Articles | Volume 22, issue 21
https://doi.org/10.5194/bg-22-6695-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6695-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Artisanal and small-scale gold mining (ASGM)-derived mercury contamination in agricultural systems: what we know and need to know
David S. McLagan
CORRESPONDING AUTHOR
Dept. of Geological Sciences and Geological Engineering, Queens University, 36 Union St, Kingston ON, K7L3N6, Canada
School of Environmental Studies, Queen's University, 116 Barrie St, Kingston, ON, K7L3N6, Canada
Excellent O. Eboigbe
Dept. of Geological Sciences and Geological Engineering, Queens University, 36 Union St, Kingston ON, K7L3N6, Canada
Rachel J. Strickman
Strickman Technical Services, 1015 West Blaine St, Seattle, WA, 98119, USA
Related authors
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sagisaka Méndez, and David S. McLagan
Biogeosciences, 22, 5591–5605, https://doi.org/10.5194/bg-22-5591-2025, https://doi.org/10.5194/bg-22-5591-2025, 2025
Short summary
Short summary
Air, soil, and three common staple crops were assessed at an artisanal and small-scale gold mining (ASGM) processing site, and mercury (Hg) contamination was observed at a farm ≈ 500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops was below reference dose levels and generally safe for consumption.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
David S. McLagan, Geoff W. Stupple, Andrea Darlington, Katherine Hayden, and Alexandra Steffen
Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, https://doi.org/10.5194/acp-21-5635-2021, 2021
Short summary
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sagisaka Méndez, and David S. McLagan
Biogeosciences, 22, 5591–5605, https://doi.org/10.5194/bg-22-5591-2025, https://doi.org/10.5194/bg-22-5591-2025, 2025
Short summary
Short summary
Air, soil, and three common staple crops were assessed at an artisanal and small-scale gold mining (ASGM) processing site, and mercury (Hg) contamination was observed at a farm ≈ 500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops was below reference dose levels and generally safe for consumption.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
David S. McLagan, Geoff W. Stupple, Andrea Darlington, Katherine Hayden, and Alexandra Steffen
Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, https://doi.org/10.5194/acp-21-5635-2021, 2021
Short summary
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
Cited articles
Abdulmalik, Z., Shittu, M., Adamu, S., Ambali, S. F., and Oyeyemi, B. F.: Assessment of blood mercury, immune response, heat shock and oxidative stress marker in free-ranging chicken (Gallus Gallus domesticus) from gold mining areas in Zamfara State, Nigeria, J. Hazard. Mater. Adv., 8, 100176, https://doi.org/10.1016/j.hazadv.2022.100176, 2022.
Achina-Obeng, R. and Aram, S. A.: Informal artisanal and small-scale gold mining (ASGM) in Ghana: Assessing environmental impacts, reasons for engagement, and mitigation strategies, Resour. Policy, 78, 102907, https://doi.org/10.1016/j.resourpol.2022.102907, 2022.
Adator, S. W., Wu, Q., Lambongang, M., Otoo, S. L., Bosah, C. P., and Nimako, K. O.: Farmers' perception of the impact of gold mining on shrinking agricultural land and their livelihood in the Asutifi-North District, Resour. Policy, 81, 103379, https://doi.org/10.1016/j.resourpol.2023.103379, 2023.
Addai-Arhin, S., Novirsa, R., Jeong, H. H., Phan, Q. D., Hirota, N., Ishibashi, Y., Shiratsuchi, H., and Arizono, K.: Potential human health risks of mercury-contaminated cassavas – Preliminary studies, Fundam. Toxicol. Sci., 9, 61–69, https://doi.org/10.2131/fts.9.61, 2022a.
Addai-Arhin, S., Novirsa, R., Jeong, H. H., Phan, Q. D., Hirota, N., Ishibashi, Y., Shiratsuchi, H., and Arizono, K.: The human health risks assessment of mercury in soils and plantains from farms in selected artisanal and small-scale gold mining communities around Obuasi, Ghana, J. Appl. Toxicol., 42, 258–273, https://doi.org/10.1002/jat.4209, 2022b.
Addai-Arhin, S., Novirsa, R., Jeong, H. H., Phan, Q. D., Hirota, N., Ishibashi, Y., Shiratsuchi, H., and Arizono, K.: Mercury waste from artisanal and small-scale gold mining facilities: a risk to farm ecosystems – a case study of Obuasi, Ghana, Environ. Sci. Pollut. Res., 30, 4293–4308, https://doi.org/10.1007/s11356-022-22456-4, 2023.
Adjorlolo-Gasokpoh, A., Golow, A. A., and Kambo-Dorsa, J.: Mercury in the surface soil and cassava, Manihot esculenta (flesh, leaves and peel) near goldmines at Bogoso and Prestea, Ghana, Bull. Environ. Contam. Toxicol., 89, 1106–1110, https://doi.org/10.1007/s00128-012-0849-7, 2012.
Adranyi, E., Stringer, L. C., and Altink, H.: The impacts of artisanal and small-scale gold mining on rural livelihood trajectories: Insights from Ghana, Extr. Ind. Soc., 14, 101273, https://doi.org/10.1016/j.exis.2023.101273, 2023.
Adranyi, E., Stringer, L. C., and Altink, H.: Joined-up governance for more complementary interactions between expanding artisanal small-scale gold mining and agriculture: Insights from Ghana, PLoS One, 19, e0298392, https://doi.org/10.1371/journal.pone.0298392, 2024.
Aendo, P., Mingkhwan, R., Senachai, K., Santativongchai, P., Thiendedsakul, P., and Tulayakul, P.: Health significant alarms of toxic carcinogenic risk consumption of blood meal metals contamination in poultry at a gold mining neighborhood, northern Thailand, Environ. Geochem. Health, 44, 783–797, https://doi.org/10.1007/s10653-021-00971-6, 2022.
Ahiamadjie, H., Serfor-Armah, Y., Tandoh, J., Gyampo, O., Ofosu, F., Dampare, S., Adotey, D., and Nyarko, B.: Evaluation of trace elements contents in staple foodstuffs from the gold mining areas in southwestern part of Ghana using neutron activation analysis, J. Radioanal. Nucl. Chem., 288, 653–661, https://doi.org/10.1007/s10967-011-0979-0, 2011.
Andersson, M. E., Gårdfeldt, K., Wängberg, I., and Strömberg, D.: Determination of Henry's law constant for elemental mercury, Chemosphere, 73, 587–592, https://doi.org/10.1016/j.chemosphere.2008.05.067, 2008.
Ao, M., Xu, X., Wu, Y., Zhang, C., Meng, B., Shang, L., Liang, L., Qiu, R., Wang, S., Qian, X., Zhao, L., and Qiu, G.: Newly deposited atmospheric mercury in a simulated rice ecosystem in an active mercury mining region: High loading, accumulation, and availability, Chemosphere, 238, 124630, https://doi.org/10.1016/j.chemosphere.2019.124630, 2020.
Appleton, J. D., Weeks, J. M., Calvez, J. P. S., and Beinhoff, C.: Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines, Sci. Total Environ., 354, 198–211, https://doi.org/10.1016/j.scitotenv.2005.01.042, 2006.
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions, Chem. Rev., 115, 3760–3802, https://doi.org/10.1021/cr500667e, 2015.
Arrazy, S., Addai-Arhin, S., Jeong, H., Novirsa, R., Wispriyono, B., Agusa, T., Ishibashi, Y., and Kobayashi, J.: Spatial distribution and human health risks of mercury in the gold mining area of Mandailing Natal District, Indonesia, Environ. Monit. Contam. Res., 3, 33–42, https://doi.org/10.5985/emcr.20230003, 2023.
Arrazy, S., Sone Soe, P., Novirsa, R., Wispriyono, B., Agusa, T., Ishibashi, Y., and Kobayashi, J.: Critical Review of Mercury Polluted Area in Indonesia, J. Environ. Saf., 15, 47–62, https://doi.org/10.11162/daikankyo.E23RV0801, 2024.
Aslam, M. W., Meng, B., Abdelhafiz, M. A., Liu, J., and Feng, X.: Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system, Sci. Total Environ., 803, 149967, https://doi.org/10.1016/j.scitotenv.2021.149967, 2022.
Bagley, M. P., Schwartz, R. A., and Lambert, W. C.: Hyperplastic reaction developing within a tattoo, Arch. Dermatol., 123, 1559–1560, https://doi.org/10.1001/archderm.1987.01660350172036, 1987.
Barkay, T. and Gu, B.: Demethylation-the other side of the mercury methylation coin: A critical review, ACS Environ. Au, acsenvironau.1c00022, https://doi.org/10.1021/acsenvironau.1c00022, 2021.
Barkay, T. and Wagner-Döbler, I.: Microbial transformations of Mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment, Adv. Appl. Microbiol., 57, 1–52, https://doi.org/10.1016/s0065-2164(05)57001-1, 2005.
Barocas, A., Vega, C., Pardo, A. A., Flores, J. M. A., Fernandez, L., Groenendijk, J., Pisconte, J., Macdonald, D. W. and Swaisgood, R. R.: Local intensity of artisanal gold mining drives mercury accumulation in neotropical oxbow lake fishes, Sci. Tot. Environ., 886, 164024, https://doi.org/10.1016/j.scitotenv.2023.164024, 2023.
Basri, Sakakibara, M., Sera, K., and Kurniawan, I. A.: Mercury contamination of cattle in artisanal and small-scale gold mining in bombana, Southeast Sulawesi, Indonesia, Geosciences, 7, 133, https://doi.org/10.3390/geosciences7040133, 2017.
