Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-6137-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6137-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water column respiration in the Yakima River basin is explained by temperature, nutrients, and suspended solids
Maggi M. Laan
Pacific Northwest National Laboratory, Richland, Washington, USA
Stephanie G. Fulton
Pacific Northwest National Laboratory, Richland, Washington, USA
Vanessa A. Garayburu-Caruso
CORRESPONDING AUTHOR
Pacific Northwest National Laboratory, Richland, Washington, USA
Morgan E. Barnes
Pacific Northwest National Laboratory, Richland, Washington, USA
Mikayla A. Borton
Pacific Northwest National Laboratory, Richland, Washington, USA
College of Agricultural Sciences, Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO, USA
Xingyuan Chen
Pacific Northwest National Laboratory, Richland, Washington, USA
Yuliya Farris
Pacific Northwest National Laboratory, Richland, Washington, USA
Brieanne Forbes
Pacific Northwest National Laboratory, Richland, Washington, USA
Amy E. Goldman
Pacific Northwest National Laboratory, Richland, Washington, USA
Samantha Grieger
Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, Washington, USA
Robert O. Hall Jr.
Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
Matthew H. Kaufman
Pacific Northwest National Laboratory, Richland, Washington, USA
Department of Earth, Environment, and Physics, Worcester State University, Worcester, Massachusetts, USA
Xinming Lin
Pacific Northwest National Laboratory, Richland, Washington, USA
Erin L. M. Zionce
Pacific Northwest National Laboratory, Richland, Washington, USA
Sophia A. McKever
Pacific Northwest National Laboratory, Richland, Washington, USA
Allison Myers-Pigg
Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, Washington, USA
Opal Otenburg
Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, Washington, USA
Aaron C. Pelly
Pacific Northwest National Laboratory, Richland, Washington, USA
School of the Environment, Washington State University, Pullman, Washington, USA
Huiying Ren
Pacific Northwest National Laboratory, Richland, Washington, USA
Lupita Renteria
Pacific Northwest National Laboratory, Richland, Washington, USA
Timothy D. Scheibe
Pacific Northwest National Laboratory, Richland, Washington, USA
Kyongho Son
Pacific Northwest National Laboratory, Richland, Washington, USA
Jerry Tagestad
Pacific Northwest National Laboratory, Richland, Washington, USA
Joshua M. Torgeson
Pacific Northwest National Laboratory, Richland, Washington, USA
Pacific Northwest National Laboratory, Richland, Washington, USA
School of the Environment, Washington State University, Pullman, Washington, USA
Related authors
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Morgan E. Barnes, J. Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg
Biogeosciences, 22, 4491–4505, https://doi.org/10.5194/bg-22-4491-2025, https://doi.org/10.5194/bg-22-4491-2025, 2025
Short summary
Short summary
Wildfires impact nutrient cycles on land and in water. We used burning experiments to understand the types of phosphorous (P), an essential nutrient, that might be released to the environment after different types of fires. We found the amount of P moving through the environment post-fire is dependent on the type of vegetation and degree of burning, which may influence when and where this material is processed or stored.
