Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-7363-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7363-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Toward a typology of river functioning: a comprehensive study of the particulate organic matter composition at the multi-river scale
Florian Ferchiche
Univ. Bordeaux, CNRS, EPHE, Bordeaux INP, UMR 5805 EPOC, 33600 Pessac, France
Camilla Liénart
Univ. Bordeaux, CNRS, EPHE, Bordeaux INP, UMR 5805 EPOC, 33600 Pessac, France
Karine Charlier
Univ. Bordeaux, CNRS, EPHE, Bordeaux INP, UMR 5805 EPOC, 33600 Pessac, France
Jonathan Deborde
Univ. Pau & Pays Adour, CNRS, E2S UPPA – MIRA, UMR 5254 IPREM, 64000 Pau, 64600 Anglet, France
Ifremer, COAST, 17390 La Tremblade, France
Mélanie Giraud
MNHN, Station Marine de Dinard, 35800 Dinard, France
Philippe Kerhervé
Univ. Perpignan, CNRS, UMR 5110 CEFREM, 66860 Perpignan, France
Pierre Polsenaere
Univ. Bordeaux, CNRS, EPHE, Bordeaux INP, UMR 5805 EPOC, 33600 Pessac, France
Ifremer, COAST, 17390 La Tremblade, France
Nicolas Savoye
CORRESPONDING AUTHOR
Univ. Bordeaux, CNRS, EPHE, Bordeaux INP, UMR 5805 EPOC, 33600 Pessac, France
Related authors
No articles found.
Jérémy Mayen, Pierre Polsenaere, Aurore Regaudie de Gioux, Jonathan Deborde, Karine Collin, Yoann Le Merrer, Élodie Foucault, Vincent Ouisse, Laurent André, Marie Arnaud, Pierre Kostyrka, Éric Lamaud, Gwenaël Abril, and Philippe Souchu
Biogeosciences, 22, 5387–5411, https://doi.org/10.5194/bg-22-5387-2025, https://doi.org/10.5194/bg-22-5387-2025, 2025
Short summary
Short summary
In a salt marsh, we performed seasonal 24 h cycles to look for aquatic metabolism influence on water carbon dynamics and net ecosystem CO2 exchanges (NEEs). From high to low tide in winter, marsh anaerobic respiration generated the highest levels of dissolved inorganic carbon and alkalinity. On the contrary, in spring and summer, marsh primary production led to CO2-depleted water exports downstream. At high tide, aquatic heterotrophy can influence NEE during the highest immersion levels only.
Camilla Liénart, Alan Fournioux, Andrius Garbaras, Hugues Blanchet, Nicolas Briant, Stanislas F. Dubois, Aline Gangnery, Anne Grouhel Pellouin, Pauline Le Monier, Arnaud Lheureux, Xavier de Montaudouin, and Nicolas Savoye
Earth Syst. Sci. Data, 17, 799–815, https://doi.org/10.5194/essd-17-799-2025, https://doi.org/10.5194/essd-17-799-2025, 2025
Short summary
Short summary
Bivalves such as mussels and oysters reflect the quality of the environment by filtering ambient water. We measured carbon and nitrogen chemical composition in bivalve tissues from 33 sites along French coastlines sampled since the 1980s. Thanks to such time series, this dataset allows us to track how marine species record changing climate, physical–chemical environment, and organic matter cycles and provide precious information on the coastal ecosystem response to global change.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Jérémy Mayen, Pierre Polsenaere, Éric Lamaud, Marie Arnaud, Pierre Kostyrka, Jean-Marc Bonnefond, Philippe Geairon, Julien Gernigon, Romain Chassagne, Thomas Lacoue-Labarthe, Aurore Regaudie de Gioux, and Philippe Souchu
Biogeosciences, 21, 993–1016, https://doi.org/10.5194/bg-21-993-2024, https://doi.org/10.5194/bg-21-993-2024, 2024
Short summary
Short summary
We deployed an atmospheric eddy covariance system to measure continuously the net ecosystem CO2 exchanges (NEE) over a salt marsh and determine the major biophysical drivers. Our results showed an annual carbon sink mainly due to photosynthesis of the marsh plants. Our study also provides relevant information on NEE fluxes during marsh immersion by decreasing daytime CO2 uptake and night-time CO2 emissions at the daily scale, whereas the immersion did not affect the annual marsh C balance.