Basri, Sakakibara, M., and Sera, K.: Mercury in soil and forage plants from artisanal and small-scale gold mining in the bombana area, Indonesia, Toxics, 8, 15, https://doi.org/10.3390/toxics8010015, 2020.
Basu, N., Bastiansz, A., Dórea, J. G., Fujimura, M., Horvat, M., Shroff, E., Weihe, P., and Zastenskaya, I.: Our evolved understanding of the human health risks of mercury, Ambio, 52, 877–896, https://doi.org/10.1007/s13280-023-01831-6, 2023.
Beauford, W., Barber, J., and Barringer, A. R.: Uptake and distribution of mercury within higher plants, Physiol. Plantarum, 39, 261–265, https://doi.org/10.1111/j.1399-3054.1977.tb01880.x, 1977.
Bergquist, B. A. and Blum, J. D.: The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation, Elements, 5, 353–357, https://doi.org/10.2113/gselements.5.6.353, 2009.
Bernet Kempers, E.: Between informality and organized crime: Criminalization of small-scale mining in the Peruvian rainforest, Illegal Mining: Organized Crime, Corruption, and Ecocide in a Resource-Scarce World, 273–298, https://doi.org/10.1007/978-3-030-46327-4_10, 2020.
Bjørklund, G., Dadar, M., Mutter, J., and Aaseth, J.: The toxicology of mercury: Current research and emerging trends, Environ. Res., 159, 545–554, https://doi.org/10.1016/j.envres.2017.08.051, 2017.
Bortey-Sam, N., Nakayama, S. M., Akoto, O., Ikenaka, Y., Fobil, J. N., Baidoo, E., Mizukawa, H., and Ishizuka, M.: Accumulation of heavy metals and metalloid in foodstuffs from agricultural soils around Tarkwa area in Ghana, and associated human health risks, Int. J. Environ. Res. Public Health, 12, 8811–8827, https://doi.org/10.3390/ijerph120808811, 2015.
Bose-O'Reilly, S., McCarty, K. M., Steckling, N., and Lettmeier, B.: Mercury exposure and children's health, Curr. Probl. Pediatr. Adolesc. Health Care, 40, 186–215, https://doi.org/10.1016/j.cppeds.2010.07.002, 2010.
Bose-O'Reilly, S., Schierl, R., Nowak, D., Siebert, U., William, J. F., Owi, F. T., and Ir, Y. I.: A preliminary study on health effects in villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia, Environ. Res., 149, 274–281, https://doi.org/10.1016/j.envres.2016.04.007, 2016.
Brüger, A., Fafilek, G., Restrepo, J. B. O., and Rojas-Mendoza, L.: On the volatilisation and decomposition of cyanide contaminations from gold mining, Sci. Total Environ., 627, 1167–1173, https://doi.org/10.1016/j.scitotenv.2018.01.320, 2018.
Bugmann, A., Brugger, F., Zongo, T., and Van Der Merwe, A.: “Doing ASGM without mercury is like trying to make omelets without eggs”. Understanding the persistence of mercury use among artisanal gold miners in Burkina Faso, Environ. Sci. Policy, 133, 87–97, https://doi.org/10.1016/j.envsci.2022.03.009, 2022.
Carpi, A.: Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere, Water Air Soil Pollut., 98, 241–254, https://doi.org/10.1007/bf02047037, 1997.
Carrasco-Gil, S., Siebner, H., LeDuc, D. L., Webb, S. M., Millán, R., Andrews, J. C., and Hernández, L. E.: Mercury localization and speciation in plants grown hydroponically or in a natural environment, Environ. Sci. Technol., 47, 3082–3090, https://doi.org/10.1021/es303310t, 2013.
Casagrande, G. C. R., Franco, D. N. D. M., Moreno, M. I. C., de Andrade, E. A., Battirola, L. D., and de Andrade, R. L. T.: Assessment of atmospheric mercury deposition in the vicinity of artisanal and small-scale gold mines using Glycine max as bioindicators, Water Air Soil Poll., 231, 551, https://doi.org/10.1007/s11270-020-04918-y, 2020.
Castilhos, Z. C., Rodrigues-Filho, S., César, R., De Castro Rodrigues, A. P., Villas-Bôas, R., De Jesus, I., Lima, M., Faial, K. R. F., Miranda, A. M. M., Da Silva Brabo, E., Beinhoff, C., and De Oliveira Santos, E. C.: Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon, Environ. Sci. Pollut. Res., 22, 11255–11264, https://doi.org/10.1007/s11356-015-4340-y, 2015.
Cheng, Z., Wang, H.-S., Du, J., Sthiannopkao, S., Xing, G.-H., Kim, K.-W., Yasin, M. S. M., Hashim, J. H., and Wong, M.-H.: Dietary exposure and risk assessment of mercury via total diet study in Cambodia, Chemosphere, 92, 143–149, https://doi.org/10.1016/j.chemosphere.2013.02.025, 2013.
Cho, K. H., Lee, J. J., and Park, C. Y.: Liberation of gold using Microwave-Nitric acid leaching and Separation-Recovery of native gold by Hydro-Separation, Minerals, 10, 327, https://doi.org/10.3390/min10040327, 2020.
Clarkson, T. W. and Magos, L.: The toxicology of Mercury and its chemical compounds, Crit. Rev. Toxicol., 36, 609–662, https://doi.org/10.1080/10408440600845619, 2006.
Clarkson, T. W., Magos, L., and Myers, G. J.: The toxicology of Mercury – current exposures and clinical manifestations, N. Engl. J. Med., 349, 1731–1737, https://doi.org/10.1056/nejmra022471, 2003.
Compeau, G. C. and Bartha, R.: Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment, Appl. Environ. Microbiol., 50, 498–502, https://doi.org/10.1128/aem.50.2.498-502.1985, 1985.
Converse, A. D., Riscassi, A. L., and Scanlon, T. M.: Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow, Atmos. Environ., 44, 2176–2185, https://doi.org/10.1016/j.atmosenv.2010.03.024, 2010.
Cordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., García, O., Mesa, L. A., Velásquez-López, P. C., and Roeser, M.: Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution, Sci. Total Environ., 410–411, 154–160, https://doi.org/10.1016/j.scitotenv.2011.09.006, 2011.
Cordy, P., Veiga, M. M., Crawford, B., García, O., González, V. H., Moraga, D., Roeser, M., and Wip, D.: Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops, Environ. Res., 125, 82–91, https://doi.org/10.1016/j.envres.2012.10.015, 2013.
Cozzolino, V., De Martino, A., Nebbioso, A., Di Meo, V., Salluzzo, A., and Piccolo, A.: Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi, Environ. Sci. Pollut. Res., 23, 11312–11322, https://doi.org/10.1007/s11356-016-6337-6, 2016.
Crout, N. M. J., Beresford, N. A., Dawson, J. M., Soar, J., and Mayes, R. W.: The transfer of 73As, 109Cd and 203Hg to the milk and tissues of dairy cattle, J. Agric. Sci., 142, 203–212, https://doi.org/10.1017/S0021859604004186, 2004.
da Silva, H. A. M. and Guimarães, J. R. D.: Mercury cyanide complexes and their relevance as environmental contaminants, Chemosphere, 141054, https://doi.org/10.1016/j.chemosphere.2023.141054, 2024.
Dastoor, A., Angot, H., Bieser, J., Christensen, J. H., Douglas, T. A., Heimbürger-Boavida, L.-E., Jiskra, M., Mason, R. P., McLagan, D. S., Obrist, D., Outridge, P. M., Petrova, M. V., Ryjkov, A., St. Pierre, K. A., Schartup, A. T., Soeresen, A. L., Toyota, K., Travnikov, O., Wilson, S. J., and Zdanowicz, C.: Arctic mercury cycling, Nat. Rev. Earth Environ., 3, 270–286, https://doi.org/10.1038/s43017-022-00269-w, 2022.
Dastoor, A., Angot, H., Bieser, J., Brocza, F., Edwards, B., Feinberg, A., Feng, X., Geyman, B., Gournia, C., He, Y., Hedgecock, I. M., Ilyin, I., Kirk, J., Lin, C.-J., Lehnherr, I., Mason, R., McLagan, D., Muntean, M., Rafaj, P., Roy, E. M., Ryjkov, A., Selin, N. E., De Simone, F., Soerensen, A. L., Steenhuisen, F., Travnikov, O., Wang, S., Wang, X., Wilson, S., Wu, R., Wu, Q., Zhang, Y., Zhou, J., Zhu, W., and Zolkos, S.: The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy, Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, 2025.
Denzler, B., Eugster, W., Bogdal, C., Bishop, K., Buchmann, N., Hungerbühler, K., and Osterwalder, S.: Uptake of gaseous elemental mercury by a rainforest: Insights from a tropical glasshouse used as a dynamic flux chamber, Environ. Sci. Technol., 59, 18675–18686, https://doi.org/10.1021/acs.est.5c05823, 2025.
Diaz, F. A., Katz, L. E., and Lawler, D. F.: Mercury pollution in Colombia: challenges to reduce the use of mercury in artisanal and small-scale gold mining in the light of the Minamata Convention, Water Int., 45, 730–745, https://doi.org/10.1080/02508060.2020.1845936, 2020.
