Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-7441-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7441-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sediment heterogeneity shapes spatial variability of resuspension-induced CO2 production
Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
Simon Thrush
Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
Cited articles
Almroth, E., Tengberg, A., Andersson, J. H., Pakhomova, S., and Hall, P. O. J.: Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea, Cont. Shelf Res., 29, 807–818, https://doi.org/10.1016/J.CSR.2008.12.011, 2009.
Almroth-Rosell, E., Tengberg, A., Andersson, S., Apler, A., and Hall, P. O. J.: Effects of simulated natural and massive resuspension on benthic oxygen, nutrient and dissolved inorganic carbon fluxes in Loch Creran, Scotland, J. Sea Res., 72, 38–48, https://doi.org/10.1016/j.seares.2012.04.012, 2012a.
Almroth-Rosell, E., Tengberg, A., Andersson, S., Apler, A., and Hall, P. O. J.: Effects of simulated natural and massive resuspension on benthic oxygen, nutrient and dissolved inorganic carbon fluxes in Loch Creran, Scotland, Journal of Sea Research, 72, 38–48, https://doi.org/10.1016/j.seares.2012.04.012, 2012b.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P.: Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth Sci. Rev., 123, 53–86, https://doi.org/10.1016/J.EARSCIREV.2013.02.008, 2013.
Atwood, T. B., Sala, E., Mayorga, J., Bradley, D., Cabral, R. B., Auber, A., Cheung, W., Ferretti, F., Friedlander, A. M., Gaines, S. D., Garilao, C., Goodell, W., Halpern, B. S., Hinson, A., Kaschner, K., Kesner-Reyes, K., Leprieur, F., McGowan, J., Morgan, L. E., Mouillot, D., Palacios-Abrantes, J., Possingham, H. P., Rechberger, K. D., Worm, B., and Lubchenco, J.: Reply to: Quantifying the carbon benefits of ending bottom trawling, Nature, 617, 7960, https://doi.org/10.1038/s41586-023-06015-6, 2023.
Atwood, T. B., Romanou, A., DeVries, T., Lerner, P. E., Mayorga, J. S., Bradley, D., Cabral, R. B., Schmidt, G. A., and Sala, E.: Atmospheric CO2 emissions and ocean acidification from bottom-trawling, Front. Mar. Sci., 10, 1125137, https://doi.org/10.3389/FMARS.2023.1125137, 2024.
Bartl, I. and Thrush, S. F.: Resuspension-induced CO2 production rates and sediment characteristics from the Hauraki Gulf, New Zealand, The University of Auckland, Figshare [data set], https://doi.org/10.17608/k6.auckland.27948264.v1, 2025a.
Bartl, I. and Thrush, S. F.: Sediment heterogeneity shapes spatial variability of resuspension-induced CO2 production – Boosted Regression Tree Model, The University of Auckland, Figshare [code], https://doi.org/10.17608/k6.auckland.29442407.v1, 2025b.
Bartl, I., Evans, T., Hillman, J., and Thrush, S.: Simple assay quantifying sediment resuspension effects on marine carbon storage, Methods Ecol. Evol., 16, 309–316, https://doi.org/10.1111/2041-210X.14479, 2025.
Bennion, M., Brough, T., Leunissen, E., Morrison, M., Hillman, J. R., Rowden, A. A., Gordon, D. P., Kelly, M., Nelson, W., Tracey, D. M., Macpherson, D., Neill, K., Lohrer, A. M., and Lundquist, C. J.: Modelling spatial distributions of biogenic habitat-forming taxa to inform marine spatial planning, Aquat. Conserv., 34, e4079, https://doi.org/10.1002/AQC.4079, 2024.
Bevin, A.: Hauraki Gulf bottom trawling corridor proposals chucked on ice, Newsroom, 14th May, 2025.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean interface, Org. Geochem., 115, 138–155, https://doi.org/10.1016/J.ORGGEOCHEM.2017.09.008, 2018.
