Articles | Volume 22, issue 24
https://doi.org/10.5194/bg-22-8077-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-8077-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Depth-dependent loss of microbiome diversity and Firmicutes compositional shift induced by ureolytic biostimulation in Aridisols
Kesem Abramov
Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
Svetlana Gelfer
Department of Chemistry, Nuclear Research Centre Negev, POB 9001, Beer-Sheva, 84190, Israel
Michael Tsesarsky
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
Hadas Raveh-Amit
Department of Chemistry, Nuclear Research Centre Negev, POB 9001, Beer-Sheva, 84190, Israel
Related authors
No articles found.
Alaa Jbara and Michael Tsesarsky
Nat. Hazards Earth Syst. Sci., 25, 2197–2213, https://doi.org/10.5194/nhess-25-2197-2025, https://doi.org/10.5194/nhess-25-2197-2025, 2025
Short summary
Short summary
Fragile geologic features test long-term seismic hazard models. We modeled a free-standing 42 m high rock pillar in Israel’s Negev Desert using a validated finite-element model based on aerial lidar, in situ rock data, and measured vibrations. Dynamic analysis shows an M 7 quake on the Dead Sea Transform (45 km) will not break it, but an M 6 quake on the Sinai–Negev Shear Zone (6–20 km) probably will. With a fragility age of 11.4 kyr, the pillar challenges the SNSZ’s (Sinai–Negev Shear Zone) ability to produce M 6 events.
Jonatan Glehman and Michael Tsesarsky
Nat. Hazards Earth Syst. Sci., 22, 1451–1467, https://doi.org/10.5194/nhess-22-1451-2022, https://doi.org/10.5194/nhess-22-1451-2022, 2022
Short summary
Short summary
Due to an insufficient number of recorded moderate–strong earthquakes in Israel, estimating the ground motions and the subsequent seismic hazard mitigation becomes a challenge. To fill this gap, we performed a series of 3-D numerical simulations of moderate and moderate–strong earthquakes. We examined the ground motions and their variability through a self-developed statistical model. However, the model cannot fully capture the ground motion variability due to the local seismotectonic setting.
Cited articles
Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend, H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R., Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., and Bork, P.: Structure and function of the global topsoil microbiome, Nature, 560, 233–237, https://doi.org/10.1038/s41586-018-0386-6, 2018.
Belnap, J.: Nitrogen fixation in biological soil crusts from southeast Utah, USA, Biol. Fertil. Soils, 35, 128–135, https://doi.org/10.1007/s00374-002-0452-x, 2002.
Belnap, J. and Eldridge, D.: Disturbance and Recovery of Biological Soil Crusts, in: Biological Soil Crusts: Structure, Function, and Management, 363–383, https://doi.org/10.1007/978-3-642-56475-8_27, 2001.
Belnap, J. and Lange, O. L.: Biological soil crusts: structure, function, and management, Ecological Studies, vol. 150, Springer-Verlag, Berlin, Heidelberg, ISBN 3-540-43757-6, 2003.
Barnard, R. L., Osborne, C. A., and Firestone, M. K.: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting, ISME Journal, 7, 2229–2241, https://doi.org/10.1038/ismej.2013.104, 2013.
Castanier, S., Le Métayer-Levrel, G., and Perthuisot, J.-P.: Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view, Sedimentary Geology, 9–23, https://doi.org/10.1016/S0037-0738(99)00028-7, 1999.
Castillo-Monroy, A. P., Maestre, F. T., Delgado-Baquerizo, M., and Gallardo, A.: Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: Insights from a Mediterranean grassland, Plant Soil, 333, 21–34, https://doi.org/10.1007/s11104-009-0276-7, 2010.
Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., and Balagurusamy, N.: Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts, Frontiers in Materials, 6, https://doi.org/10.3389/fmats.2019.00126, 2019.
Chen, J., Xiao, G., Kuzyakov, Y., Jenerette, D., Liu, W., Wang, Z., and Shen, W.: Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest, Biogeosciences, 14, 2513–2525, https://doi.org/10.5194/bg-14-2513-2017, 2017.
Dejong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L. A., AL Qabany, A., Aydilek, A., Bang, S. S., Burbank, M., Caslake, L. F., Chen, C. Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D. A. C., Martinez, B., Montoya, B. M., Nelson, D. C., Palomino, A., Renforth, P., Santamarina, J. C., Seagren, E. A., Tanyu, B., Tsesarsky, M., and Weaver, T.: Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges, Geotechnique, 63, 287–301, https://doi.org/10.1680/geot.SIP13.P.017, 2013.
DeJong, J. T., Gomez, M. G., San Pablo, A. C., Graddy, C. M., Nelson, D. C., Lee, M., Ziotopoulou, K., El Kortbawi, M., Montoya, B., and Kwon, T .: State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation, 20th International Conference on Soil Mechanics and Geotechnical Engineering, 2022.