Cited articles
Arellano, A. R., Bianchi, T. S., Osburn, C. L., D'Sa, E. J., Ward, N. D., Oviedo-Vargas, D., Joshi, I. D., Ko, D. S., Shields, M. R., Kurian, G., and Green, J.: Mechanisms of Organic Matter Export in Estuaries with Contrasting Carbon Sources, Journal of Geophysical Research: Biogeosciences, 124, 3168–3188, https://doi.org/10.1029/2018JG004868, 2019.
Barros, G. V., Martinelli, L. A., Oliveira Novais, T. M., Ometto, J. P. H. B., and Zuppi, G. M.: Stable isotopes of bulk organic matter to trace carbon and nitrogen dynamics in an estuarine ecosystem in Babitonga Bay (Santa Catarina, Brazil), Science of The Total Environment, 408, 2226–2232, https://doi.org/10.1016/j.scitotenv.2010.01.060, 2010.
Bate, G. C., Whitfield, A. K., Adams, J. B., Huizinga, P., and Wooldridge, T. H.: The importance of the river-estuary interface (REI) zone in estuaries, Water SA, 28, 271–280, https://doi.org/10.4314/wsa.v28i3.4894, 2002.
Bonin, P., Prime, A.-H., Galeron, M.-A., Guasco, S., and Rontani, J.-F.: Enhanced biotic degradation of terrestrial POM in an estuarine salinity gradient: interactive effects of organic matter pools and changes of bacterial communities, Aquatic Microbial Ecology, 83, 147–159, https://doi.org/10.3354/ame01908, 2019.
Borcard, D., Legendre, P., and Gillet, F.: Numerical Ecology with R, Springer, 315 pp., https://doi.org/10.1007/978-1-4419-7976-6, 2011.
Bouwman, L., Beusen, A., Glibert, P. M., Overbeek, C., Pawlowski, M., Herrera, J., Mulsow, S., Yu, R., and Zhou, M.: Mariculture: significant and expanding cause of coastal nutrient enrichment, Environ. Res. Lett., 8, 044026, https://doi.org/10.1088/1748-9326/8/4/044026, 2013.
Brett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., Kankaala, P., Lau, D. C. P., Moulton, T. P., Power, M. E., Rasmussen, J. B., Taipale, S. J., Thorp, J. H., and Wehr, J. D.: How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?, Freshwater Biology, 62, 833–853, https://doi.org/10.1111/fwb.12909, 2017.
Canton, M., Anschutz, P., Coynel, A., Polsenaere, P., Auby, I., and Poirier, D.: Nutrient export to an Eastern Atlantic coastal zone: first modeling and nitrogen mass balance, Biogeochemistry, 107, 361–377, https://doi.org/10.1007/s10533-010-9558-7, 2012.
Canuel, E. A. and Hardison, A. K.: Sources, Ages, and Alteration of Organic Matter in Estuaries, Annual Review of Marine Science, 8, 409–434, https://doi.org/10.1146/annurev-marine-122414-034058, 2016.
Cathalot, C., Rabouille, C., Tisnérat-Laborde, N., Toussaint, F., Kerhervé, P., Buscail, R., Loftis, K., Sun, M.-Y., Tronczynski, J., Azoury, S., Lansard, B., Treignier, C., Pastor, L., and Tesi, T.: The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, Δ14C) and organic tracers, Geochimica et Cosmochimica Acta, 118, 33–55, https://doi.org/10.1016/j.gca.2013.05.001, 2013.
Chevalier, N., Savoye, N., Dubois, S., Lama, M. L., David, V., Lecroart, P., le Ménach, K., and Budzinski, H.: Precise indices based on n-alkane distribution for quantifying sources of sedimentary organic matter in coastal systems, Organic Geochemistry, 88, 69–77, https://doi.org/10.1016/j.orggeochem.2015.07.006, 2015.
Copard, Y., Eyrolle, F., Radakovitch, O., Poirel, A., Raimbault, P., Gairoard, S., and Di-Giovanni, C.: Badlands as a hot spot of petrogenic contribution to riverine particulate organic carbon to the Gulf of Lion (NW Mediterranean Sea), Earth Surface Processes and Landforms, 43, 2495–2509, https://doi.org/10.1002/esp.4409, 2018.