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
Biogeosciences, 22, 2225–2238, https://doi.org/10.5194/bg-22-2225-2025, https://doi.org/10.5194/bg-22-2225-2025, 2025
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Robert E. Danczak, Amy E. Goldman, Mikayla A. Borton, Rosalie K. Chu, Jason G. Toyoda, Vanessa A. Garayburu-Caruso, Emily B. Graham, Joseph W. Morad, Lupita Renteria, Jacqueline R. Hager, Shai Arnon, Scott Brooks, Edo Bar-Zeev, Michael Jones, Nikki Jones, Jorg Lewandowski, Christof Meile, Birgit M. Muller, John Schalles, Hanna Schulz, Adam Ward, and James C. Stegen
EGUsphere, https://doi.org/10.1101/2024.01.10.575030, https://doi.org/10.1101/2024.01.10.575030, 2025
Preprint archived
Short summary
Short summary
As dissolved organic matter (DOM) is transported from land to the ocean through rivers, it interacts with the environment and some is converted to CO2. We used high-resolution carbon analysis to show that DOM from seven rivers exhibited ecological patterns particular to the corresponding river. These results indicate that local processes play an outsized role in shaping DOM. By understanding these interactions across environments, we can predict DOM across spatial scales or under perturbations.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Kelly S. Aho, Kaelin M. Cawley, Robert T. Hensley, Robert O. Hall Jr., Walter K. Dodds, and Keli J. Goodman
Earth Syst. Sci. Data, 16, 5563–5578, https://doi.org/10.5194/essd-16-5563-2024, https://doi.org/10.5194/essd-16-5563-2024, 2024
Short summary
Short summary
Gas exchange is fundamental to many biogeochemical processes in streams and depends on the degree of gas saturation and the gas transfer velocity (k). Currently, k is harder to measure than concentration. Here, we present a processing pipeline to estimate k from tracer-gas experiments conducted in 22 streams by the National Ecological Observatory Network. The processed dataset (n = 339) represents the largest compilation of standardized k estimates available.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022, https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Short summary
We used a deep learning method called long short-term memory (LSTM) to fill gaps in data collected by hydrologic monitoring networks. LSTM accounted for correlations in space and time and nonlinear trends in data. Compared to a traditional regression-based time-series method, LSTM performed comparably when filling gaps in data with smooth patterns, while it better captured highly dynamic patterns in data. Capturing such dynamics is critical for understanding dynamic complex system behaviors.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Cited articles
Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., and Moore, R. B.: The Role of Headwater Streams in Downstream Water Quality, J. Am. Water Resour. Assoc., 43, 41–59, https://doi.org/10.1111/j.1752-1688.2007.00005.x, 2007.
Allan, J. D., Castillo, M. M., and Capps, K. A.: Carbon Dynamics and Stream Ecosystem Metabolism, in: Stream Ecology: Structure and Function of Running Waters, Springer International Publishing, Cham, 421–452, ISBN 978-3-030-61286-3, 2021.
Appling, A. P., Read, J. S., Winslow, L. A., Arroita, M., Bernhardt, E. S., Griffiths, N. A., Hall, R. O., Harvey, J. W., Heffernan, J. B., Stanley, E. H., Stets, E. G., and Yackulic, C. B.: Metabolism estimates for 356 U.S. rivers (2007–2017): U.S. Geological Survey data release [data set], https://doi.org/10.5066/F70864KX, 2018a.
Appling, A. P., Hall, R. O., Yackulic, C. B., and Arroita, M.: Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism Estimation, J. Geophys. Res.-Biogeo., 123, 624–645, https://doi.org/10.1002/2017jg004140, 2018b.
Ardón, M., Zeglin, L. H., Utz, R. M., Cooper, S. D., Dodds, W. K., Bixby, R. J., Burdett, A. S., Follstad Shah, J., Griffiths, N. A., Harms, T. K., Johnson, S. L., Jones, J. B., Kominoski, J. S., McDowell, W. H., Rosemond, A. D., Trentman, M. T., Van Horn, D., and Ward, A.: Experimental nitrogen and phosphorus enrichment stimulates multiple trophic levels of algal and detrital-based food webs: a global meta-analysis from streams and rivers, Biol. Rev., 96, 692–715, https://doi.org/10.1111/brv.12673, 2021.
Battin, T. J., Kaplan, L. A., Newbold, J. D., and Hendricks, S. P.: A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function, Freshwater Biol., 48, 995–1014, https://doi.org/10.1046/j.1365-2427.2003.01062.x, 2003.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., and Sabater, F.: Biophysical controls on organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100, https://doi.org/10.1038/ngeo101, 2008.
Benstead, J. P., Rosemond, A. D., Cross, W. F., Wallace, J. B., Eggert, S. L., Suberkropp, K., Gulis, V., Greenwood, J. L., and Tant, C. J.: Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem, Ecology, 90, 2556–2566, https://doi.org/10.1890/08-0862.1, 2009.
Bernhardt, E. S., Heffernan, J. B., Grimm, N. B., Stanley, E. H., Harvey, J. W., Arroita, M., Appling, A. P., Cohen, M. J., McDowell, W. H., Hall, R. O., Read, J. S., Roberts, B. J., Stets, E. G., and Yackulic, C. B.: The metabolic regimes of flowing waters, Limnol. Oceanogr., 63, S99–S118, https://doi.org/10.1002/lno.10726, 2018.