Boudreau, B. P., Huettel, M., Forster, S., Jahnke, R. A., McLachlan, A., Middelburg, J. J., Nielsen, P., Sansone, F., Taghon, G., Van Raaphorst, W., Webster, I., Weslawski, J. M., Wiberg, P., and Sundby, B.: Permeable marine sediments: Overturning an old paradigm, Eos, 82, 133–136, https://doi.org/10.1029/EO082i011p00133-01, 2001.
Boulesteix, A. L., Janitza, S., Kruppa, J., and König, I. R.: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 2, 493–507, https://doi.org/10.1002/WIDM.1072, 2012.
Bradshaw, C., Jakobsson, M., Brüchert, V., Bonaglia, S., Mörth, C. M., Muchowski, J., Stranne, C., and Sköld, M.: Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical Processes on and Near the Seafloor, Front. Mar. Sci., 8, 1127, https://doi.org/10.3389/FMARS.2021.683331, 2021.
Buffan-Dubau, E. and Carman, K. R.: Extraction of benthic microalgal pigments for HPLC analyses, Mar. Ecol. Prog. Ser., 204, 293–297, https://doi.org/10.3354/MEPS204293, 2000.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem. Rev., 467–485, https://doi.org/10.1021/cr050347q, 2007.
Chang, F. H., Zeldis, J., Gall, M., and Hall, J.: Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf, J. Plankton Res., 25, 737–758, https://doi.org/10.1093/PLANKT/25.7.737, 2003.
Cheung, H. L. S., Hillman, J. R., Pilditch, C. A., Savage, C., Santos, I. R., Glud, R. N., Nascimento, F. J. A., Thrush, S. F., and Bonaglia, S.: Denitrification, anammox, and DNRA in oligotrophic continental shelf sediments, Limnol. Oceanogr., 69, 621–637, https://doi.org/10.1002/LNO.12512, 2024.
Cimino, M. A., Santora, J. A., Schroeder, I., Sydeman, W., Jacox, M. G., Hazen, E. L., and Bograd, S. J.: Essential krill species habitat resolved by seasonal upwelling and ocean circulation models within the large marine ecosystem of the California Current System, Ecography, 43, 1536–1549, https://doi.org/10.1111/ECOG.05204, 2020.
DesRosiers, A., Gassama, N., Grosbois, C., and Lazar, C. S.: Laboratory-Controlled Experiments Reveal Microbial Community Shifts during Sediment Resuspension Events, Genes, 13, 1416, https://doi.org/10.3390/genes13081416, 2022.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance, Ecography, 36, 27–46, https://doi.org/10.1111/J.1600-0587.2012.07348.X, 2013.
Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R., and Roberts, C. M.: The impact of mobile demersal fishing on carbon storage in seabed sediments, Glob. Change Biol., 28, 2875–2894, https://doi.org/10.1111/gcb.16105, 2022.
Friedman, J. H.: Greedy function approximation: A gradient boosting machine, Ann Stat, 29, 1189–1232, https://doi.org/10.1214/AOS/1013203451, 2001.
Hale, R., Godbold, J. A., Sciberras, M., Dwight, J., Wood, C., Hiddink, J. G., and Solan, M.: Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities, Biogeochemistry, 135, https://doi.org/10.1007/s10533-017-0350-9, 2017.
Hauraki Gulf Forum: State of our Gulf 2020 Hauraki Gulf/Tīkapa Moana/Te Moananui-ā-Toi State of the Environment Report 2020, ISBN: 978-1-98-858901-5, 2020.
Hauraki Gulf Forum: State of our Gulf 2023 Hauraki Gulf/Tīkapa Moana/Te Moananui-ā-Toi State of the Environment Report 2023, ISBN: 97-8-04-7368671-0, 2023.
Hiddink, J. G., Jennings, S., Sciberras, M., Szostek, C. L., Hughes, K. M., Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., Mazor, T., Hilborn, R., Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A. M., Suuronen, P., and Kaiser, M. J.: Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance, P. Natl. Acad. Sci. USA, 114, 8301–8306, https://doi.org/10.1073/pnas.1618858114, 2017.
Hiddink, J. G., van de Velde, S. J., McConnaughey, R. A., De Borger, E., Tiano, J., Kaiser, M. J., Sweetman, A. K., and Sciberras, M.: Quantifying the carbon benefits of ending bottom trawling, Nature, 617, 7960, https://doi.org/10.1038/s41586-023-06014-7, 2023.