Copard, Y., Eyrolle, F., Grosbois, C., Lepage, H., Ducros, L., Morereau, A., Bodereau, N., Cossonnet, C., and Desmet, M.: The unravelling of radiocarbon composition of organic carbon in river sediments to document past anthropogenic impacts on river systems, Science of The Total Environment, 806, 150890, https://doi.org/10.1016/j.scitotenv.2021.150890, 2022.
Dagg, M., Benner, R., Lohrenz, S., and Lawrence, D.: Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes, Continental Shelf Research, 24, 833–858, https://doi.org/10.1016/j.csr.2004.02.003, 2004.
Dalzell, B. J., Filley, T. R., and Harbor, J. M.: The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed, Geochimica et Cosmochimica Acta, 71, 1448–1462, https://doi.org/10.1016/j.gca.2006.12.009, 2007.
David, V., Sautour, B., Chardy, P., and Leconte, M.: Long-term changes of the zooplankton variability in a turbid environment: The Gironde estuary (France), Estuarine, Coastal and Shelf Science, 64, 171–184, https://doi.org/10.1016/j.ecss.2005.01.014, 2005.
Deborde, J.: Dynamique des sels nutritifs et de la matière organique dans le système fluvioestuarien de l'Adour/Golfe de Gascogne, Université de Pau et des Pays de l'adour, 2019.
Dodds, W. K. and Smith, V. H.: Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6, 155–164, https://doi.org/10.5268/IW-6.2.909, 2016.
Dubois, S., Savoye, N., Grémare, A., Plus, M., Charlier, K., Beltoise, A., and Blanchet, H.: Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and isotopic study at the ecosystem space scale, Journal of Marine Systems, 94, 64–73, https://doi.org/10.1016/j.jmarsys.2011.10.009, 2012.
Dunn, J. C.: Well-Separated Clusters and Optimal Fuzzy Partitions, Journal of Cybernetics, 4, 95–104, https://doi.org/10.1080/01969727408546059, 1974.
Dürr, H. H., Laruelle, G. G., van Kempen, C. M., Slomp, C. P., Meybeck, M., and Middelkoop, H.: Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to the Oceans, Estuaries and Coasts, 34, 441–458, https://doi.org/10.1007/s12237-011-9381-y, 2011.
Etcheber, H., Taillez, A., Abril, G., Garnier, J., Servais, P., Moatar, F., and Commarieu, M.-V.: Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability, Hydrobiologia, 588, 245–259, https://doi.org/10.1007/s10750-007-0667-9, 2007.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science, 281, 200–206, https://doi.org/10.1126/science.281.5374.200, 1998.
Ferchiche, F., Liénart, C., Charlier, K., Coynel, A., Gorse-Labadie, L., and Savoye, N.: Quantifying particulate organic matter: source composition and fluxes at the river-estuary interface, Front. Freshw. Sci., 2, https://doi.org/10.3389/ffwsc.2024.1437431, 2024.
Ferchiche, F., Liénart, C., Savoye, N., and Wassenaar, L. I.: Unlocking the potential of hydrogen isotopes (ä2H) in tracing riverine particulate organic matter sources and dynamics, Aquat. Sci., 87, 5, https://doi.org/10.1007/s00027-024-01127-1, 2025.
Fernandez, I., Mahieu, N., and Cadisch, G.: Carbon isotopic fractionation during decomposition of plant materials of different quality, Global Biogeochemical Cycles, 17, https://doi.org/10.1029/2001GB001834, 2003.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Finlay, J. C., Doucett, R. R., and McNEELY, C.: Tracing energy flow in stream food webs using stable isotopes of hydrogen, Freshwater Biology, 55, 941–951, https://doi.org/10.1111/j.1365-2427.2009.02327.x, 2010.
Fry, B.: 13C/12C fractionation by marine diatoms, Marine Ecology Progress Series, 134, 283–294, https://doi.org/10.3354/meps134283, 1996.
Galeron, M.-A., Radakovitch, O., Charrière, B., Vaultier, F., and Rontani, J.-F.: Autoxidation as a major player in the fate of terrestrial particulate organic matter in seawater, Journal of Geophysical Research: Biogeosciences, 122, 1203–1215, https://doi.org/10.1002/2016JG003708, 2017.