Bernhardt, E. S., Savoy, P., Vlah, M. J., Appling, A. P., Koenig, L. E., Hall, R. O., Arroita, M., Blaszczak, J. R., Carter, A. M., Cohen, M., Harvey, J. W., Heffernan, J. B., Helton, A. M., Hosen, J. D., Kirk, L., McDowell, W. H., Stanley, E. H., Yackulic, C. B., and Grimm, N. B.: Light and flow regimes regulate the metabolism of rivers, P. Natl. Acad. Sci. USA, 119, e2121976119, https://doi.org/10.1073/pnas.2121976119, 2022.
Bernot, M. J., Sobota, D. J., Hall, R. O., Mulholland, P. J., Dodds, W. K., Webster, J. R., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Gregory, S. V., Grimm, N. B., Hamilton, S. K., Johnson, S. L., McDowell, W. H., Meyer, J. L., Peterson, B., Poole, G. C., Valett, H. M., Arango, C., Beaulieu, J. J., Burgin, A. J., Crenshaw, C., Helton, A. M., Johnson, L., Merriam, J., Niederlehner, B. R., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Thomas, S. M., and Wilson, K.: Inter-regional comparison of land-use effects on stream metabolism, Freshwater Biol., 55, 1874–1890, https://doi.org/10.1111/j.1365-2427.2010.02422.x, 2010.
Bertuzzo, E., Hotchkiss, E. R., Argerich, A., Kominoski, J. S., Oviedo-Vargas, D., Savoy, P., Scarlett, R., Von Schiller, D., and Heffernan, J. B.: Respiration regimes in rivers: Partitioning source-specific respiration from metabolism time series, Limnol. Oceanogr., 67, 2374–2388, https://doi.org/10.1002/lno.12207, 2022.
Blodgett, D. L. and Johnson, J. M.: nhdplusTools: Tools for accessing and working with the NHDPlus, https://doi.org/10.5066/P97AS8JD, 2022.
Bramer, L. M., White, A. M., Stratton, K. G., Thompson, A. M., Claborne, D., Hofmockel, K., and McCue, L. A.: ftmsRanalysis: An R package for exploratory data analysis and interactive visualization of FT-MS data, PLOS Comput. Biol., 16, e1007654, https://doi.org/10.1371/journal.pcbi.1007654, 2020.
Caissie, D.: The thermal regime of rivers: a review, Freshwater Biol., 51, 1389–1406, https://doi.org/10.1111/j.1365-2427.2006.01597.x, 2006.
Carroll, J.: Quality Assurance Project Plan: Lower Yakima River Monitoring for Aquatic Life Parameters to Support Water Quality Gaging, Washington State Department of Ecology, Olympia, WA, Publication #22-03-111, 2022.
Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D., Welter, J. R., Gíslason, G. M., and Ólafsson, J. S.: Nutrient enrichment intensifies the effects of warming on metabolic balance of stream ecosystems, Limnol. Oceanogr. Lett., 7, 332–341, https://doi.org/10.1002/lol2.10244, 2022.
Danczak, R. E., Garayburu-Caruso, V. A., Renteria, L., McKever, S. A., Otenburg, O. C., Grieger, S. R., Son, K., Kaufman, M. H., Fulton, S. G., Roebuck, J. A., Myers-Pigg, A. N., and Stegen, J. C.: Riverine organic matter functional diversity increases with catchment size, Front. Water, 5, 1087108, https://doi.org/10.3389/frwa.2023.1087108, 2023.
del Giorgio, P. A. and Williams, P. J. le B.: Respiration in Aquatic Ecosystems, Oxford University Press, Oxford, United Kingdom, 315 pp., ISBN 0-19-852708-X, 2005.
Demars, B. O. L.: Hydrological pulses and burning of dissolved organic carbon by stream respiration, Limnol. Oceanogr., 64, 406–421, https://doi.org/10.1002/lno.11048, 2019.