Donkor, P., Siabi, E. K., Frimpong, K., Frimpong, P. T., Mensah, S. K., Vuu, C., Siabi, E. S., Nyantayki, E. K., Agariga, F., Atta-Darkwa, T., and Mensah, J. K.: Impacts of illegal Artisanal and small-scale gold mining on livelihoods in cocoa farming communities: A case of Amansie West District, Ghana, Resour. Policy, 91, 104879, https://doi.org/10.1016/j.resourpol.2024.104879, 2024.
dos Santos-Lima, C., de Souza Mourão, D., de Carvalho, C. F., Souza-Marques, B., Vega, C. M., Gonçalves, R. A., Argollo, N., Menezes-Filho, J. A., Abreu, N., and de Souza Hacon, S.: Neuropsychological effects of mercury exposure in children and adolescents of the Amazon Region, Brazil, Neurotoxicol., 79, https://doi.org/10.1016/j.neuro.2020.04.004, 48–57, 2020.
Dossou Etui, I. M., Stylo, M., Davis, K., Evers, D. C., Vera, I. S., Wood, C., and Burton, M. E.: Artisanal and small-scale gold mining and biodiversity: a global literature review, Ecotoxicol., 1–21, https://doi.org/10.1007/s10646-024-02748-w, 2024.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.: Mercury as a global pollutant: Sources, pathways, and effects, Environ. Sci. Technol., 47, 4967–4983, https://doi.org/10.1021/es305071v, 2013.
Du, S. H. and Fang, S. C.: Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake, Environ. Exp. Bot., 23, 347–353, https://doi.org/10.1016/0098-8472(83)90009-6, 1983.
Durnford, D., Dastoor, A., Figueras-Nieto, D., and Ryjkov, A.: Long range transport of mercury to the Arctic and across Canada, Atmos. Chem. Phys., 10, 6063–6086, https://doi.org/10.5194/acp-10-6063-2010, 2010.
Eboigbe, E. O., Veerasamy, N., Odukoya, A. M., Anene, N. C., Sonke, J. E., Sagisaka Méndez, S., and McLagan, D. S.: Mercury contamination in staple crops impacted by Artisanal Small-scale Gold Mining (ASGM): Stable Hg isotopes demonstrate dominance of atmospheric uptake pathway for Hg in crops, Biogeosciences, 22, 5591–5605, https://doi.org/10.5194/bg-22-5591-2025, 2025.
Egler, S. G., Rodrigues-Filho, S., Villas-Bôas, R. C., and Beinhoff, C.: Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajós gold mining reserve, Pará State, Brazil, Sci. Total Environ., 368, 424–433, https://doi.org/10.1016/j.scitotenv.2005.09.037, 2006.
Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D., and Ramankutty, N.: Anthropogenic transformation of the biomes, 1700 to 2000, Glob. Ecol. Biogeogr., 19, 589–606, https://doi.org/10.1111/j.1466-8238.2010.00540.x, 2010.
Esdaile, L. J. and Chalker, J. M.: The mercury problem in artisanal and Small-Scale gold mining, Chem. Eur. J., 24, 6905–6916, https://doi.org/10.1002/chem.201704840, 2018.
Essumang, D. K., Dodoo, D. K., Obiri, S. and Yaney, J. Y.: Arsenic, cadmium, and mercury in cocoyam (Xanthosoma sagititolium) and watercocoyam (Colocasia esculenta) in Tarkwa a mining community, Bull. Environ. Contam. Toxicol., 79, 377–379, https://doi.org/10.1007/s00128-007-9244-1, 2007.
Fantozzi, L., Ferrara, R., Dini, F., Tamburello, L., Pirrone, N., and Sprovieri, F.: Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy, Environ. Res., 125, 69–74, https://doi.org/10.1016/j.envres.2013.02.004, 2013.
Finster, M. E., Raymond, M. R., Scofield, M. A., and Smith, K. P.: Mercury-impacted scrap metal: Source and nature of the Mercury, J. Environ. Manage., 161, 303–308, https://doi.org/10.1016/j.jenvman.2015.05.041, 2015.
Fitzgerald, W. F. and Lamborg, C. H.: Geochemistry of Mercury in the environment, in: Environmental Geochemistry, edited by: Sherwood Lollar, B., Elsevier, Oxford (UK), 107–148, https://doi.org/10.1016/b0-08-043751-6/09048-4, 2005.
Fitzgerald, W. F., Lamborg, C. H., and Hammerschmidt, C. R.: Marine biogeochemical cycling cycling of Mercury, Chem. Rev., 107, 641–662, https://doi.org/10.1021/cr050353m, 2007.
Fritsche, J., Obrist, D., Zeeman, M. J., Conen, F., Eugster, W., and Alewell, C.: Elemental mercury fluxes over a sub-alpine grassland determined with two micrometeorological methods, Atmos. Environ., 42, 2922–2933, https://doi.org/10.1016/j.atmosenv.2007.12.055, 2008.
Fu, X., Zhu, W., Zhang, H., Sommar, J., Yu, B., Yang, X., Wang, X., Lin, C.-J., and Feng, X.: Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China, Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016, 2016.
Fu, X., Zhang, H., Liu, C., Zhang, H., Lin, C. J., and Feng, X.: Significant seasonal variations in isotopic composition of atmospheric total gaseous mercury at forest sites in China caused by vegetation and mercury sources, Environ. Sci. Technol., 53, 13748–13756, https://doi.org/10.1021/acs.est.9b05016, 2019.
Gaffney, J. S. and Marley, N. A.: In-depth review of atmospheric mercury: sources, transformations, and potential sinks, Energy Emission Control. Technol., 2, 1–21, https://doi.org/10.2147/EECT.S37038, 2014.
Gačnik, J. and Gustin, M. S.: Tree rings as historical archives of atmospheric mercury: A critical review, Sci. Total Environ., 165562, https://doi.org/10.1016/j.scitotenv.2023.165562, 2023.
Gallorini, A. and Loizeau, J. L.: Mercury methylation in oxic aquatic macro-environments: a review, J. Limnol., 80, 2007, https://doi.org/10.4081/jlimnol.2021.2007, 2021.
Gerson, J. R., Szponar, N., Zambrano, A. A., Bergquist, B., Broadbent, E., Driscoll, C. T., Erkenswick, G., Evers, D. C., Fernandez, L. E., Hsu-Kim, H., and Inga, G.: Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining, Nature Comm., 13, 559, https://doi.org/10.1038/s41467-022-27997-3, 2022.
Gilbert, D. and Albert, O. B.: Illegal small-scale gold mining in Ghana: A threat to food security, J. Food Secur., 4, 112–119, https://pubs.sciepub.com/jfs/4/5/2/ (last access: 9 July 2024), 2016.
Giron, O. D., Basa, J. E., Distor, K. S. E., and Pusing, K. G. N.: Mercury levels in Oryza sativa cultivated in Philippine small-scale mining villages, Int. J. Environ. Stud., 74, 230–239, https://doi.org/10.1080/00207233.2016.1254959, 2017.
Golow, A. A. and Adzei, E. A.: Mercury in surface soil and cassava crop near an alluvial goldmine at Dunkwa-on-Offin, Ghana, Bull. Environ. Contam. Toxicol., 69, 228–235, https://doi.org/10.1007/s00128-002-0051-4, 2002.
Gong, Y., Li, C., He, F., Ge, F., Ju, Y., Zhong, H., and Li, W.: Comprehensive review on in vitro bioaccessibility of mercury in various foodstuffs, J. Hazard. Mater., 138136, https://doi.org/10.1016/j.jhazmat.2025.138136, 2025.
Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W., Kelly, C. A., Tate, M. T., Krabbenhoft, D. P., and Lehnherr, I.: Investigation of uptake and retention of atmospheric Hg (II) by boreal forest plants using stable Hg isotopes, Environ. Sci. Technol., 43, 4960–4966, https://doi.org/10.1021/es900357s, 2009.
Grégoire, D. S. and Poulain, A. J.: A physiological role for HgII during phototrophic growth, Nat. Geosci., 9, 121–125, https://doi.org/10.1038/ngeo2629, 2016.
Guzzi, G. and La Porta, C. A. M.: Molecular mechanisms triggered by Mercury, Toxicology, 244, 1–12, https://doi.org/10.1016/j.tox.2007.11.002, 2008.
Gworek, B., Dmuchowski, W., and Baczewska-Dąbrowska, A. H.: Mercury in the Terrestrial Environment: A Review, Environ. Sci. Eur., 32, 128, https://doi.org/10.1186/s12302-020-00401-x, 2020.
Ha, E., Basu, N., Bose-O'Reilly, S., Dórea, J. G., McSorley, E., Sakamoto, M., and Chan, H. M.: Current progress on understanding the impact of Mercury on human health, Environ. Res., 152, 419–433, https://doi.org/10.1016/j.envres.2016.06.042, 2017.
Hamelin, S., Planas, D., and Amyot, M.: Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada), Sci. Total Environ., 512–513, 464–471, https://doi.org/10.1016/j.scitotenv.2015.01.040, 2015.
Hao, Y.-Y., Zhu, Y.-J., Yan, R.-Q., Gu, B., Zhou, X.-Q., Wei, R.-R., Wang, C., Feng, J., Huang, Q., and Liu, Y.-R.: Important roles of thiols in methylmercury uptake and translocation by rice plants, Environ. Sci., 9, https://doi.org/10.1021/acs.est.2c00169, 2022.
Hardy, A. D., Sutherland, H. H., Vaishnav, R., and Worthing, M. A.: A report on the composition of Mercurials used in traditional medicines in Oman, J. Ethnopharmacol., 49, 17–22, https://doi.org/10.1016/0378-8741(95)01296-6, 1995.
Hedgecock, I. M., De Simone, F., Carbone, F., and Pirrone, N.: Modelling the Fate of Mercury Emissions from Artisanal and Small Scale Gold Mining, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-861, 2024.