Gawade, L., Krishna, M. S., Sarma, V. V. S. S., Hemalatha, K. P. J., and Venkateshwara Rao, Y.: Spatio-temporal variability in the sources of particulate organic carbon and nitrogen in a tropical Godavari estuary, Estuarine, Coastal and Shelf Science, 215, 20–29, https://doi.org/10.1016/j.ecss.2018.10.004, 2018.
Golubkov, M. S., Nikulina, V. N., Tiunov, A. V., and Golubkov, S. M.: Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition, Journal of Marine Science and Engineering, 8, 959, https://doi.org/10.3390/jmse8120959, 2020.
Goñi, M. A., Voulgaris, G., and Kim, Y. H.: Composition and fluxes of particulate organic matter in a temperate estuary (Winyah Bay, South Carolina, USA) under contrasting physical forcings, Estuarine, Coastal and Shelf Science, 85, 273–291, https://doi.org/10.1016/j.ecss.2009.08.013, 2009.
Govan, E. and Parnell, A.: simmr: A Stable Isotope Mixing Model, 2024.
Grunicke, F., Wagner, A., von Elert, E., Weitere, M., and Berendonk, T.: Riparian detritus vs. stream detritus: food quality determines fitness of juveniles of the highly endangered freshwater pearl mussels (Margaritifera margaritifera), Hydrobiologia, 850, 729–746, https://doi.org/10.1007/s10750-022-05120-3, 2023.
Harmelin-Vivien, M., Dierking, J., Bãnaru, D., Fontaine, M. F., and Arlhac, D.: Seasonal variation in stable C and N isotope ratios of the Rhone River inputs to the Mediterranean Sea (2004–2005), Biogeochemistry, 100, 139–150, https://doi.org/10.1007/s10533-010-9411-z, 2010.
Hellings, L., Dehairs, F., Tackx, M., Keppens, E., and Baeyens, W.: Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition, Biogeochemistry, 47, 167–186, https://doi.org/10.1023/A:1006143827118, 1999.
Higueras, M., Kerhervé, P., Sanchez-Vidal, A., Calafat, A., Ludwig, W., Verdoit-Jarraya, M., Heussner, S., and Canals, M.: Biogeochemical characterization of the riverine particulate organic matter transferred to the NW Mediterranean Sea, Biogeosciences, 11, 157–172, https://doi.org/10.5194/bg-11-157-2014, 2014.
Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J., and Chen, H.: The isotopic composition of particulate organic carbon in mountain rivers of Taiwan, Geochimica et Cosmochimica Acta, 74, 3164–3181, https://doi.org/10.1016/j.gca.2010.03.004, 2010.
Hou, P., Eglinton, T. I., Yu, M., Montluçon, D. B., Haghipour, N., Zhang, H., Jin, G., and Zhao, M.: Degradation and Aging of Terrestrial Organic Carbon within Estuaries: Biogeochemical and Environmental Implications, Environmental Science and Technology, 55, 10852–10861, https://doi.org/10.1021/acs.est.1c02742, 2021.
Hounshell, A. G., Fegley, S. R., Hall, N. S., Osburn, C. L., and Paerl, H. W.: Riverine Discharge and Phytoplankton Biomass Control Dissolved and Particulate Organic Matter Dynamics over Spatial and Temporal Scales in the Neuse River Estuary, North Carolina, Estuaries and Coasts, 45, 96–113, https://doi.org/10/gj64px, 2022.
INRA: Base de Données Géographique des Sols de France à 1/1 000 000 version 3.2.8.0, 10/09/1998, https://doi.org/10.15454/BPN57S, 2025.
Kang, S., Kim, J.-H., Joe, Y. J., Jang, K., Nam, S.-I., and Shin, K.-H.: Long-term environmental changes in the Geum Estuary (South Korea): Implications of river impoundments, Marine Pollution Bulletin, 168, 112383, https://doi.org/10/gnpb2t, 2021.
Ke, Z., Tan, Y., Huang, L., Liu, J., Xiang, C., Zhao, C., and Zhang, J.: Significantly depleted 15N in suspended particulate organic matter indicating a strong influence of sewage loading in Daya Bay, China, Science of The Total Environment, 650, 759–768, https://doi.org/10.1016/j.scitotenv.2018.09.076, 2019.