Delgado-Baquerizo, M., Maestre, F. T., Escolar, C., Gallardo, A., Ochoa, V., Gozalo, B., and Prado-Comesaña, A.: Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semi-arid grassland, Journal of Ecology, 102, 1592–1605, https://doi.org/10.1111/1365-2745.12303, 2014.
Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., and Fierer, N.: A global atlas of the dominant bacteria found in soil, Science, 359, 320–325, 2018.
De Muynck, W., De Belie, N., and Verstraete, W.: Microbial carbonate precipitation in construction materials: A review, Ecological Engineering, 36, 118–136, https://doi.org/10.1016/j.ecoleng.2009.02.006, 2010.
Durán Zuazo, V. H. and Rodríguez Pleguezuelo, C. R.: Soil erosion and runoff prevention by plant covers. A review, Agron. Sustain. Dev., 28, 65–86, https://doi.org/10.1051/agro:2007062, 2008.
Eilers, K. G., Debenport, S., Anderson, S., and Fierer, N.: Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil, Soil Biol. Biochem., 50, 58–65, https://doi.org/10.1016/j.soilbio.2012.03.011, 2012.
Falkowski, P. G., Fenchel, T., and Delong, E. F.: The Microbial Engines That Drive Earth's Biogeochemical Cycles, Science, 320, 1034–1039, https://doi.org/10.1126/SCIENCE.1153213, 2008.
Fan, Y., Hu, X., Zhao, Y., Wu, M., Wang, S., Wang, P., Xue, Y., and Zhu, S.: Urease producing microorganisms for coal dust suppression isolated from coal: Characterization and comparative study, Advanced Powder Technology, 31, 4095–4106, https://doi.org/10.1016/j.apt.2020.08.014, 2020.
Fierer, N.: Embracing the unknown: Disentangling the complexities of the soil microbiome, Nature Reviews Microbiology, 15, 579–590, https://doi.org/10.1038/nrmicro.2017.87, 2017.
Fierer, N., Schimel, J. P., and Holden, P. A.: Influence of drying–rewetting frequency on soil bacterial community structure, Microbial Ecology, 45, 63–71, https://doi.org/10.1007/s00248-002-1007-2, 2003a.
Fierer, N., Schimel, J. P., and Holden, P. A.: Variations in microbial community composition through two soil depth profiles, Soil Biol. Biochem., 35, 167–176, https://doi.org/10.1016/S0038-0717(02)00251-1, 2003b.
Gat, D., Tsesarsky, M., Wahanon, A., and Ronen, Z.: Ureolysis and MICP with model and native bacteria: implications for treatment strategies, in: Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability – Proceedings of the 2014 Congress, vol. 234, Geotechnical Special Publication 234, American Society of Civil Engineers, 1713–1720, https://doi.org/10.1061/9780784413272.168, 2014.
Gat, D., Ronen, Z., and Tsesarsky, M.: Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation, Environ. Sci. Technol., 50, 616–624, https://doi.org/10.1021/acs.est.5b04033, 2016.
Ghasemi, P. and Montoya, B. M.: Effect of Treatment Solution Chemistry and Soil Engineering Properties due to Microbially Induced Carbonate Precipitation Treatments on Vegetation Health and Growth, ACS ES&T Engineering, https://doi.org/10.1021/acsestengg.2c00196, 2022a.
Ghasemi, P. and Montoya, B. M.: Field Implementation of Microbially Induced Calcium Carbonate Precipitation for Surface Erosion Reduction of a Coastal Plain Sandy Slope, Journal of Geotechnical and Geoenvironmental Engineering, 148, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836, 2022b.
Gomez, M. G., Martinez, B. C., Dejong, J. T., Hunt, C. E., Devlaming, L. A., Major, D. W., and Dworatzek, S. M.: Field-scale bio-cementation tests to improve sands, Proceedings of the Institution of Civil Engineers: Ground Improvement, 168, 206–216, https://doi.org/10.1680/grim.13.00052, 2015.
Gomez, M. G., Graddy, C. M. R., DeJong, J. T., Nelson, D. C., and Tsesarsky, M.: Stimulation of Native Microorganisms for Biocementation in Samples Recovered from Field-Scale Treatment Depths, Journal of Geotechnical and Geoenvironmental Engineering, 144, https://doi.org/10.1061/(asce)gt.1943-5606.0001804, 2018.
Gomez, M. G., Graddy, C. M. R., DeJong, J. T., and Nelson, D. C.: Biogeochemical Changes During Bio-cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms, Sci. Rep., 9, https://doi.org/10.1038/s41598-019-47973-0, 2019.
Goodfellow, M.: Actinobacteria phyl. nov., in: Bergey's Manual of Systematics of Archaea and Bacteria, Wiley, 1–2, https://doi.org/10.1002/9781118960608.pbm00002, 2015.