Hentschel, T., Hruschka, F., and Priester, M.: Mining, minerals and sustainable development Project: Global report on artisanal and small-scale mining, International Institute for Environment and Development (IIED), London, UK, 70 pp., https://intranetua.uantof.cl/crea/cguerra/pdffiles/otros/070_globalasm.pdf (last access: 10 September 2024), 2002.
Hilson, G.: Abatement of mercury pollution in the small-scale gold mining industry: Restructuring the policy and research agendas, Sci. Total Environ., 362, 1–14, https://doi.org/10.1016/j.scitotenv.2005.09.065, 2006.
Hilson, G.: “Fair trade gold”: Antecedents, prospects and challenges, Geoforum, 39, 386–400, https://doi.org/10.1016/j.geoforum.2007.09.003, 2008.
Hindersah, R., Risamasu, R., Kalay, A. M., Dewi, T., and Makatita, I.: Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku, J. Degraded Min. Land Manage., 5, 1027–1034, https://doi.org/10.15243/jdmlm.2018.052.1027, 2018.
Hintelmann, H., Keppel-Jones, K., and Evans, R. D.: Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability, Environ. Toxicol. Chem., 19, 2204–2211, https://doi.org/10.1002/etc.5620190909, 2000.
Hinton, J., Veiga, M. M., and Veiga, A.: Clean artisanal gold mining: a utopian approach?, J. Cleaner Prod., 11, 99–115, https://doi.org/10.1016/s0959-6526(02)00031-8, 2003.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12037–12057, https://doi.org/10.5194/acp-10-12037-2010, 2010.
Horowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., and Sunderland, E. M.: A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, 2017.
Hosonuma, N., Herold, M., De Sy, V., De Fries, R. S., Brockhaus, M., Verchot, L., Angelsen, A., and Romijn, E.: An assessment of deforestation and forest degradation drivers in developing countries, Environ. Res. Lett., 7, 044009, https://doi.org/10.1088/1748-9326/7/4/044009, 2012.
Huang, R., Zhou, Q., Meng, B., Zhang, S., Jiang, T., Yin, D., Li, B., Wang, C., Gao, X., Liu, J., Huang, J.-H., and Feng, X.: Coupling of mercury contamination and carbon emissions in rice paddies: Methylmercury dynamics versus CO2 and CH4 emissions, Environ. Sci. Technol., https://doi.org/10.1021/acs.est.5c01099, 2025.
Jasinski, S. M.: The materials flow of mercury in the United States, Resour. Conserv. Recycl., 15, 145–179, https://doi.org/10.1016/0921-3449(95)00032-1, 1995.
Jiang, G.-B., Shi, J.-B., and Feng, X.-B.: Mercury pollution in China, Environ. Sci. Technol., 40, 3672–3678, https://doi.org/10.1021/es062707c, 2006.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C. L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D. Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and Dommergue, A.: A vegetation control on seasonal variations in global atmospheric mercury concentrations, Nat. Geosci., 11, 244–250, https://doi.org/10.1038/s41561-018-0078-8, 2018.
Jønsson, J. B., Charles, E., and Kalvig, P.: Toxic mercury versus appropriate technology: Artisanal gold miners' retort aversion, Resour. Policy, 38, 60–67, https://doi.org/10.1016/j.resourpol.2012.09.001, 2013.
Kern, J. K., Geier, D. A., Sykes, L. K., Haley, B. E., and Geier, M. R.: The relationship between Mercury and autism: A comprehensive review and discussion, J. Trace Elem. Med. Biol., 37, 8–24, https://doi.org/10.1016/j.jtemb.2016.06.002, 2016.
Kiefer, A. M., Drace, K., Seney, C. S., and Veiga, M. M.: Challenges associated with using retorts to limit mercury exposure in artisanal and small-scale gold mining: case studies from Mozambique, Ecuador, and Guyana, in: Trace Materials in Air, Soil, and Water, American Chemical Society, Washington (USA), 51–77, https://doi.org/10.1021/bk-2015-1210.ch003, 2015.
Kinimo, K. C., Yao, K. M., Marcotte, S., Kouassi, N. L. B., and Trokourey, A.: Trace metal(loid)s contamination in paddy rice (Oryza sativa L.) from wetlands near two gold mines in Côte d'Ivoire and health risk assessment, Environ. Sci. Pollut. Res., 28, 22779–22788, https://doi.org/10.1007/s11356-021-12360-8, 2021.
Klasing, K. C.: Poultry nutrition: a comparative approach, J. Appl. Poult. Res., 14, 426–436, https://doi.org/10.1093/japr/14.2.426, 2005.
Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A., and Schloter, M.: Biogeochemistry of paddy soils, Geoderma, 157, 1–14, https://doi.org/10.1016/j.geoderma.2010.03.009, 2010.
Krisnayanti, B. D., Anderson, C. W., Utomo, W. H., Feng, X., Handayanto, E., Mudarisna, N., and Ikram, H.: Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia, J. Environ. Monit., 14, 2598–2607, https://doi.org/10.1039/C2EM30515A, 2012.
Kritee, K., Blum, J. D., Johnson, M. W., Bergquist, B. A., and Barkay, T.: Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by Mercury Resistant Microorganisms, Environ. Sci. Technol., 41, 1889–1895, https://doi.org/10.1021/es062019t, 2007.
Kukkonen, T. and Cooper, A.: An arts-based knowledge translation (ABKT) planning framework for researchers, Evid. Policy J. Res. Debate Pract., 15, 293–311, https://doi.org/10.1332/174426417x15006249072134, 2019.
Laacouri, A., Nater, E. A., and Kolka, R. K.: Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA, Environ. Sci. Technol., 47, 10462–10470, https://doi.org/10.1021/es401357z, 2013.
Lei, P., Yu, R., Kong, Y., Bertilsson, S., Tsui, M. T., Jiang, T., Zhao, J., Liu, Y., Rinklebe, J., and Zhong, H.: Properly interpret metabolic inhibition results to identify primary mercury methylating microbes, Crit. Rev. Environ. Sci. Technol., 53, 1757–1773, https://doi.org/10.1080/10643389.2023.2183072, 2023.
Li, Y. and Cai, Y.: Progress in the study of mercury methylation and demethylation in aquatic environments, Chin. Sci. Bull., 58, 177–185, https://doi.org/10.1007/s11434-012-5416-4, 2012.
Li, Y., Zhao, J., Zhang, B., Liu, Y., Xu, X., Li, Y.-F., Li, B., Gao, Y., and Chai, Z.: The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species, Plant Soil, https://doi.org/10.1007/s11104-015-2627-x, 2015.
Lindberg, S. E., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C.: A synthesis of progress and uncertainties in attributing the sources of mercury in deposition, Ambio, 36, 19–33, https://doi.org/10.1579/0044-7447(2007)36[19:asopau]2.0.co;2, 2007.
Liu, J., Meng, B., Poulain, A. J., Meng, Q., and Feng, X.: Stable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining area, Fundam. Res., 1, 259–268, https://doi.org/10.1016/j.fmre.2021.04.003, 2021a.
Liu, M., Zhang, Q., Cheng, M., He, Y., Chen, L., Zhang, H., Cao, H., Shen, H., Zhang, W., Tao, S., and Wang, X.: Rice life cycle-based global mercury biotransport and human methylmercury exposure, Nat. Commun., 10, 5164, https://doi.org/10.1038/s41467-019-13221-2, 2019.
Liu, X., Wang, X., and Wang, D.: Assessment of tree-ring mercury radial translocation and age effect in Masson pine: Implications for historical atmospheric mercury reconstruction, J. Environ. Sci., 138, 266–276, https://doi.org/10.1016/j.jes.2022.10.027, 2024.
Liu, Y., Lin, C. J., Yuan, W., Lu, Z., and Feng, X.: Translocation and distribution of mercury in biomasses from subtropical forest ecosystems: Evidence from stable mercury isotopes, Acta Geochim., 40, 42–50, https://doi.org/10.1007/s11631-020-00441-3, 2021b.
Liu, Y., Liu, G., Wang, Z., Guo, Y., Yin, Y., Zhang, X., Cai, Y., and Jiang, G.: Understanding foliar accumulation of atmospheric Hg in terrestrial vegetation: Progress and challenges, Crit. Rev. Environ. Sci. Technol., 52, 4331–4352, https://doi.org/10.1080/10643389.2021.1989235, 2022.
Liu, Y.-R., Dong, J.-X., Han, L.-L., Zheng, Y.-M., and He, J.-Z.: Influence of rice straw amendment on mercury methylation and nitrification in paddy soils, Environ. Pollut., 209, 53–59, https://doi.org/10.1016/j.envpol.2015.11.023, 2016.
Liu, Y.-R., Johs, A., Bi, L., Lu, X., Hu, H.-W., Sun, D., He, J.-Z., and Gu, B.: Unraveling microbial communities associated with methylmercury production in paddy soils, Environ. Sci. Technol., 52, 13110–13118, https://doi.org/10.1021/acs.est.8b03052, 2018.
Lomonte, C., Wang, Y., Doronila, A., Gregory, D., Baker, A. J., Siegele, R., and Kolev, S. D.: Study of the spatial distribution of mercury in roots of vetiver grass (Chrysopogon zizanioides) by micro-PIXE spectrometry, Int. J. Phytoremediation, 16, 1170–1182, https://doi.org/10.1080/15226514.2013.821453, 2014.