Kelso, J. E. and Baker, M. A.: Organic Matter Is a Mixture of Terrestrial, Autochthonous, and Wastewater Effluent in an Urban River, Frontiers in Environmental Science, 7, https://doi.org/10.3389/fenvs.2019.00202, 2020.
Kelso, J. E. and Baker, M. A.: Organic matter sources and composition in four watersheds with mixed land cover, Hydrobiologia, 849, 2663–2682, https://doi.org/10.1007/s10750-022-04884-y, 2022.
Kendall, C., Silva, S. R., and Kelly, V. J.: Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States, Hydrological Processes, 15, 1301–1346, https://doi.org/10.1002/hyp.216, 2001.
Khan, M. N. and Mohammad, F.: Eutrophication: Challenges and Solutions, in: Eutrophication: Causes, Consequences and Control: Volume 2, edited by: Ansari, A. A. and Gill, S. S., Springer Netherlands, Dordrecht, 1–15, https://doi.org/10.1007/978-94-007-7814-6_1, 2014.
Lambert, T., Bouillon, S., Darchambeau, F., Morana, C., Roland, F. A. E., Descy, J.-P., and Borges, A. V.: Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River, Belgium), Biogeochemistry, 136, 191–211, https://doi.org/10.1007/s10533-017-0387-9, 2017.
Le Bas, C.: Carte de la Réserve Utile en eau issue de la Base de Données Géographique des Sols de France, https://doi.org/10.15454/JPB9RB, 2025.
Lebreton, B., Beseres Pollack, J., Blomberg, B., Palmer, T. A., Adams, L., Guillou, G., and Montagna, P. A.: Origin, composition and quality of suspended particulate organic matter in relation to freshwater inflow in a South Texas estuary, Estuarine, Coastal and Shelf Science, 170, 70–82, https://doi.org/10.1016/j.ecss.2015.12.024, 2016.
Legendre, P., Oksanen, J., and ter Braak, C. J. F.: Testing the significance of canonical axes in redundancy analysis, Methods in Ecology and Evolution, 2, 269–277, https://doi.org/10.1111/j.2041-210X.2010.00078.x, 2011.
Lheureux, A., David, V., Del Amo, Y., Soudant, D., Auby, I., Ganthy, F., Blanchet, H., Cordier, M.-A., Costes, L., Ferreira, S., Mornet, L., Nowaczyk, A., Parra, M., D'Amico, F., Gouriou, L., Meteigner, C., Oger-Jeanneret, H., Rigouin, L., Rumebe, M., Tournaire, M.-P., Trut, F., Trut, G., and Savoye, N.: Bi-decadal changes in nutrient concentrations and ratios in marine coastal ecosystems: The case of the Arcachon bay, France, Progress in Oceanography, 201, 102740, https://doi.org/10.1016/j.pocean.2022.102740, 2022.
Liénart, C., Susperregui, N., Rouaud, V., Cavalheiro, J., David, V., Del Amo, Y., Duran, R., Lauga, B., Monperrus, M., Pigot, T., Bichon, S., Charlier, K., and Savoye, N.: Dynamics of particulate organic matter in a coastal system characterized by the occurrence of marine mucilage – A stable isotope study, Journal of Sea Research, 116, 12–22, https://doi.org/10.1016/j.seares.2016.08.001, 2016.
Liénart, C., Savoye, N., Bozec, Y., Breton, E., Conan, P., David, V., Feunteun, E., Grangeré, K., Kerhervé, P., Lebreton, B., Lefebvre, S., L'Helguen, S., Mousseau, L., Raimbault, P., Richard, P., Riera, P., Sauriau, P.-G., Schaal, G., Aubert, F., Aubin, S., Bichon, S., Boinet, C., Bourasseau, L., Bréret, M., Caparros, J., Cariou, T., Charlier, K., Claquin, P., Cornille, V., Corre, A.-M., Costes, L., Crispi, O., Crouvoisier, M., Czamanski, M., Del Amo, Y., Derriennic, H., Dindinaud, F., Durozier, M., Hanquiez, V., Nowaczyk, A., Devesa, J., Ferreira, S., Fornier, M., Garcia, F., Garcia, N., Geslin, S., Grossteffan, E., Gueux, A., Guillaudeau, J., Guillou, G., Joly, O., Lachaussée, N., Lafont, M., Lamoureux, J., Lecuyer, E., Lehodey, J.-P., Lemeille, D., Leroux, C., Macé, E., Maria, E., Pineau, P., Petit, F., Pujo-Pay, M., Rimelin-Maury, P., and Sultan, E.: Dynamics of particulate organic matter composition in coastal systems: A spatio-temporal study at multi-systems scale, Progress in Oceanography, 156, 221–239, https://doi.org/10/gb27ss, 2017.