Holland, K. T. and Elmore, P. A.: A review of heterogeneous sediments in coastal environments, Earth Sci. Rev., 89, 116–134, https://doi.org/10.1016/J.EARSCIREV.2008.03.003, 2008.
Hulthe, G., Hulth, S., and Hall, P. O. J.: Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments, Geochim Cosmochim Acta, 62, 1319–1328, https://doi.org/10.1016/S0016-7037(98)00044-1, 1998.
Jørgensen, B. B., Wenzhöfer, F., Egger, M., and Glud, R. N.: Sediment oxygen consumption: Role in the global marine carbon cycle, Earth Sci. Rev., 228, 103987, https://doi.org/10.1016/J.EARSCIREV.2022.103987, 2022.
Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C. B., and Nunan, N.: Dynamic interactions at the mineral–organic matter interface, Nat. Rev. Earth Environ., 2, 402–421, https://doi.org/10.1038/s43017-021-00162-y, 2021.
Kujawinski, E. B.: The impact of microbial metabolism on marine dissolved organic matter, Ann. Rev. Mar. Sci., 3, 567–599, https://doi.org/10.1146/annurev-marine-120308-081003, 2011.
Lengier, M., Koziorowska-Makuch, K., Szymczycha, B., and Kuliński, K.: Bioavailability and remineralization rates of sediment-derived dissolved organic carbon from a Baltic Sea depositional area, Front. Mar. Sci., 11, 1359563, https://doi.org/10.3389/FMARS.2024.1359563/BIBTEX, 2024.
Li, Z.: Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost, Comput. Environ. Urban Syst., 96, 101845, https://doi.org/10.1016/J.COMPENVURBSYS.2022.101845, 2022.
Lohrer, A. M., Stephenson, F., Douglas, E. J., and Townsend, M.: Mapping the estuarine ecosystem service of pollutant removal using empirically validated boosted regression tree models, Ecological Applications, 30, https://doi.org/10.1002/EAP.2105, 2020.
Lønborg, C., Markager, S., Herzog, S. D., Carreira, C., and Høgslund, S.: Impacts of anthropogenic resuspension on sediment organic matter: An experimental approach, Estuar. Coast. Shelf Sci., 310, 108981, https://doi.org/10.1016/J.ECSS.2024.108981, 2024.
Lorenzen, C. J.: Determination of chlorophyll and Pheo-pigments: Spectrophotometric equations, Limnol. Oceanogr., 12, 343–346, https://doi.org/10.4319/LO.1967.12.2.0343, 1967.
Lucas, T. C. D.: A translucent box: interpretable machine learning in ecology, Ecol. Monogr., 90, e01422, https://doi.org/10.1002/ECM.1422, 2020.
Luisetti, T., Turner, R. K., Andrews, J. E., Jickells, T. D., Kröger, S., Diesing, M., Paltriguera, L., Johnson, M. T., Parker, E. R., Bakker, D. C. E., and Weston, K.: Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK, Ecosyst. Serv., 35, 67–76, https://doi.org/10.1016/J.ECOSER.2018.10.013, 2019.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 4768–4777, https://dl.acm.org/doi/10.5555/3295222.3295230, 2017.
Lundberg, S. M., Erion, G. G., and Lee, S.-I.: Consistent Individualized Feature Attribution for Tree Ensembles, arXiv.org, https://doi.org/arxiv.org/abs/1802.03888v3 (last access: 26 November 2025), 2018.
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S. I.: From local explanations to global understanding with explainable AI for trees, Nat. Mach. Intell., 2, 56–67, https://doi.org/10.1038/S42256-019-0138-9, 2020.
Manighetti, B. and Carter, L.: Across-shelf sediment dispersal, Hauraki Gulf, New Zealand, Mar. Geol., 160, 271–300, https://doi.org/10.1016/S0025-3227(99)00024-9, 1999.
Mayer, L. M.: Surface area control of organic carbon accumulation in continental shelf sediments, Geochim Cosmochim Acta, 58, 1271–1284, https://doi.org/10.1016/0016-7037(94)90381-6, 1994.