Devol, A. H., Forsberg, B. R., Richey, J. E., and Pimentel, T. P.: Seasonal variation in chemical distributions in the Amazon (Solimões) River: A multiyear time series, Global Biogeochem. Cy., 9, 307–328, https://doi.org/10.1029/95GB01145, 1995.
Dillon, G. K.: Wildfire Hazard Potential (WHP) for the conterminous United States (270-m GRID), version 2018 continuous, Forest Service Research Data Archive, Fort Collins, CO, https://doi.org/10.2737/RDS-2015-0047-2, 2018.
Dillon, G. K. and Gilbertson-Day, J. W.: Wildfire Hazard Potential for the United States (270-m), version 2020, Fort Collins, CO: Forest Service Research Data Archive, https://doi.org/10.2737/RDS-2015-0047-3, 2020.
Dittmar, T., Koch, B., Hertkorn, N., and Kattner, G.: A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater, Limnol. Oceanogr. Meth., 6, 230–235, https://doi.org/10.4319/lom.2008.6.230, 2008.
Ellis, E. E., Richey, J. E., Aufdenkampe, A. K., Krusche, A. V., Quay, P. D., Salimon, C., and Da Cunha, H. B.: Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin, Limnol. Oceanogr., 57, 527–540, https://doi.org/10.4319/lo.2012.57.2.0527, 2012.
Findlay, S.: Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone, Limnol. Oceanogr., 40, 159–164, https://doi.org/10.4319/lo.1995.40.1.0159, 1995.
Finlay, J. C.: Stream size and human influences on ecosystem production in river networks, Ecosphere, 2, 87, https://doi.org/10.1890/es11-00071.1, 2011.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Friedman, J. H., Hastie, T., and Tibshirani, R.: Regularization Paths for Generalized Linear Models via Coordinate Descent, J. Stat. Softw., 33, 1–22, https://doi.org/10.18637/jss.v033.i01, 2010.
Fudyma, J. D., Chu, R. K., Graf Grachet, N., Stegen, J. C., and Tfaily, M. M.: Coupled Biotic-Abiotic Processes Control Biogeochemical Cycling of Dissolved Organic Matter in the Columbia River Hyporheic Zone, Front. Water, 2, 574692, https://doi.org/10.3389/frwa.2020.574692, 2021.
Fulton, S. G., Barnes, M., Borton, M. A., Chen, X., Farris, Y., Forbes, B., Garayburu-Caruso, V. A., Goldman, A. E., Grieger, S., Kaufman, M. H., Lin, X., McKever, S. A., Myers-Pigg, A., Otenburg, O., Pelly, A., Ren, H., Renteria, L., Scheibe, T. D., Son, K., Torgeson, J. M., and Stegen, J. C.: Spatial Study 2021: Sensor-Based Time Series of Surface Water Temperature, Specific Conductance, Total Dissolved Solids, pH, and Dissolved Oxygen from across Multiple Watersheds in the Yakima River Basin, Washington, USA (v3), ESS-DIVE repository [data set], https://doi.org/10.15485/1892052, 2022.
Fuss, C. and Smock, L.: Spatial and temporal variation of microbial respiration rates in a blackwater stream, Freshwater Biol., 36, 339–349, https://doi.org/10.1046/j.1365-2427.1996.00095.x, 1996.
Gagne-Maynard, W. C., Ward, N. D., Keil, R. G., Sawakuchi, H. O., Da Cunha, A. C., Neu, V., Brito, D. C., Da Silva Less, D. F., Diniz, J. E. M., De Matos Valerio, A., Kampel, M., Krusche, A. V., and Richey, J. E.: Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance, Front. Mar. Sci., 4, 26, https://doi.org/10.3389/fmars.2017.00026, 2017.
Garayburu-Caruso, V. A., Stegen, J. C., Song, H.-S., Renteria, L., Wells, J., Garcia, W., Resch, C. T., Goldman, A. E., Chu, R. K., Toyoda, J., and Graham, E. B.: Carbon Limitation Leads to Thermodynamic Regulation of Aerobic Metabolism, Environ. Sci. Technol. Lett., 7, 517–524, https://doi.org/10.1021/acs.estlett.0c00258, 2020a.