Mallongi, A., Pataranawat, P., and Parkpian, P.: Mercury emission from artisanal buladu gold mine and its bioaccumulation in rice grains, Gorontalo Province, Indonesia, Adv. Mater. Res., 931, 744–748, https://doi.org/10.4028/www.scientific.net/AMR.931-932.744, 2014.
Malone, A., Smith, N. M., and Zeballos, E. Z.: Coexistence and conflict between artisanal mining, fishing, and farming in a Peruvian boomtown, Geoforum, 120, 142–154, https://doi.org/10.1016/j.geoforum.2021.01.012, 2021.
Malone, A., Figueroa, L., Wang, W., Smith, N. M., Ranville, J. F., Vuono, D. C., Zapata, F. D. A., Paredes, L. M., Sharp, J. O., and Bellona, C.: Transitional dynamics from mercury to cyanide-based processing in artisanal and small-scale gold mining: Social, economic, geochemical, and environmental considerations, Sci. Total Environ., 898, 165492, https://doi.org/10.1016/j.scitotenv.2023.165492, 2023.
Manceau, A., Wang, J., Rovezzi, M., Glatzel, P., and Feng, X.: Biogenesis of mercury–sulfur nanoparticles in plant leaves from atmospheric gaseous mercury, Environ. Sci. Technol., 52, 3935–3948, https://doi.org/10.1021/acs.est.7b05452, 2018.
Marchese, M. J., Gerson, J. R., Berky, A. J., Driscoll, C., Fernandez, L. E., Hsu-Kim, H., Lansdale, K. N., Letourneau, E., Montesdeoca, M., Pan, W. K., and Robie, E.: Diet choices determine mercury exposure risks for people living in gold mining regions of Peru, Environ. Res. Health, 2, 035001, https://doi.org/10.1088/2752-5309/ad3d79, 2024.
Marshall, B., Camacho, A. A., Jimenez, G., and Veiga, M. M.: Mercury challenges in Mexico: regulatory, trade and environmental impacts, Atmosphere, 12, 57, https://doi.org/10.3390/atmos12010057, 2020.
Marvin-DiPasquale, M. C. and Oremland, R. S.: Bacterial methylmercury degradation in Florida Everglades peat sediment, Environ. Sci. Technol., 32, 2556–2563, 1998.
Marvin-DiPasquale, M., Agee, J., McGowan, C., Oremland, R. S., Thomas, M., Krabbenhoft, D., and Gilmour, C. C.: Methyl-mercury degradation pathways: A comparison among three mercury-impacted ecosystems, Environ. Sci. Technol., 34, 4908–4916, https://doi.org/10.1021/es0013125, 2000.
Maurice-Bourgoin, L., Quiroga, I. L. J., Guyot, J. L., and Malm, O.: Mercury Pollution in the Upper Beni River, Ambio, 28, 302–306, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/b_fdi_51-52/010019126.pdf (last access: 9 July 2024), 1999.
McLagan, D. S., Biester, H., Navrátil, T., Kraemer, S. M., and Schwab, L.: Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses, Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, 2022a.
McLagan, D. S., Schwab, L., Wiederhold, J. G., Chen, L., Pietrucha, J., Kraemer, S. M., and Biester, H.: Demystifying mercury geochemistry in contaminated soil–groundwater systems with complementary mercury stable isotope, concentration, and speciation analyses, Environ. Sci. Process. Impacts, 24, 1406–1429, https://doi.org/10.1039/D1EM00368B, 2022b.
Meng, B., Feng, X., Qiu, G., Cai, Y., Wang, D., Li, P., Shang, L., and Sommar, J.: Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (Oryza sativa L.) Plants and Possible Bioaccumulation Pathways, J. Agric. Food Chem., 58, 4951–4958, https://doi.org/10.1021/jf904557x, 2010.
Meng, B., Feng, X., Qiu, G., Anderson, C. W. N., Wang, J., and Zhao, L.: Localization and speciation of mercury in brown rice with implications for Pan-Asian public health, Environ. Sci. Technol., 48, 7974–7981, https://doi.org/10.1021/es502000d, 2014.
Mestanza-Ramón, C., Mora-Silva, D., D'Orio, G., Tapia-Segarra, E., Gaibor, I. D., Esparza Parra, J. F., Chávez Velásquez, C. R., and Straface, S.: Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador, Sustainability, 14, 6854, https://doi.org/10.3390/su14116854, 2022.
Moody, K. H., Hasan, K. M., Aljic, S., Blakeman, V. M., Hicks, L. P., Loving, D. C., Moore, M. E., Hammett, B. S., Silva-González, M., Seney, C. S., and Kiefer, A. M.: Mercury emissions from Peruvian gold shops: Potential ramifications for Minamata compliance in artisanal and small-scale gold mining communities, Environ. Res., 182, 109042, https://doi.org/10.1016/j.envres.2019.109042, 2020.
Moreno-Brush, M., McLagan, D. S., and Biester, H.: Fate of mercury from artisanal and small-scale gold mining in tropical rivers: Hydrological and biogeochemical controls. A critical review, Crit. Rev. Environ. Sci. Technol., 50, 437–475, https://doi.org/10.1080/10643389.2019.1629793, 2019.
Moreno-Brush, M., McLagan, D. S., and Biester, H.: Fate of mercury from artisanal and small-scale gold mining in tropical rivers: Hydrological and biogeochemical controls, A critical review, Crit. Rev. Environ. Sci. Technol., 50, 437–475, https://doi.org/10.1080/10643389.2019.1629793, 2020.
Mowat, L. D., St. Louis, V. L., Graydon, J. A., and Lehnherr, I.: Influence of forest canopies on the deposition of methylmercury to boreal ecosystem watersheds, Environ. Sci. Technol., 45, 5178–5185, https://doi.org/10.1021/es104377y, 2011.
Munthe, J., Kindbom, K., Parsmo, R., and Yaramenka, K.: Technical Background Report to the Global Mercury Assessment 2018, United Nations Environmental Programme (UNEP), Kenya (NGA), 136 pp., https://www.unep.org/globalmercurypartnership/resources/report/technical-background-report-global-mercury-assessment-2018 (last access: 24 June 2024), 2019.
Naharro, R., Esbrí, J. M., Amorós, J. A., and Higueras, P. L.: Experimental assessment of the daily exchange of atmospheric mercury in Epipremnum aureum, Environ. Geochem. Health, 42, 3185–3198, https://doi.org/10.1007/s10653-020-00557-8, 2020.
Navrátil, T., Šimeček, M., Shanley, J. B., Rohovec, J., Hojdová, M., and Houška, J.: The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators, Sci. Total Environ., 586, 1182–1192, https://doi.org/10.1016/j.scitotenv.2017.02.112, 2017.
Nöller, R.: Cinnabar reviewed: characterization of the red pigment and its reactions, Stud. Conserv., 60, 79–87, https://doi.org/10.1179/2047058413y.0000000089, 2014.
Norrby, L. J.: Why is Mercury Liquid? or, why do relativistic effects not get into chemistry textbooks? J. Chem. Ed., 68, 110, https://doi.org/10.1021/ed068p110, 1991.
Nyanza, E. C., Dewey, D., Thomas, D. S., Davey, M., and Ngallaba, S. E.: Spatial distribution of mercury and arsenic levels in water, soil and cassava plants in a community with long history of gold mining in Tanzania, Bull. Environ. Contam. Toxicol., 93, 716–721, https://doi.org/10.1007/s00128-014-1315-5, 2014.
Novirsa, R., Dinh, Q. P., Jeong, H., Fukushima, S., Ishibashi, Y., Wispriyono, B., and Arizono, K.: The evaluation of mercury contamination in upland rice paddy field around artisanal small-scale gold mining area, Lebaksitu, Indonesia, J. Environ. Saf., 10, 119–125, 2019.
Novirsa, R., Dinh, Q. P., Jeong, H., Addai-Arhin, S., Nugraha, W. C., Hirota, N., Wispriyono, B., Ishibashi, Y., and Arizono, K.: The dietary intake of mercury from rice and human health risk in artisanal small-scale gold mining area, Indonesia, Fundam. Toxicol. Sci., 7, 215–225, https://doi.org/10.2131/fts.7.215, 2020.
Ogola, J., Mitullah, W., and Omulo, M. A.: Impact of gold mining on the environment and human health: A case study in the migori gold belt, kenya, Environ. Geochem. Health, 24, 141–157, https://doi.org/10.1023/a:1014207832471, 2002.
Osei, L., Arku, G., and Isaac, L.: “We have done nothing wrong”: Youth miners' perceptions of the environmental consequences of artisanal and small-scale mining (ASM) in Ghana, Extr. Ind. Soc., 12, 101179, https://doi.org/10.1016/j.exis.2022.101179, 2022.
Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S., and Heimburger-Boavida, L. E.: Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018, Environ. Sci. Technol., 52, 11466–11477, https://doi.org/10.1021/acs.est.8b01246, 2018.
Pacyna, E. G., Pacyna, J. M., Fudała, J., Strzelecka-Jastrząb, E., Hławiczka, S., and Panasiuk, D.: Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020, Sci. Total Environ., 370, 147–156, https://doi.org/10.1016/j.scitotenv.2006.06.023, 2006.
Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Maxson, P. A.: Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020, Atmos. Environ., 44, 2487–2499, https://doi.org/10.1016/j.atmosenv.2009.06.009, 2010.
Park, J.-D. and Zheng, W.: Human exposure and health effects of Inorganic and elemental Mercury, J. Prev. Med. Public Health, 45, 344–352, https://doi.org/10.3961/jpmph.2012.45.6.344, 2012.