Miatta, M. and Snelgrove, P. V. R.: Sedimentary Organic Matter Shapes Macrofaunal Communities but Not Benthic Nutrient Fluxes in Contrasting Habitats Along the Northwest Atlantic Continental Margin, Front. Mar. Sci., 8, 756054, https://doi.org/10.3389/FMARS.2021.756054, 2021.
Middelburg, J. J.: Reviews and syntheses: to the bottom of carbon processing at the seafloor, Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, 2018.
Muñoz, M., Reul, A., Guijarro, B., and Hidalgo, M.: Carbon footprint, economic benefits and sustainable fishing: Lessons for the future from the Western Mediterranean, Science of The Total Environment, 865, 160783, https://doi.org/10.1016/J.SCITOTENV.2022.160783, 2023.
Najjar, R. G., Herrmann, M., Alexander, R., Boyer, E. W., Burdige, D. J., Butman, D., Cai, W. J., Canuel, E. A., Chen, R. F., Friedrichs, M. A. M., Feagin, R. A., Griffith, P. C., Hinson, A. L., Holmquist, J. R., Hu, X., Kemp, W. M., Kroeger, K. D., Mannino, A., McCallister, S. L., McGillis, W. R., Mulholland, M. R., Pilskaln, C. H., Salisbury, J., Signorini, S. R., St-Laurent, P., Tian, H., Tzortziou, M., Vlahos, P., Wang, Z. A., and Zimmerman, R. C.: Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America, Global Biogeochem Cycles, 32, 389–416, https://doi.org/10.1002/2017GB005790, 2018.
Niemistö, J., Kononets, M., Ekeroth, N., Tallberg, P., Tengberg, A., and Hall, P. O. J.: Benthic fluxes of oxygen and inorganic nutrients in the archipelago of Gulf of Finland, Baltic Sea – Effects of sediment resuspension measured in situ, J. Sea Res., 135, 95–106, https://doi.org/10.1016/J.SEARES.2018.02.006, 2018.
Oberle, F. K. J., Storlazzi, C. D., and Hanebuth, T. J. J.: What a drag: Quantifying the global impact of chronic bottom trawling on continental shelf sediment, Journal of Marine Systems, 159, 109–119, https://doi.org/10.1016/J.JMARSYS.2015.12.007, 2016.
O'Neill, F. G. and Ivanović, A.: The physical impact of towed demersal fishing gears on soft sediments, ICES Journal of Marine Science, 73, i5–i14, https://doi.org/10.1093/ICESJMS/FSV125, 2016.
Panaïotis, T., Wilson, J., and Cael, B. B.: A Machine Learning-Based Dissolved Organic Carbon Climatology, Geophys. Res. Lett., 52, e2024GL112792, https://doi.org/10.1029/2024GL112792, 2025.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011.
Polymenakou, P. N., Pusceddu, A., Tselepides, A., Polychronaki, T., Giannakourou, A., Fiordelmondo, C., Hatziyanni, E., and Danovaro, R.: Benthic microbial abundance and activities in an intensively trawled ecosystem (Thermaikos Gulf, Aegean Sea), Cont. Shelf Res., 25, 2570–2584, https://doi.org/10.1016/j.csr.2005.08.018, 2005.
Porz, L., Zhang, W., Christiansen, N., Kossack, J., Daewel, U., and Schrum, C.: Quantification and mitigation of bottom-Trawling impacts on sedimentary organic carbon stocks in the North Sea, Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/BG-21-2547-2024, 2024.
Pusceddu, A., Fiordelmondo, C., Polymenakou, P., Polychronaki, T., Tselepides, A., and Danovaro, R.: Effects of bottom trawling on the quantity and biochemical composition of organic matter in coastal marine sediments (Thermaikos Gulf, northwestern Aegean Sea), Cont. Shelf Res., 25, 2491–2505, https://doi.org/10.1016/J.CSR.2005.08.013, 2005a.
Pusceddu, A., Fiordelmondo, C., and Danovaro, R.: Sediment Resuspension Effects on the Benthic Microbial Loop in Experimental Microcosms, Microbial. Ecology, 50, 602–613, https://doi.org/10.1007/S00248-005-5051-6, 2005b.