Garayburu-Caruso, V. A., Danczak, R. E., Stegen, J. C., Renteria, L., McCall, M., Goldman, A. E., Chu, R. K., Toyoda, J., Resch, C. T., Torgeson, J. M., Wells, J., Fansler, S., Kumar, S., and Graham, E. B.: Using Community Science to Reveal the Global Chemogeography of River Metabolomes, Metabolites, 10, 518, https://doi.org/10.3390/metabo10120518, 2020b.
Gardner, J. R. and Doyle, M. W.: Sediment–Water Surface Area Along Rivers: Water Column Versus Benthic, Ecosystems, 21, 1505–1520, https://doi.org/10.1007/s10021-018-0236-2, 2018.
Genzoli, L. and Hall, R. O.: Shifts in Klamath River metabolism following a reservoir cyanobacterial bloom, Freshwater Sci., 35, 795–809, https://doi.org/10.1086/687752, 2016.
Glover, H. E., Ogston, A. S., Miller, I. M., Eidam, E. F., Rubin, S. P., and Berry, H. D.: Impacts of Suspended Sediment on Nearshore Benthic Light Availability Following Dam Removal in a Small Mountainous River: In Situ Observations and Statistical Modeling, Estuar. Coasts, 42, 1804–1820, https://doi.org/10.1007/s12237-019-00602-5, 2019.
Gomez-Velez, J. D., Harvey, J. W., Cardenas, M. B., and Kiel, B.: Denitrification in the Mississippi River network controlled by flow through river bedforms, Nat. Geosci., 8, 941–945, https://doi.org/10.1038/ngeo2567, 2015.
Grieger, S., Barnes, M., Borton, M. A., Chen, X., Chu, R., Barton, R., Farris, Y., Forbes, B., Fulton, S. G., Garayburu-Caruso, V. A., Goldman, A. E., Gonzalez, B. I., Kaufman, M. H., Laan, M., McKever, S. A., Miller, M., Myers-Pigg, A., Otenburg, O., Pelly, A., Powers-McCormack, B., Renteria, L., Resch, C. T., Roebuck, A., Scheibe, T. D., Son, K., Torgeson, J. M., Toyoda, J. G., Winston, I., and Stegen, J. C.: Spatial Study 2021: Sample-Based Surface Water Chemistry and Organic Matter Characterization across Watersheds in the Yakima River Basin, Washington, USA (v3), ESS-DIVE repository [data set], https://doi.org/10.15485/1898914, 2022.
Hall, R. O.: Chapter 4 - Metabolism of Streams and Rivers: Estimation, Controls, and Application, in: Stream Ecosystems in a Changing Environment, edited by: Jones, J. B. and Stanley, E. H., Academic Press, Boston, 151–180, https://doi.org/10.1016/B978-0-12-405890-3.00004-X, 2016.
Hall, R. O. and Hotchkiss, E. R.: Chapter 34 – Stream Metabolism, in: Methods in Stream Ecology, edited by: Lamberti, G. A. and Hauer, F. R., 3rd Edn., Academic Press, 219–233, ISBN 978-0-12-813047-6, 2017.
Hall, R. O., Tank, J. L., Baker, M. A., Rosi-Marshall, E. J., and Hotchkiss, E. R.: Metabolism, Gas Exchange, and Carbon Spiraling in Rivers, Ecosystems, 19, 73–86, https://doi.org/10.1007/s10021-015-9918-1, 2016.
Hensley, R. T., Kirk, L., Spangler, M., Gooseff, M. N., and Cohen, M. J.: Flow Extremes as Spatiotemporal Control Points on River Solute Fluxes and Metabolism, J. Geophys. Res.-Biogeo., 124, 537–555, https://doi.org/10.1029/2018jg004738, 2019.
Honious, S. A. S., Hale, R. L., Guilinger, J. J., Crosby, B. T., and Baxter, C. V.: Turbidity Structures the Controls of Ecosystem Metabolism and Associated Metabolic Process Domains Along a 75-km Segment of a Semiarid Stream, Ecosystems, 5, 422–440, https://doi.org/10.1007/s10021-021-00661-5, 2021.
