Articles | Volume 22, issue 23
https://doi.org/10.5194/bg-22-7929-2025
https://doi.org/10.5194/bg-22-7929-2025
Research article
 | 
11 Dec 2025
Research article |  | 11 Dec 2025

Bioaccumulation as a driver of high MeHg in the North and Baltic Seas

David J. Amptmeijer, Elena Mikheeva, Ute Daewel, Johannes Bieser, and Corinna Schrum

Related authors

Feeding strategy as a key driver of the bioaccumulation of MeHg in megabenthos
David J. Amptmeijer, Andrea Padilla, Sofia Modesti, Corinna Schrum, and Johannes Bieser
Biogeosciences, 22, 7483–7503, https://doi.org/10.5194/bg-22-7483-2025,https://doi.org/10.5194/bg-22-7483-2025, 2025
Short summary
Bioconcentration as a key driver of Hg bioaccumulation in high-trophic-level fish
David J. Amptmeijer and Johannes Bieser
Biogeosciences, 22, 7425–7440, https://doi.org/10.5194/bg-22-7425-2025,https://doi.org/10.5194/bg-22-7425-2025, 2025
Short summary
DOM consumption and demethylation as potential drivers of low MeHg in Mediterranean Sea sponges and benthic fish: a modelling perspective
David Johannes Amptmeijer, Ulrike Hanz, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-5377,https://doi.org/10.5194/egusphere-2025-5377, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023,https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary

Cited articles

Allison, J. D., Allison, T. L., and Ambrose, R. B.: Partition coefficients for metals in surface water, soil, and waste, Tech. rep., US Environmental Protection Agency, Washington, D.C., https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=135783 (last access: 7 April 2023), 2005. a
Amptmeijer, D. and Bieser, J.: mercury-bioaccumulation-thesis, Zenodo [code], https://doi.org/10.5281/zenodo.17372353, 2025. a
Andersson, M. E., Sommar, J., Gårdfeldt, K., and Lindqvist, O.: Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean, Mar. Chem., 110, 190–194, https://doi.org/10.1016/j.marchem.2008.04.002, 2008. a
Arrhenius, F. and Hansson, S.: Growth and seasonal changes in energy content of young Baltic Sea herring, Clupea harengus L.), ICES J. Mar. Sc., 53, 792–801, 1996. a
Backhaus, J. O.: A semi-implicit scheme for the shallow water equations for application to shelf sea modelling, Cont. Shelf Res., 2, 243–254, https://doi.org/10.1016/0278-4343(82)90020-6, 1983. a
Download
Short summary
We integrate bioaccumulation and biotic Hg transformations into a coupled ecosystem–mercury model to assess their effect on marine Hg cycling. Bioaccumulation increases methylmercury levels, especially in productive coastal waters, and alters Hg exchange between the Baltic and North Seas. These results highlight strong ecosystem feedbacks on marine Hg dynamics.
Share
Altmetrics
Final-revised paper
Preprint