Parsaei, P., Rahimi, E., and Shakerian, A.: Concentrations of cadmium, lead and mercury in raw bovine, ovine, caprine, buffalo and camel milk, Pol. J. Environ. Stud., 28, 4311, https://doi.org/10.15244/pjoes/94809, 2019.
Pataranawat, P., Parkpian, P., Polprasert, C., Delaune, R. D., and Jugsujinda, A.: Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand, J. Environ. Sci. Health A, 42, 1081–1093, https://doi.org/10.1080/10934520701418573, 2007.
Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., and Gardea-Torresdey, J.: The biochemistry of environmental heavy metal uptake by plants: implications for the food chain, Int. J. Biochem. Cell Biol., 41, 1665–1677, https://doi.org/10.1016/j.biocel.2009.03.005, 2009.
Pfeiffer, W. C. and De Lacerda, L. D.: Mercury inputs into the Amazon Region, Brazil, Environ. Technol. Lett., 9, 325–330, https://doi.org/10.1080/09593338809384573, 1988.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 5951–5964, https://doi.org/10.5194/acp-10-5951-2010, 2010.
Prescott, G. W., Baird, M., Geenen, S., Nkuba, B., Phelps, J., and Webb, E. L.: Formalizing artisanal and small-scale gold mining: A grand challenge of the Minamata Convention, One Earth, 5, 242–251, https://doi.org/10.1016/j.oneear.2022.02.005, 2022.
Qian, X., Yang, C., Xu, X., Ao, M., Xu, Z., Wu, Y., and Qiu, G.: Extremely elevated total mercury and methylmercury in forage plants in a large-scale abandoned hg mining site: a potential risk of exposure to grazing animals, Arch. Environ. Contam. Toxicol., 80, 519–530, https://doi.org/10.1007/s00244-021-00826-2, 2021.
Qin, C., Du, B., Yin, R., Meng, B., Fu, X., Li, P., Zhang, L., and Feng, X.: Isotopic fractionation and source appointment of methylmercury and inorganic mercury in a paddy ecosystem, Environ. Sci. Technol., 54, 14334–14342, https://doi.org/10.1021/acs.est.0c03341, 2020.
Qiu, G., Feng, X., Li, P., Wang, S., Li, G., Shang, L., and Fu, X.: Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China, J. Agric. Food Chem., 56, 2465–2468, https://doi.org/10.1021/jf073391a, 2008.
Ramlan, Basir-Cyio, M., Napitupulu, M., Inoue, T., Anshary, A., Mahfudz, Isrun, Rusydi, M., Golar, Sulbadana, and Bakri, R.: Pollution and contamination level of Cu, Cd, and Hg heavy metals in soil and food crop, Int. J. Environ. Sci. Technol., 19, 1153–1164, https://doi.org/10.1007/s13762-021-03345-8, 2022.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces, Environ. Sci. Technol., 34, 2418–2425, https://doi.org/10.1021/es991305k, 2000.
Rea, A. W., Lindberg, S. E., Scherbatskoy, T. A., and Keeler, G. J.: Mercury accumulation in foliage over time in two northern mixed-hardwood forests, Water Air Soil Pollut., 133, 49–67, https://doi.org/10.1023/A:1012919731598, 2002.
Rothenberg, S. E., Feng, X., Zhou, W., Tu, M., Jin, B., and You, J.: Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou, China, Sci. Total Environ., 426, 272–280, https://doi.org/10.1016/j.scitotenv.2012.03.024, 2012.
Rothenberg, S. E., Windham-Myers, L., and Creswell, J. E.: Rice methylmercury exposure and mitigation: A comprehensive review, Environ. Res., 133, 407–423, https://doi.org/10.1016/j.envres.2014.03.001, 2014.
Rothenberg, S. E., Mgutshini, N. L., Bizimis, M., Johnson-Beebout, S. E., and Ramanantsoanirina, A.: Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza sativa L.), Environ. Pollut., 196, 125–133, https://doi.org/10.1016/j.envpol.2014.10.002, 2015.
Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J. E., Olson, M. R., Robinson, M., Collins, R. M., Parman, A. M., Katzman, T. L., and Mallek, J. L.: Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment, Atmos. Environ., 45, 848–855, https://doi.org/10.1016/j.atmosenv.2010.11.025, 2011a.
Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J., Olson, M. R., Clary, A., Robinson, M., Parman, A. M., and Katzman, T. L.: Climate sensitivity of gaseous elemental mercury dry deposition to plants: Impacts of temperature, light intensity, and plant species, Environ. Sci. Technol., 45, 569–575, https://doi.org/10.1021/es102687b, 2011b.
Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J. M., Dávalos, J. Z., Notario, R., Jiskra, M., Yang, X., Wang, F., Thackray, C. P., Sunderland, E. M., Jacob, D., Travnikov, O., Cuevas, C. A., Acuña, A. U., Rivero, D., Plane, J. M. C., Kinnison, D. E., and Sonke, J. E.: Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition, Nat. Commun., 9, 4769, https://doi.org/10.1038/s41467-018-07075-3, 2018.
Sakata, M. and Marumoto, K.: Wet and dry deposition fluxes of mercury in Japan, Atmos. Environ., 39, 3139–3146, https://doi.org/10.1016/j.atmosenv.2005.01.049, 2005.
Sanga, T. R., Maseka, K. K., Ponraj, M., Tungaraza, C., Mng'ong'o, M. E., and Mwakalapa, E. B.: Accumulation and distribution of mercury in agricultural soils, food crops and associated health risks: A case study of Shenda gold mine – Geita Tanzania, Environ. Challenges, 11, 100697, https://doi.org/10.1016/j.envc.2023.100697, 2023.
Saragih, G. S., Tapriziah, E. R., Syofyan, Y., Masitoh, S., Pandiangan, Y. S. H., and Andriantoro, A.: Mercury contamination in selected edible plants and soil from artisanal and small-scale gold mining in Sukabumi Regency, Indonesia, Makara J. Sci., 25, 4, https://doi.org/10.7454/mss.v25i4.1280, 2021.
Schettler, T.: Toxic threats to neurologic development of children, Environ. Health Perspect., 109, 813–816, https://doi.org/10.1289/ehp.01109s6813, 2001.
Schroeder, W. H. and Munthe, J.: Atmospheric Mercury – an overview, Atmos. Environ., 32, 809–822, https://doi.org/10.1016/s1352-2310(97)00293-8, 1998.
Schuster, E.: The behavior of Mercury in the soil with special emphasis on complexation and adsorption processes – A review of the literature, Water Air Soil Pollut., 56, 667–680, https://doi.org/10.1007/bf00342308, 1991.
Schwartz, F. W., Lee, S., and Darrah, T. H.: A review of health issues related to child labor and violence within artisanal and small-scale mining, https://doi.org/10.1029/2020GH000326, 2021.
Seccatore, J., Veiga, M. M., Origliasso, C., Marin, T., and De Tomi, G.: An estimation of the artisanal small-scale production of gold in the world, Sci. Total Environ., 496, 662–667, https://doi.org/10.1016/j.scitotenv.2014.05.003, 2014.
Seney, C. S., Bridges, C. C., Aljic, S., Moore, M. E., Orr, S. E., Barnes, M. C., Joshee, L., Uchakina, O. N., Bellott, B. J., McKallip, R. J., and Drace, K.: Reaction of cyanide with Hg0-contaminated gold mining tailings produces soluble mercuric cyanide complexes, Chem. Res. Toxicol., 33, 2834–2844, https://doi.org/10.1021/acs.chemrestox.0c00211, 2020.
Siwik, E. I., Campbell, L. M., and Mierle, G.: Distribution and trends of mercury in deciduous tree cores, Environ. Pollut., 158, 2067–2073, https://doi.org/10.1016/j.envpol.2010.03.002, 2010.
Ssenku, J. E., Naziriwo, B., Kutesakwe, J., Mustafa, A. S., Kayeera, D., and Tebandeke, E.: Mercury accumulation in food crops and phytoremediation potential of wild plants thriving in artisanal and small-scale gold mining areas in Uganda, Pollutants, 3, 181–196, https://doi.org/10.3390/pollutants3020014, 2023.
Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M., and Jacob, D. J.: All-time releases of mercury to the atmosphere from human activities, Environ. Sci. Technol., 45, 10485–10491, https://doi.org/10.1021/es202765m, 2011.
Streets, D. G., Horowitz, H. M., Lü, Z., Levin, L., Thackray, C. P., and Sunderland, E. M.: Global and regional trends in mercury emissions and concentrations, 2010–2015, Atmos. Environ., 201, 417–427, https://doi.org/10.1016/j.atmosenv.2018.12.031, 2019.
Strickman, R. J. and Mitchell, C. P.: Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: An enriched isotope tracer study, Sci. Total Environ., 574, 1415–1423, https://doi.org/10.1016/j.scitotenv.2016.08.068, 2017.
Sun, R., Jiskra, M., Amos, H. M., Zhang, Y., Sunderland, E. M., and Sonke, J. E.: Modelling the Mercury stable isotope distribution of Earth Surface Reservoirs: Implications for global HG cycling, Geochim. Cosmochim. Acta, 246, 156–173, https://doi.org/10.1016/j.gca.2018.11.036, 2019.
Sun, T., Wang, Z., Zhang, X., Niu, Z., and Chen, J.: Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.), Environ. Pollut., 265, 114890, https://doi.org/10.1016/j.envpol.2020.114890, 2020.