Hornbach, D. J.: Multi-Year Monitoring of Ecosystem Metabolism in Two Branches of a Cold-Water Stream, Environments, 8, 3, https://doi.org/10.3390/environments8030019, 2021.
Hotchkiss, E. R. and Hall, R. O.: High rates of daytime respiration in three streams: Use of δ 18 OO2 and O2 to model diel ecosystem metabolism, Limnol. Oceanogr., 59, 798–810, https://doi.org/10.4319/lo.2014.59.3.0798, 2014.
Jankowski, K. J. and Schindler, D. E.: Watershed geomorphology modifies the sensitivity of aquatic ecosystem metabolism to temperature, Sci. Rep., 9, 17619, https://doi.org/10.1038/s41598-019-53703-3, 2019.
Jones Jr., J. B.: Factors controlling hyporheic respiration in a desert stream, Freshwater Biol., 34, 91–99, https://doi.org/10.1111/j.1365-2427.1995.tb00426.x, 1995.
Kaplan, L. A. and Newbold, J. D.: 10 – Surface and Subsurface Dissolved Organic Carbon, in: Streams and Ground Waters, edited by: Jones, J. B. and Mulholland, P. J., Academic Press, San Diego, 237–258, https://doi.org/10.1016/B978-012389845-6/50011-9, 2000.
Laan, M., Fulton, S. G., Barnes, M., Borton, M. A., Chen, X., Farris, Y., Forbes, B., Garayburu-Caruso, V. A., Goldman, A. E., Grieger, S., Hall, R. O., Kaufman, M. H., Lin, X., McCann, E., McKever, S. A., Myers-Pigg, A., Otenburg, O., Pelly, A., Ren, H., Renteria, L., Scheibe, T. D., Son, K., Tagestad, J. D., Torgeson, J. M., and Stegen, J. C.: Data and Scripts Associated with the Manuscript “Water Column Respiration in the Yakima River Basin is Explained by Temperature, Nutrients and Suspended Solids”, ESS-DIVE repository [data set], https://doi.org/10.15485/2283171, 2024.
Liu, T., Xia, X., Liu, S., Mou, X., and Qiu, Y.: Acceleration of Denitrification in Turbid Rivers Due to Denitrification Occurring on Suspended Sediment in Oxic Waters, Environ. Sci. Technol., 47, 4053–4061, https://doi.org/10.1021/es304504m, 2013.
Manning, D. W. P., Rosemond, A. D., Benstead, J. P., Bumpers, P. M., and Kominoski, J. S.: Transport of N and P in U.S. streams and rivers differs with land use and between dissolved and particulate forms, Ecol. Appl., 30, e02130, https://doi.org/10.1002/eap.2130, 2020.
Mejia, F. H., Fremier, A. K., Benjamin, J. R., Bellmore, J. R., Grimm, A. Z., Watson, G. A., and Newsom, M.: Stream metabolism increases with drainage area and peaks asynchronously across a stream network, Aquat. Sci., 81, 9, https://doi.org/10.1007/s00027-018-0606-z, 2019.
Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Findlay, S. E. G., Gregory, S. V., Grimm, N. B., Johnson, S. L., McDowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., Arango, C. P., Beaulieu, J. J., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Johnson, L. T., Niederlehner, B. R., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., and Thomas, S. M.: Stream denitrification across biomes and its response to anthropogenic nitrate loading, Nature, 452, 202–205, https://doi.org/10.1038/nature06686, 2008.
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015.
Naegeli, M. W. and Uehlinger, U.: Contribution of the Hyporheic Zone to Ecosystem Metabolism in a Prealpine Gravel-Bed-River, J. N. Am. Benthol. Soc., 16, 794–804, https://doi.org/10.2307/1468172, 1997.
Nakano, D., Iwata, T., Suzuki, J., Okada, T., Yamamoto, R., and Imamura, M.: The effects of temperature and light on ecosystem metabolism in a Japanese stream, Freshwater Sci., 41, 113–124, https://doi.org/10.1086/718648, 2022.