Pusceddu, A., Bianchelli, S., Canals, M., Sanchez-Vidal, A., Durrieu De Madron, X., Heussner, S., Lykousis, V., de Stigter, H., Trincardi, F., and Danovaro, R.: Organic matter in sediments of canyons and open slopes of the Portuguese, Catalan, Southern Adriatic and Cretan Sea margins, Deep-Sea Research Pt. I, 57, 441–457, https://doi.org/10.1016/J.DSR.2009.11.008, 2010.
Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P., and Danovaro, R.: Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning, P. Natl. Acad. Sci. USA, 111, 8861–8866, https://doi.org/10.1073/pnas.1405454111, 2014.
Reader, H. E., Thoms, F., Voss, M., and Stedmon, C. A.: The Influence of Sediment-Derived Dissolved Organic Matter in the Vistula River Estuary/Gulf of Gdansk, J. Geophys. Res.-Biogeo., 124, 115–126, https://doi.org/10.1029/2018JG004658, 2019.
Rijkenberg, M. J. A., Langlois, R. J., Mills, M. M., Patey, M. D., Hill, P. G., Nielsdóttir, M. C., Compton, T. J., LaRoche, J., and Achterberg, E. P.: Environmental Forcing of Nitrogen Fixation in the Eastern Tropical and Sub-Tropical North Atlantic Ocean, PLoS One, 6, e28989, https://doi.org/10.1371/JOURNAL.PONE.0028989, 2011.
Rijnsdorp, A. D., Depestele, J., Molenaar, P., Eigaard, O. R., Ivanović, A., and O'Neill, F. G.: Sediment mobilization by bottom trawls: a model approach applied to the Dutch North Sea beam trawl fishery, ICES Journal of Marine Science, 78, 1574–1586, https://doi.org/10.1093/ICESJMS/FSAB029, 2021.
Rubbens, P., Brodie, S., Cordier, T., Destro Barcellos, D., Devos, P., Fernandes-Salvador, J. A., Fincham, J. I., Gomes, A., Handegard, N. O., Howell, K., Jamet, C., Kartveit, K. H., Moustahfid, H., Parcerisas, C., Politikos, D., Sauzède, R., Sokolova, M., Uusitalo, L., Van Den Bulcke, L., Van Helmond, A. T. M., Watson, J. T., Welch, H., Beltran-Perez, O., Chaffron, S., Greenberg, D. S., Kühn, B., Kiko, R., Lo, M., Lopes, R. M., Möller, K. O., Michaels, W., Pala, A., Romagnan, J. B., Schuchert, P., Seydi, V., Villasante, S., Malde, K., and Irisson, J. O.: Machine learning in marine ecology: an overview of techniques and applications, ICES Journal of Marine Science, 80, 1829–1853, https://doi.org/10.1093/ICESJMS/FSAD100, 2023.
Sala, E., Mayorga, J., Bradley, D., Cabral, R. B., Atwood, T. B., Auber, A., Cheung, W., Costello, C., Ferretti, F., Friedlander, A. M., Gaines, S. D., Garilao, C., Goodell, W., Halpern, B. S., Hinson, A., Kaschner, K., Kesner-Reyes, K., Leprieur, F., McGowan, J., Morgan, L. E., Mouillot, D., Palacios-Abrantes, J., Possingham, H. P., Rechberger, K. D., Worm, B., and Lubchenco, J.: Protecting the global ocean for biodiversity, food and climate, Nature, 592, https://doi.org/10.1038/s41586-021-03371-z, 2021.
Sharples, J.: Cross-shelf intrusion of subtropical water into the coastal zone of northeast New Zealand, Cont. Shelf Res., 17, 835–857, https://doi.org/10.1016/S0278-4343(96)00060-X, 1997.
Sikes, E. L., Uhle, M. E., Nodder, S. D., and Howard, M. E.: Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand, Mar. Chem., 113, 149–163, https://doi.org/10.1016/J.MARCHEM.2008.12.003, 2009.