Liénart, C., Savoye, N., David, V., Ramond, P., Rodriguez Tress, P., Hanquiez, V., Marieu, V., Aubert, F., Aubin, S., Bichon, S., Boinet, C., Bourasseau, L., Bozec, Y., Bréret, M., Breton, E., Caparros, J., Cariou, T., Claquin, P., Conan, P., Corre, A.-M., Costes, L., Crouvoisier, M., Del Amo, Y., Derriennic, H., Dindinaud, F., Duran, R., Durozier, M., Devesa, J., Ferreira, S., Feunteun, E., Garcia, N., Geslin, S., Grossteffan, E., Gueux, A., Guillaudeau, J., Guillou, G., Jolly, O., Lachaussée, N., Lafont, M., Lagadec, V., Lamoureux, J., Lauga, B., Lebreton, B., Lecuyer, E., Lehodey, J.-P., Leroux, C., L'Helguen, S., Macé, E., Maria, E., Mousseau, L., Nowaczyk, A., Pineau, P., Petit, F., Pujo-Pay, M., Raimbault, P., Rimmelin-Maury, P., Rouaud, V., Sauriau, P.-G., Sultan, E., and Susperregui, N.: Dynamics of particulate organic matter composition in coastal systems: Forcing of spatio-temporal variability at multi-systems scale, Progress in Oceanography, 162, 271–289, https://doi.org/10.1016/j.pocean.2018.02.026, 2018.
Liénart, C., Savoye, N., Conan, P., David, V., Barbier, P., Bichon, S., Charlier, K., Costes, L., Derriennic, H., Ferreira, S., Gueux, A., Hubas, C., Maria, E., and Meziane, T.: Relationship between bacterial compartment and particulate organic matter (POM) in coastal systems: An assessment using fatty acids and stable isotopes, Estuarine, Coastal and Shelf Science, 239, 106720, https://doi.org/10.1016/j.ecss.2020.106720, 2020.
Lowe, A. T., Galloway, A. W. E., Yeung, J. S., Dethier, M. N., and Duggins, D. O.: Broad sampling and diverse biomarkers allow characterization of nearshore particulate organic matter, Oikos, 123, 1341–1354, https://doi.org/10.1111/oik.01392, 2014.
Lu, L., Cheng, H., Pu, X., Wang, J., Cheng, Q., and Liu, X.: Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China, Agriculture, Ecosystems & Environment, 222, 48–59, https://doi.org/10.1016/j.agee.2015.12.033, 2016.
McCorkle, E. P., Berhe, A. A., Hunsaker, C. T., Johnson, D. W., McFarlane, K. J., Fogel, M. L., and Hart, S. C.: Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes, Chemical Geology, 445, 172–184, https://doi.org/10.1016/j.chemgeo.2016.04.025, 2016.
Michener, R. H. and Kaufman, L.: Stable Isotope Ratios as Tracers in Marine Food Webs: An Update, 1st edn., edited by: Michener, R. and Lajtha, K., Wiley, https://doi.org/10.1002/9780470691854.ch9, 2007.
Middelburg, J. J. and Herman, P. M. J.: Organic matter processing in tidal estuaries, Marine Chemistry, 106, 127–147, https://doi.org/10.1016/j.marchem.2006.02.007, 2007.
Miller, R. J., Page, H. M., and Brzezinski, M. A.: δ13C and δ15N of particulate organic matter in the Santa Barbara Channel: drivers and implications for trophic inference, Marine Ecology Progress Series, 474, 53–66, https://doi.org/10.3354/meps10098, 2013.