National Elevation Dataset (NED): 1/3 Arc-Second Digital Elevation Model, http://nationalmap.gov/elevation.html, last access: 29 June 2023.
Ochs, C. A., Capello, H. E., and Pongruktham, O.: Bacterial production in the Lower Mississippi River: importance of suspended sediment and phytoplankton biomass, Hydrobiologia, 637, 19–31, https://doi.org/10.1007/s10750-009-9981-8, 2010.
Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., Martí, E., Bowden, W. B., Valett, H. M., Hershey, A. E., McDowell, W. H., Dodds, W. K., Hamilton, S. K., Gregory, S., and Morrall, D. D.: Control of Nitrogen Export from Watersheds by Headwater Streams, Science, 292, 86–90, https://doi.org/10.1126/science.1056874, 2001.
Pietikäinen, J., Pettersson, M., and Bååth, E.: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates, FEMS Microbiol. Ecol., 52, 49–58, https://doi.org/10.1016/j.femsec.2004.10.002, 2005.
Plont, S., Riney, J., and Hotchkiss, E. R.: Integrating Perspectives on Dissolved Organic Carbon Removal and Whole-Stream Metabolism, J. Geophys. Res.-Biogeo., 127, e2021JG006610, https://doi.org/10.1029/2021JG006610, 2022.
PRISM Group, Oregon State University: https://prism.oregonstate.edu (last access: 16 February 2020), 2014.
Quay, P. D., Wilbur, D., Richey, J. E., Devol, A. H., Benner, R., and Forsberg, B. R.: The 18O:16O of dissolved oxygen in rivers and lakes in the Amazon Basin: Determining the ratio of respiration to photosynthesis rates in freshwaters, Limnol. Oceanogr., 40, 718–729, https://doi.org/10.4319/lo.1995.40.4.0718, 1995.
R Core Team: R: A language and environment for statistical computing, https://www.R-project.org/ (last access: 11 October 2025)), 2022.
Reisinger, A. J., Tank, J. L., Rosi-Marshall, E. J., Hall, R. O., and Baker, M. A.: The varying role of water column nutrient uptake along river continua in contrasting landscapes, Biogeochem., 125, 115–131, https://doi.org/10.1007/s10533-015-0118-z, 2015.
Reisinger, A. J., Tank, J. L., Hoellein, T. J., and Hall, R. O.: Sediment, water column, and open-channel denitrification in rivers measured using membrane-inlet mass spectrometry, J. Geophys. Res.-Biogeo., 121, 1258–1274, https://doi.org/10.1002/2015jg003261, 2016.
Reisinger, A. J., Tank, J. L., Hall, R. O., Rosi, E. J., Baker, M. A., and Genzoli, L.: Water column contributions to the metabolism and nutrient dynamics of mid-sized rivers, Biogeochem., 153, 67–84, https://doi.org/10.1007/s10533-021-00768-w, 2021.
Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K., and Wallace, J. B.: Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems, Science, 347, 1142–1145, https://doi.org/10.1126/science.aaa1958, 2015.
Running, S. and Zhao, M.: MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD17A3HGF.006, 2019.
Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD16A2.006, 2017.
Ryan, K. A., Garayburu-Caruso, V. A., Crump, B. C., Bambakidis, T., Raymond, P. A., Liu, S., and Stegen, J. C.: Riverine dissolved organic matter transformations increase with watershed area, water residence time, and Damköhler numbers in nested watersheds, Biogeochem., 167, 1203–1224, https://doi.org/10.1007/s10533-024-01169-5, 2024.
Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P., Janovsky, T. A., and Kamaev, V. A.: A Survey of Forecast Error Measures, World Applied Sciences Journal, 24, 171–176, https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032, 2013.
Song, C., Dodds, W. K., Rüegg, J., Argerich, A., Baker, C. L., Bowden, W. B., Douglas, M. M., Farrell, K. J., Flinn, M. B., Garcia, E. A., Helton, A. M., Harms, T. K., Jia, S., Jones, J. B., Koenig, L. E., Kominoski, J. S., McDowell, W. H., McMaster, D., Parker, S. P., Rosemond, A. D., Ruffing, C. M., Sheehan, K. R., Trentman, M. T., Whiles, M. R., Wollheim, W. M., and Ballantyne, F.: Continental-scale decrease in net primary productivity in streams due to climate warming, Nat. Geosci., 11, 415–420, https://doi.org/10.1038/s41561-018-0125-5, 2018.