Swain, E. B., Jakus, P. M., Rice, G., Lupi, F., Maxson, P. A., Pacyna, J. M., Penn, A., Spiegel, S. J., and Veiga, M. M.: Socioeconomic consequences of mercury use and pollution, Ambio, 36, 45–61, https://doi.org/10.1579/0044-7447(2007)36[45:SCOMUA]2.0.CO;2, 2007.
Swenson, J. J., Carter, C. E., Domec, J., and Delgado, C. I.: Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports, PLoS One, 6, e18875, https://doi.org/10.1371/journal.pone.0018875, 2011.
Szponar, N., Su, Y., Stupple, G., McLagan, D. S., Pilote, M., Munoz, A., Mitchell, C. P., Steffen, A., Wania, F., and Bergquist, B. A.: Applying passive air sampling and isotopic characterization to assess spatial variability of gaseous elemental mercury across Ontario, Canada, J. Geophys. Res. Atmos., 128, e2022JD037361, https://doi.org/10.1029/2022JD037361, 2023.
Szponar, N., Vega, C. M., Gerson, J., McLagan, D. S., Pillaca, M., Delgado, S., Lee, D., Rahman, N., Fernandez, L. E., Bernhardt, E. S., and Kiefer, A. M.: Tracing atmospheric mercury from artisanal and small-scale gold mining, Environ. Sci. Technol., 59, 5021–5033, https://doi.org/10.1021/acs.est.4c10521, 2025.
Tang, B., Chen, J., Wang, Z., Qin, P., and Zhang, X.: Mercury accumulation response of rice plant (Oryza sativa L.) to elevated atmospheric mercury and carbon dioxide, Ecotoxicol. Environ. Saf., 224, 112628, https://doi.org/10.1016/j.ecoenv.2021.112628, 2021a.
Tang, W., Bai, X., Zhou, Y., Sonne, C., Wu, M., Lam, S. S., Hintelmann, H., Mitchell, C. P. J., Johs, A., Gu, B., Nunes, L., Liu, C., Feng, N., Yang, S., Rinklebe, J., Lin, Y., Chen, L., Zhang, Y., Yang, Y., and Zhong, H.: A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains, Nat. Food, 5, 72–82, https://doi.org/10.1038/s43016-023-00910-x, 2024.
Tang, W., Wu, M., Li, P., and Zhong, H.: Demethylation by reactive oxygen species lowers methylmercury accumulation in rice, J. Agric. Food Chem., 73, 8775–8783, https://doi.org/10.1021/acs.jafc.5c01324, 2025.
Tang, Z., Fan, F., Deng, S., and Wang, D.: Mercury in rice paddy fields and how some agricultural activities affect the translocation and transformation of mercury – A critical review, Ecotoxicol. Environ. Saf., 202, 110950, https://doi.org/10.1016/j.ecoenv.2020.110950, 2020.
Tang, Z., Fan, F., Wang, X., Shi, X., and Wang, D.: Understanding the effects of long-term different fertilizer applications on methylmercury accumulation in rice (Oryza sativa L.) plants, Sci. Total Environ., 777, 146125, https://doi.org/10.1016/j.scitotenv.2021.146125, 2021b.
Taux, K., Kraus, T., and Kaifie, A.: Mercury exposure and its health effects in Workers in the Artisanal and Small-Scale Gold Mining (ASGM) Sector – A Systematic Review, Int. J. Environ. Res. Public Health, 19, 2081, https://doi.org/10.3390/ijerph19042081, 2022.
Taylor, H., Appleton, J. D., Lister, R., Smith, B., Chitamweba, D., Mkumbo, O., Machiwa, J. F., Tesha, A. L., and Beinhoff, C.: Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania, Sci. Total Environ., 343, 111–133, https://doi.org/10.1016/j.scitotenv.2004.09.042, 2005.
Telmer, K. H. and Veiga, M. M.: World emissions of mercury from artisanal and small scale gold mining, in: Mercury Fate and Transport in the Global Atmosphere, edited by: Mason, R. and Pirrone, N., Springer, Boston (USA), 131–172, https://doi.org/10.1007/978-0-387-93958-2_6, 2009.
Teschner, B. A.: “Orpaillage pays for everything”: How artisanal mining supported rural institutions following Mali's coup d'état, Futures, 62, 140–150, https://doi.org/10.1016/j.futures.2014.04.016, 2014.
Thomas, M. J., Veiga, M. M., Marshall, B., and Dunbar, W. S.: Artisanal gold supply chain: Measures from the Ecuadorian Government, Resour. Policy, 64, 101505, https://doi.org/10.1016/j.resourpol.2019.101505, 2019.
Timsina, S., Hardy, N. G., Woodbury, D. J., Ashton, M. S., Cook-Patton, S. C., Pasternack, R., and Martin, M. P.: Tropical surface gold mining: A review of ecological impacts and restoration strategies, Land Degrad. Dev., 33, 3661–3674, https://doi.org/10.1002/ldr.4430, 2022.
Tomiyasu, T., Hamada, Y. K., Baransano, C., Kodamatani, H., Matsuyama, A., Imura, R., Hidayati, N., and Rahajoe, J. S.: Mercury concentrations in paddy field soil and freshwater snails around a small-scale gold mining area, West Java, Indonesia, Toxicol. Environ. Health Sci., 12, 23–29, https://doi.org/10.1007/s13530-020-00045-7, 2020.
Tschakert, P.: Recognizing and nurturing artisanal mining as a viable livelihood, Resour. Policy, 34, 24–31, https://doi.org/10.1016/j.resourpol.2008.05.007, 2009.
Tsui, M. T.-K., Blum, J. D., and Kwon, S. Y.: Review of stable mercury isotopes in ecology and biogeochemistry, Sci. Total Environ., 716, 135386, https://doi.org/10.1016/j.scitotenv.2019.135386, 2020.
Ullrich, S. M., Tanton, T. W., and Abdrashitova, S. A.: Mercury in the aquatic environment: A review of factors affecting methylation, Crit. Rev. Environ. Sci. Technol., 31, 241–293, https://doi.org/10.1080/20016491089226, 2001.
UNEP: Global Mercury Assessment 2013: Sources, emissions, releases, and environmental transport, United Nations Environmental Programme, Kenya (NGA), https://www.unep.org/resources/report/global-mercury-assessment-2013-sources-emissions-releases-and-environmental (last access: 24 June 2024), 2013.
UNEP: Estimating Mercury Use and Documenting Practices in Artisanal and Small-scale Gold Mining (ASGM) – Methods and Tools Version 1.0, United Nations Environmental Programme, Kenya (NGA), https://wedocs.unep.org/20.500.11822/22894 (last access: 24 June 2024), 2017.
USEPA: Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Office of Superfund Remediation and Technology Innovation, USEPA: Washington DC (USA), EPA/540/R/99/005, 1–156, https://www.epa.gov/sites/production/files/2015-09/documents/part_e_final_revision_10-03-07.pdf (last access: 10 July 2024), 2004.
Veiga, M. and Baker, R.: Global mercury project. Protocols for environmental and health assessment of mercury released by artisanal and small-scale gold miners, United Nations Industrial Development Organization (UNIDO) Publishing, Vienna (AUT), https://iwlearn.net/documents/4897 (last access: 24 June 2024), 2004.
Veiga, M. M. and Gunson, A. J.: Gravity concentration in artisanal gold mining, Minerals, 10, 1026, https://doi.org/10.3390/min10111026, 2020.
Veiga, M. M. and Hinton, J.: Abandoned artisanal gold mines in the Brazilian Amazon: A legacy of mercury pollution, Nat. Resour. Forum, 26, 15–26, https://doi.org/10.1111/1477-8947.00003, 2002.
Veiga, M. M. and Marshall, B.: The Colombian artisanal mining sector: Formalization is a heavy burden, Extr. Ind. Soc., 6, 223–228, https://doi.org/10.1016/j.exis.2018.11.001, 2019.
Veiga, M. M., Meech, J. A., and Hypolito, R.: Educational measures to address mercury pollution from gold-mining activities in the Amazon, Ambio, 24, 216–220, 1995.
Veiga, M. M., Maxson, P. A., and Hylander, L. D.: Origin and consumption of mercury in small-scale gold mining, J. Clean. Prod., 14, 436–447, https://doi.org/10.1016/j.jclepro.2004.08.010, 2006.
Veiga, M. M., Angeloci-Santos, G., and Meech, J.: Review of barriers to reduce mercury use in artisanal gold mining, Extr. Ind. Soc., 1, 351–361, https://doi.org/10.1016/j.exis.2014.03.004, 2014.
Verbrugge, B. and Geenen, S. (Eds.): Global gold production touching ground: Expansion, informalization, and technological innovation, Springer Nature, Cham, CHE, 379, https://doi.org/10.1007/978-3-030-38486-9, 2020.
Vieira, R.: Mercury-free gold mining technologies: possibilities for adoption in the Guianas, J. Clean. Prod., 14, 448–454, https://doi.org/10.1016/j.jclepro.2004.09.007, 2006.
Vreman, K., Van Der Veen, N. G., Van der Molen, E. J., and De Ruig, W. G.: Transfer of cadmium, lead, mercury and arsenic from feed into milk and various tissues of dairy cows: chemical and pathological data, Neth. J. Agric. Sci., 34, 129–144, https://doi.org/10.18174/njas.v34i2.16799, 1986.
Wagner, L. and Hunter, M.: Links between artisanal and small-scale gold mining and organized crime in Latin America and Africa, in: Illegal Mining: Organized Crime, Corruption, and Ecocide in a Resource-Scarce World, edited by: Zabyelina, Y. and van Uhm, D., Springer Nature, Berlin (GER), 77–104, https://doi.org/10.1007/978-3-030-46327-4_4, 2020.
