.
Tortell, P. D., Payne, C., Gueguen, C., Strzepek, R. F., Boyd, P. W., and Rost, B.: Inorganic carbon uptake by Southern Ocean phytoplankton, Limnol. Oceanogr., 53, 1266–1278, https://doi.org/10.4319/lo.2008.53.4.1266, 2008.
Tortell, P. D., Long, M. C., Payne, C. D., Alderkamp, A.-C., Dutrieux, P., and Arrigo, K. R.: Spatial distribution of pCO2, and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica, Deep-Sea Res. Part II, 71–76, 77–93, https://doi.org/10.1016/j.dsr2.2012.03.010, 2012.
Twining, B. S. and Baines, S. B.: The trace metal composition of marine phytoplankton, Annu. Rev. Mar. Sci., 5, 191–215, https://doi.org/10.1146/annurev-marine-121211-172322, 2013.
Valerio, A. M., Kampel, M., Ward, N. D., Sawakuchi, H. O., Cunha, A. C., and Richey, J. E.: CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data, Cont. Shelf Res., 215, 104348, https://doi.org/10.1016/j.csr.2021.104348, 2021.
Wuttig, K., Townsend, A. T., van der Merwe, P., Gault-Ringold, M., Holmes, T., Schallenberg, C., Latour, P., Tonnard, M., Rijkenberg, M. J. A., Lannuzel, D., and Bowie, A. R.: Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples, Talanta, 197, 653–668, https://doi.org/10.1016/j.talanta.2019.01.047, 2019.
Wyatt, N. J., Milne, A., Woodward, E. M. S., Rees, A. P., Browning, T. J., Bouman, H. A., Worsfold, P. J., and Lohan, M. C.: Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40° S, Global Biogeochem. Cy., 28, 44–56, https://doi.org/10.1002/2013GB004637, 2014.
Xu, Y., Shi, D., Aristilde, L., and Morel, F. M. M.: The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: Possible role of weak complexes, Limnol. Oceanogr., 57, 293–304, https://doi.org/10.4319/lo.2012.57.1.0293, 2012.
Ye, N., Han, W., Toseland, A., Wang, Y., Fan, X., Xu, D., Van Oosterhout, C., Sea of Change Consortium, Aslam, S. N., Barry, K., Beszteri, B., Brussaard, C., Clum, A., Copeland, A., Daum, C., Duncan, A., Eloe-Fadrosh, E., Fong, A., Foster, B., Foster, B., Ginzburg, M., Huntemann, M., Ivanova, N. N., Kyrpides, N. C., Martin, K., Moulton, V., Mukherjee, S., Palaniappan, K., Reddy, T. B. K., Roux, S., Schmidt, K., Strauss, J., Timmermans, K., Tringe, S. G., Underwood, G. J. C., Valentin, K. U., Van De Poll, W. H., Varghese, N., Grigoriev, I. V., Tagliabue, A., Zhang, J., Zhang, Y., Ma, J., Qiu, H., Li, Y., Zhang, X., and Mock, T.: The role of zinc in the adaptive evolution of polar phytoplankton, Nat. Ecol. Evol., 6, 965–978, https://doi.org/10.1038/s41559-022-01750-x, 2022.
Zhang, Y., Wen, Z., Washburn, M. P., and Florens, L.: Refinements to Label Free Proteome Quantitation: How to Deal with Peptides Shared by Multiple Proteins, Anal. Chem., 82, 2272–2281, https://doi.org/10.1021/ac9023999, 2010.
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Photosynthetic productivity is strongly influenced by water column nutrient availability....
Altmetrics
Final-revised paper
Preprint