Stegen, J. C., Johnson, T., Fredrickson, J. K., Wilkins, M. J., Konopka, A. E., Nelson, W. C., Arntzen, E. V., Chrisler, W. B., Chu, R. K., Fansler, S. J., Graham, E. B., Kennedy, D. W., Resch, C. T., Tfaily, M., and Zachara, J.: Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology, Nat. Commun., 9, 585, https://doi.org/10.1038/s41467-018-02922-9, 2018.
Tolić, N., Liu, Y., Liyu, A., Shen, Y., Tfaily, M. M., Kujawinski, E. B., Longnecker, K., Kuo, L.-J., Robinson, E. W., Paša-Tolić, L., and Hess, N. J.: Formularity: Software for Automated Formula Assignment of Natural and Other Organic Matter from Ultrahigh-Resolution Mass Spectra, Anal. Chem., 89, 12659–12665, https://doi.org/10.1021/acs.analchem.7b03318, 2017.
Ulseth, A. J., Bertuzzo, E., Singer, G. A., Schelker, J., and Battin, T. J.: Climate-Induced Changes in Spring Snowmelt Impact Ecosystem Metabolism and Carbon Fluxes in an Alpine Stream Network, Ecosystems, 21, 373–390, https://doi.org/10.1007/s10021-017-0155-7, 2018.
U.S. Geological Survey: National Hydrography Dataset (ver. USGS National Hydrography Dataset Best Resolution (NHD) for Hydrologic Unit (HU) 4 – 2001 (published 20191002)), https://www.usgs.gov/national-hydrography/access-national-hydrography-products (last access: 15 February 2020), 2019a.
U.S. Geological Survey: C6 Aqua 250-m eMODIS Remote Sensing Phenology Metrics across the conterminous U.S., https://doi.org/10.5066/P9ZJAFKT, 2019b.
U.S. Geological Survey (USGS): Annual NLCD Collection 1 Science Products: U.S. Geological Survey data release, [data set], https://doi.org/10.5066/P94UXNTS, 2024.
Vano, J. A., Scott, M. J., Voisin, N., Stöckle, C. O., Hamlet, A. F., Mickelson, K. E. B., Elsner, M. M., and Lettenmaier, D. P.: Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA, Climatic Change, 102, 287–317, https://doi.org/10.1007/s10584-010-9856-z, 2010.
Wang, J., Xia, X., Liu, S., Zhang, S., Zhang, L., Jiang, C., Zhang, Z., Xin, Y., Chen, X., Huang, J., Bao, J., McDowell, W. H., Michalski, G., Yang, Z., and Xia, J.: The Dominant Role of the Water Column in Nitrogen Removal and N2O Emissions in Large Rivers, Geophys. Res. Lett., 49, e2022GL098955, https://doi.org/10.1029/2022GL098955, 2022.
Ward, N. D., Sawakuchi, H. O., Neu, V., Less, D. F. S., Valerio, A. M., Cunha, A. C., Kampel, M., Bianchi, T. S., Krusche, A. V., Richey, J. E., and Keil, R. G.: Velocity-amplified microbial respiration rates in the lower Amazon River, Limnol. Oceanogr. Lett., 3, 265–274, https://doi.org/10.1002/lol2.10062, 2018.
Webster, J. R.: Spiraling down the river continuum: stream ecology and the U-shaped curve, J. N. Am. Benthol. Soc., 26, 375–389, https://doi.org/10.1899/06-095.1, 2007.
Willi, K. and Ross, M. R. V.: Geospatial Data Puller for Waters in the Contiguous United States (Version v1), Zenodo, https://doi.org/10.5281/zenodo.8140272, 2023.
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water makes variable contributions to the respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase strongly when moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients, and suspended solids.
Respiration is a process that combines carbon and oxygen to generate energy for living...
Altmetrics
Final-revised paper
Preprint