Minaudo, C., Meybeck, M., Moatar, F., Gassama, N., and Curie, F.: Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012), Biogeosciences, 12, 2549–2563, https://doi.org/10.5194/bg-12-2549-2015, 2015.
Minaudo, C., Moatar, F., Coynel, A., Etcheber, H., Gassama, N., and Curie, F.: Using recent high-frequency surveys to reconstitute 35 years of organic carbon variations in a eutrophic lowland river, Environ. Monit. Assess., 188, 41, https://doi.org/10.1007/s10661-015-5054-9, 2016.
Ogrinc, N., Markovics, R., Kanduè, T., Walter, L. M., and Hamilton, S. K.: Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the River Danube, Applied Geochemistry, 23, 3685–3698, https://doi.org/10.1016/j.apgeochem.2008.09.003, 2008.
O'Leary, M. H.: Carbon isotope fractionation in plants, Phytochemistry, 20, 553–567, https://doi.org/10.1016/0031-9422(81)85134-5, 1981.
Onstad, G. D., Canfield, D. E., Quay, P. D., and Hedges, J. I.: Sources of particulate organic matter in rivers from the continental usa: lignin phenol and stable carbon isotope compositions, Geochimica et Cosmochimica Acta, 64, 3539–3546, https://doi.org/10.1016/S0016-7037(00)00451-8, 2000.
Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward, E. J., Moore, J. W., Jackson, A. L., Grey, J., Kelly, D. J., and Inger, R.: Bayesian stable isotope mixing models, Environmetrics, 24, 387–399, https://doi.org/10.1002/env.2221, 2013.
Perdue, E. M. and Koprivnjak, J.-F.: Using the ratio to estimate terrigenous inputs of organic matter to aquatic environments, Estuarine, Coastal and Shelf Science, 73, 65–72, https://doi.org/10.1016/j.ecss.2006.12.021, 2007.
Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., Semmens, B. X., and Ward, E. J.: Best practices for use of stable isotope mixing models in food-web studies, Can. J. Zool., 92, 823–835, https://doi.org/10.1139/cjz-2014-0127, 2014.
Polsenaere, P., Savoye, N., Etcheber, H., Canton, M., Poirier, D., Bouillon, S., and Abril, G.: Export and degassing of terrestrial carbon through watercourses draining a temperate podzolized catchment, Aquat. Sci., 75, 299–319, https://doi.org/10.1007/s00027-012-0275-2, 2013.
Pradhan, U. K., Wu, Y., Wang, X., Zhang, J., and Zhang, G.: Signals of typhoon induced hydrologic alteration in particulate organic matter from largest tropical river system of Hainan Island, South China Sea, Journal of Hydrology, 534, 553–566, https://doi.org/10.1016/j.jhydrol.2016.01.046, 2016.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6, 597–607, https://doi.org/10.1038/ngeo1830, 2013.
Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.
Sarma, V. V. S. S., Krishna, M. S., Prasad, V. R., Kumar, B. S. K., Naidu, S. A., Rao, G. D., Viswanadham, R., Sridevi, T., Kumar, P. P., and Reddy, N. P. C.: Distribution and sources of particulate organic matter in the Indian monsoonal estuaries during monsoon, Journal of Geophysical Research: Biogeosciences, 119, 2095–2111, https://doi.org/10.1002/2014JG002721, 2014.
Sato, T., Miyajima, T., Ogawa, H., Umezawa, Y., and Koike, I.: Temporal variability of stable carbon and nitrogen isotopic composition of size-fractionated particulate organic matter in the hypertrophic Sumida River Estuary of Tokyo Bay, Japan, Estuarine, Coastal and Shelf Science, 68, 245–258, https://doi.org/10.1016/j.ecss.2006.02.007, 2006.
Savoye, N., Aminot, A., Tréguer, P., Fontugne, M., Naulet, N., and Kérouel, R.: Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France), Marine Ecology Progress Series, 255, 27–41, https://doi.org/10.3354/meps255027, 2003.