Snelgrove, P. V. R., Soetaert, K., Solan, M., Thrush, S., Wei, C. L., Danovaro, R., Fulweiler, R. W., Kitazato, H., Ingole, B., Norkko, A., Parkes, R. J., and Volkenborn, N.: Global Carbon Cycling on a Heterogeneous Seafloor, Trends Ecol. Evol., 33, 96–105, https://doi.org/10.1016/J.TREE.2017.11.004, 2018.
Soykan, C. U., Eguchi, T., Kohin, S., and Dewar, H.: Prediction of fishing effort distributions using boosted regression trees, Ecological Applications, 24, 71–83, https://doi.org/10.1890/12-0826.1, 2014.
Ståhlberg, C., Bastviken, D., Svensson, B. H., and Rahm, L.: Mineralisation of organic matter in coastal sediments at different frequency and duration of resuspension, Estuar. Coast. Shelf Sci., 70, 317–325, https://doi.org/10.1016/J.ECSS.2006.06.022, 2006.
Sun, M., Aller, R. C., and Lee, C.: Early diagenesis of chlorophyll-a in Long Island Sound sediments: A measure of carbon flux and particle reworking, J. Mar. Res., 49, 379–401, 1991.
Thrush, S. F. and Dayton, P. K.: Disturbance to Marine Benthic Habitats by Trawling and Dredging: Implications for Marine Biodiversity, Annual Reviews, 33, 449–473, https://doi.org/10.1146/ANNUREV.ECOLSYS.33.010802.150515, 2003.
Tiano, J. C., Depestele, J., Van Hoey, G., Fernandes, J., Van Rijswijk, P., and Soetaert, K.: Trawling effects on biogeochemical processes are mediated by fauna in high-energy biogenic-reef-inhabited coastal sediments, Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, 2022.
van Nugteren, P., Moodley, L., Brummer, G. J., Heip, C. H. R., Herman, P. M. J., and Middelburg, J. J.: Seafloor ecosystem functioning: the importance of organic matter priming, Marine Biology, 156, 2277–2287, https://doi.org/10.1007/S00227-009-1255-5, 2009.
Wilson, P. S. and Vopel, K.: Assessing the Sulfide Footprint of Mussel Farms with Sediment Profile Imagery: A New Zealand Trial, PLoS One, 10, e0129894, https://doi.org/10.1371/JOURNAL.PONE.0129894, 2015.
Zeldis, J. R., Walters, R. A., Greig, M. J. N., and Image, K.: Circulation over the northeastern New Zealand continental slope, shelf and adjacent Hauraki Gulf, during spring and summer, Cont. Shelf Res., 24, 543–561, https://doi.org/10.1016/J.CSR.2003.11.007, 2004.
Zhang, W., Wirtz, K., Daewel, U., Wrede, A., Kröncke, I., Kuhn, G., Neumann, A., Meyer, J., Ma, M., and Schrum, C.: The Budget of Macrobenthic Reworked Organic Carbon: A Modeling Case Study of the North Sea, J. Geophys. Res.-Biogeo., 124, 1446–1471, https://doi.org/10.1029/2019JG005109, 2019.
Zhang, W., Porz, L., Yilmaz, R., Wallmann, K., Spiegel, T., Neumann, A., Holtappels, M., Kasten, S., Kuhlmann, J., Ziebarth, N., Taylor, B., Ho-Hagemann, H. T. M., Bockelmann, F. D., Daewel, U., Bernhardt, L., and Schrum, C.: Long-term carbon storage in shelf sea sediments reduced by intensive bottom trawling, Nat. Geosci., 17, 1268–1276, https://doi.org/10.1038/S41561-024-01581-4, 2024.
Short summary
We studied how sediment disturbance through bottom trawling or dredging can lead to CO2 release and impair the carbon storage function. By testing a wide range of sediment types across the Hauraki Gulf, we found that the spatial variability of resuspension-induced CO2 release is shaped by local environmental conditions. Our results support the inclusion of seafloor carbon protection in regional fisheries management to sustain the climate stabilizing function of the seafloor.
We studied how sediment disturbance through bottom trawling or dredging can lead to CO2 release...
Altmetrics
Final-revised paper
Preprint