Wang, J., Shaheen, S. M., Jing, M., Anderson, C. W. N., Swertz, A.-C., Wang, S.-L., Feng, X., and Rinklebe, J.: Mobilization, methylation, and demethylation of mercury in a paddy soil under systematic redox changes, Environ. Sci. Technol., https://doi.org/10.1021/acs.est.0c07321, 2021a.
Wang, K., Liu, G., and Cai, Y.: Possible pathways for mercury methylation in oxic marine waters, Crit. Rev. Environ. Sci. Technol., 52, 3997–4015, https://doi.org/10.1080/10643389.2021.2008753, 2021b.
Wang, X., Li, B., Tam, N. F.-Y., Huang, L., Qi, X., Wang, H., Ye, Z., Meng, M., and Shi, J.: Radial oxygen loss has different effects on the accumulation of total mercury and methylmercury in rice, Plant Soil, https://doi.org/10.1007/s11104-014-2239-x, 2014.
Wang, X., Tam, N. F.-Y., He, H., and Ye, Z.: The role of root anatomy, organic acids and iron plaque on mercury accumulation in rice, Plant Soil, 394, 301–313, https://doi.org/10.1007/s11104-015-2537-y, 2015.
Wang, X., Bao, Z., Lin, C. J., Yuan, W., and Feng, X.: Assessment of global mercury deposition through litterfall, Environ. Sci. Technol., 50, 8548–8557, https://doi.org/10.1021/acs.est.5b06351, 2016.
Wang, X., Yuan, W., Lin, C. J., Luo, J., Wang, F., Feng, X., Fu, X., and Liu, C.: Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence, Environ. Sci. Technol., 54, 8083–8093, https://doi.org/10.1021/acs.est.0c01667, 2020.
Wilson, M., Renne, E., Roncoli, C., Agyei-Baffour, P., and Tenkorang, E.: Integrated assessment of artisanal and small-scale gold mining in Ghana – part 3: Social Sciences and Economics, Int. J. Environ. Res. Public Health, 12, 8133–8156, https://doi.org/10.3390/ijerph120708133, 2015.
Windham-Myers, L., Marvin-DiPasquale, M., Krabbenhoft, D. P., Agee, J. L., Cox, M. H., Heredia-Middleton, P., Coates, C., and Kakouros, E.: Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment, J. Geophys. Res., 114, https://doi.org/10.1029/2008JG000815, 2009.
Windham-Myers, L., Marvin-DiPasquale, M., Stricker, C. A., Agee, J. L., Kieu, L. H., and Kakouros, E.: Mercury cycling in agricultural and managed wetlands of California, USA: Experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production, Sci. Total Environ., https://doi.org/10.1016/j.scitotenv.2013.05.028, 2013.
Wohlgemuth, L., Osterwalder, S., Joseph, C., Kahmen, A., Hoch, G., Alewell, C., and Jiskra, M.: A bottom-up quantification of foliar mercury uptake fluxes across Europe, Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, 2020.
Wohlgemuth, L., Rautio, P., Ahrends, B., Russ, A., Vesterdal, L., Waldner, P., Timmermann, V., Eickenscheidt, N., Fürst, A., Greve, M., Roskams, P., Thimonier, A., Nicolas, M., Kowalska, A., Ingerslev, M., Merilä, P., Benham, S., Iacoban, C., Hoch, G., Alewell, C., and Jiskra, M.: Physiological and climate controls on foliar mercury uptake by European tree species, Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, 2022.
World Gold Council: Gold Spot Prices, https://www.gold.org/goldhub/data/gold-prices, last access: 8 October 2025.
Wu, Q., Hu, H., Meng, B., Wang, B., Poulain, A. J., Zhang, H., Liu, J., Bravo, A. G., Bishop, K., Bertilsson, S., and Feng, X.: Methanogenesis is an important process in controlling MeHg concentration in rice paddy soils affected by mining activities, Environ. Sci. Technol., 54, 13517–13526, https://doi.org/10.1021/acs.est.0c00268, 2020.
Xia, J., Wang, J., Zhang, L., Anderson, C., Wang, X., Zhang, H., Dai, Z., and Feng, X.: Screening of native low mercury accumulation crops in a mercury-polluted mining region: Agricultural planning to manage mercury risk in farming communities, J. Clean. Prod., 262, 121324, https://doi.org/10.1016/j.jclepro.2020.121324, 2020.
Xu, X., Zhao, J., Li, Y., Fan, Y., Zhu, N., Gao, Y., Li, B., Liu, H., and Li, Y.-F.: Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification, Environ. Pollut., 210, 113–120, https://doi.org/10.1016/j.envpol.2015.12.013, 2016.
Xu, X., Wang, J., and Feng, X.: Mercury contamination in mercury mining area in China, in: Methylmercury accumulation in rice, edited by: Feng, X., Wang, J., and Rinkelbe, J., CRC Press, Boca Raton, FL, 25–41, https://doi.org/10.1201/9781003404941, 2024.
Yanai, R. D., Yang, Y., Wild, A. D., Smith, K. T., and Driscoll, C. T.: New approaches to understand mercury in trees: radial and longitudinal patterns of mercury in tree rings and genetic control of mercury in maple sap, Water Air Soil Poll., 231, 248, https://doi.org/10.1007/s11270-020-04601-2, 2020.
Yin, R., Feng, X., and Meng, B.: Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China, Environ. Sci. Technol., 47, 2238–2245, https://doi.org/10.1021/es304302a, 2013.
Yoshimura, A., Koyo, S., and Veiga, M. M.: Estimation of mercury losses and gold production by Artisanal and Small-Scale Gold Mining (ASGM), J. Sustain. Metall., 7, 1045–1059, https://doi.org/10.1007/s40831-021-00394-8, 2021.
Yu, M., Wang, Y., and Umair, M.: Minor mining, major influence: Economic implications and policy challenges of artisanal gold mining, Resour. Policy, 91, 104886, https://doi.org/10.1016/j.resourpol.2024.104886, 2024.
Yuan, W., Sommar, J., Lin, C. J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu, Z., Wu, C., and Feng, X.: Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage, Environ. Sci. Technol., 53, 651–660, https://doi.org/10.1021/acs.est.8b04865, 2018.
Zahir, F., Rizwi, S. J., Haq, S. K., and Khan, R. H.: Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol., 20, 351–360, https://doi.org/10.1016/j.etap.2005.03.007, 2005.
Zhao, H., Yan, H., Zhang, L., Sun, G., Li, P., and Feng, X.: Mercury contents in rice and potential health risks across China, Environ. Int., 126, 406–412, https://doi.org/10.1016/j.envint.2019.02.055, 2019.
Zhao, L., Qiu, G., Anderson, C. W. N., Meng, B., Wang, D., Shang, L., Yan, H., and Feng, X.: Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China, Environ. Pollut., 215, 1–9, https://doi.org/10.1016/j.envpol.2016.05.001, 2016.
Zhao, L., Meng, B., and Feng, X.: Mercury methylation in rice paddy and accumulation in rice plant: A review, Ecotoxicol. Environ. Saf., 195, 110462, https://doi.org/10.1016/j.ecoenv.2020.110462, 2020.
Zhou, J. and Obrist, D.: Global mercury assimilation by vegetation, Environ. Sci. Technol., 55, 14245–14257, https://doi.org/10.1021/acs.est.1c03530, 2021.
Zhou, J., Wang, Z., Zhang, X., and Gao, Y.: Mercury concentrations and pools in four adjacent coniferous and deciduous upland forests in Beijing, China, J. Geophys. Res. Biogeosci., 122, 1260–1274, https://doi.org/10.1002/2017JG003776, 2017.
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., and Ryjkov, A.: Vegetation uptake of mercury and impacts on global cycling, Nat. Rev. Earth Environ., 2, 269–284, https://doi.org/10.1038/s43017-021-00146-y, 2021.
Zhou, X. B. and Li, Y. Y.: Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture, Environ. Sci. Pollut. Res., 26, 13795–13803, https://doi.org/10.1007/s11356-018-3066-z, 2019.
Zhu, H., Zhong, H., Evans, D., and Hintelmann, H.: Effects of rice residue incorporation on the speciation, potential bioavailability and risk of mercury in a contaminated paddy soil, J. Hazard. Mater., 293, 64–71, https://doi.org/10.1016/j.jhazmat.2015.03.051, 2015.
Co-editor-in-chief
Mercury emissions from artisanal and small-scale gold mining (ASGM) are one of the main sources of mercury (Hg) release into the environment, yet they are by far the least understood. This, together with the fact that ASGM emissions (besides their global implications) also directly/locally affect the poorest communities makes this a critical research topic. The authors demonstrate that bioaccumulation pathways in globally important crops are often overlooked, with implications for interventions, international collaborations, and emerging technologies.
Mercury emissions from artisanal and small-scale gold mining (ASGM) are one of the main sources...
Short summary
Artisanal & Small-scale Gold Mining (ASGM) is rapidly expanding and mercury-use in the sector impacts agricultural systems near these spatially distributed activities. Mercury from ASGM is taken up by crops from both (1) air and (2) soil/water. Mercury in crops can also be passed to humans directly (eating crops) or via livestock/poultry after eating crops. Research in this area requires interdisciplinary, collaborative, and adaptable approaches to improve our comprehension of these impacts.
Artisanal & Small-scale Gold Mining (ASGM) is rapidly expanding and mercury-use in the sector...
Altmetrics
Final-revised paper
Preprint