Savoye, N., David, V., Morisseau, F., Etcheber, H., Abril, G., Billy, I., Charlier, K., Oggian, G., Derriennic, H., and Sautour, B.: Origin and composition of particulate organic matter in a macrotidal turbid estuary: The Gironde Estuary, France, Estuarine, Coastal and Shelf Science, 108, 16–28, https://doi.org/10.1016/j.ecss.2011.12.005, 2012.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D. M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen, Deep Sea Research Part I: Oceanographic Research Papers, 56, 1419–1439, https://doi.org/10.1016/j.dsr.2009.04.007, 2009.
Souissi, S., Yahia-Kéfi, O. D., and Yahia, M. N. D.: Spatial characterization of nutrient dynamics in the Bay of Tunis (south-western Mediterranean) using multivariate analyses: consequences for phyto- and zooplankton distribution, Journal of Plankton Research, 22, 2039–2059, https://doi.org/10.1093/plankt/22.11.2039, 2000.
Sun, X., Fan, D., Cheng, P., Hu, L., Sun, X., Guo, Z., and Yang, Z.: Source, transport and fate of terrestrial organic carbon from Yangtze River during a large flood event: Insights from multiple-isotopes (δ13C, δ15N, Δ14C) and geochemical tracers, Geochimica et Cosmochimica Acta, 308, 217–236, https://doi.org/10/gn8qs5, 2021.
Turner, R. E., Milan, C. S., Swenson, E. M., and Lee, J. M.: Peak chlorophyll a concentrations in the lower Mississippi River from 1997 to 2018, Limnology and Oceanography, https://doi.org/10/gpjm83, 2022.
Veyssy, E., Etcheber, H., Lin, R. G., Buat-Menard, P., and Maneux, E.: Seasonal variation and origin of Particulate Organic Carbon in the lower Garonne River at La Reole (southwestern France), Hydrobiologia, 391, 113–126, https://doi.org/10.1023/A:1003520907962, 1998.
Wang, X., Chen, Y., Yuan, Q., Xing, X., Hu, B., Gan, J., Zheng, Y., and Liu, Y.: Effect of river damming on nutrient transport and transformation and its countermeasures, Frontiers in Marine Science, 9:1078216, https://doi.org/10.3389/fmars.2022.1078216, 2022.
Wang, Y., Song, J., Duan, L., Yuan, H., Li, X., Li, N., Zhang, Q., Liu, J., and Ren, C.: Combining sterols with stable carbon isotope as indicators for assessing the organic matter sources and primary productivity evolution in the coastal areas of the East China Sea, Continental Shelf Research, 223, 104446, https://doi.org/10.1016/j.csr.2021.104446, 2021.
Yaalon, D. H.: Soils in the Mediterranean region: what makes them different?, CATENA, 28, 157–169, https://doi.org/10.1016/S0341-8162(96)00035-5, 1997.
Yan, X., Yang, J.-Y. T., Xu, M. N., Wang, H., Dai, M., and Kao, S.-J.: Nitrogen isotope constraint on the zonation of multiple transformations between dissolved and particulate organic nitrogen in the Changjiang plume, Science of The Total Environment, 818, 151678, https://doi.org/10.1016/j.scitotenv.2021.151678, 2022.
Yu, F., Zong, Y., Lloyd, J. M., Huang, G., Leng, M. J., Kendrick, C., Lamb, A. L., and Yim, W. W.-S.: Bulk organic δ13C and as indicators for sediment sources in the Pearl River delta and estuary, southern China, Estuarine, Coastal and Shelf Science, 87, 618–630, https://doi.org/10.1016/j.ecss.2010.02.018, 2010.
Zhang, Y., Meng, X., Bai, Y., Wang, X., Xia, P., Yang, G., Zhu, Z., and Zhang, H.: Sources and features of particulate organic matter in tropical small mountainous rivers (SW China) under the effects of anthropogenic activities, Ecological Indicators, 125, 107471, https://doi.org/10.1016/j.ecolind.2021.107471, 2021.
Short summary
This study examines the particulate organic matter (POM) composition and dynamics in 23 temperate rivers. Carbon and nitrogen isotope analysis revealed four river types based on dominant POM sources (phytoplankton, terrestrial POM). Catchment characteristics influence POM composition while seasonal variations in river flow and sediment resuspension drive POM dynamics. This study improves the understanding of river systems and calls for further studies exploring downstream estuarine functioning.
This study examines the particulate organic matter (POM) composition and dynamics in 23...
Altmetrics
Final-revised paper
Preprint