Graddy, C. M. R., Gomez, M. G., Dejong, J. T., and Nelson, D. C.: Native Bacterial Community Convergence in Augmented and Stimulated Ureolytic MICP Biocementation, Environ. Sci. Technol., 55, 10784–10793, https://doi.org/10.1021/acs.est.1c01520, 2021.
He, J., He, Y., Gao, W., Chen, Y., Ma, G., Ji, R., and Liu, X.: Soil depth and agricultural irrigation activities drive variation in microbial abundance and nitrogen cycling, Catena, 219, https://doi.org/10.1016/j.catena.2022.106596, 2022.
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., and Wei, G.: Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems, Microbiome, 6, https://doi.org/10.1186/s40168-018-0526-0, 2018.
Kaminsky, L. M., Esker, P. D., and Bell, T. H.: Abiotic conditions outweigh microbial origin during bacterial assembly in soils, Environ. Microbiol., 23, 358–371, https://doi.org/10.1111/1462-2920.15322, 2021.
Knorst, M. T., Neubert, R., and Wohlrab, W.: Analytical methods for measuring urea in pharmaceutical formulations, Journal of Pharmaceutical and Biomedical Analysis, 15, 1627–1632, 1997.
Lal, R.: Sequestration of atmospheric CO2 in global carbon pools, Energy Environ. Sci., 1, 86–100, https://doi.org/10.1039/b809492f, 2008.
Lee, M., Gomez, M. G., San Pablo, A. C. M., Kolbus, C. M., Graddy, C. M. R., DeJong, J. T., and Nelson, D. C.: Investigating Ammonium By-product Removal for Ureolytic Bio-cementation Using Meter-scale Experiments, Sci. Rep., 9, https://doi.org/10.1038/s41598-019-54666-1, 2019.
Liu, B., Tang, C.-S., Pan, X.-H., Xu, J.-J., and Zhang, X.-Y.: Suppressing Drought-Induced Soil Desiccation Cracking Using MICP: Field Demonstration and Insights, Journal of Geotechnical and Geoenvironmental Engineering, 150, https://doi.org/10.1061/JGGEFK.GTENG-12011, 2024.
Maestre, F. T., Bowker, M. A., Cantón, Y., Castillo-Monroy, A. P., Cortina, J., Escolar, C., Escudero, A., Lázaro, R., and Martínez, I.: Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain, J. Arid Environ., 75, 1282–1291, https://doi.org/10.1016/j.jaridenv.2010.12.008, 2011.
Maestre, F. T., Escolar, C., de Guevara, M. L., Quero, J. L., Lázaro, R., Delgado-Baquerizo, M., Ochoa, V., Berdugo, M., Gozalo, B., and Gallardo, A.: Changes in biocrust cover drive carbon cycle responses to climate change in drylands, Glob. Chang. Biol., 19, 3835–3847, https://doi.org/10.1111/gcb.12306, 2013.
Maier, S., Tamm, A., Wu, D., Caesar, J., Grube, M., and Weber, B.: Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts, ISME Journal, 12, 1032–1046, https://doi.org/10.1038/s41396-018-0062-8, 2018.
Marusenko, Y., Garcia-Pichel, F., and Hall, S. J.: Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils, FEMS Microbiol. Ecol., 91, 1–11, https://doi.org/10.1093/femsec/fiu023, 2015.
Ohan, J. A., Saneiyan, S., Lee, J., Bartlow, A. W., Ntarlagiannis, D., Burns, S. E., and Colwell, F. S.: Microbial and Geochemical Dynamics of an Aquifer Stimulated for Microbial Induced Calcite Precipitation (MICP), Front. Microbiol., 11, https://doi.org/10.3389/fmicb.2020.01327, 2020.
Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., and Fierer, N.: The interplay between microbial communities and soil properties, Nature Reviews Microbiology, 22, 226–239, https://doi.org/10.1038/s41579-023-00980-5, 2023.
Pointing, S. B., and Belnap, J.: Microbial colonization and controls in dryland systems, Nature Reviews Microbiology, 10, 551–562, https://doi.org/10.1038/nrmicro2831, 2012.
Ratzke, C. and Gore, J.: Modifying and reacting to the environmental pH can drive bacterial interactions, PLoS Biol., 16, https://doi.org/10.1371/journal.pbio.2004248, 2018.
Raveh-Amit, H. and Tsesarsky, M.: Biostimulation in desert soils for microbial-induced calcite precipitation, Appl. Sci.-Basel, 10, https://doi.org/10.3390/APP10082905, 2020.
Raveh-Amit, H., Gruber, A., Abramov, K., and Tsesarsky, M.: Mitigation of aeolian erosion of loess soil by Bio-Stimulated microbial induced calcite precipitation, Catena, 237, 107808, https://doi.org/10.1016/j.catena.2024.107808, 2024.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 15 December 2025), 2023.
Rodriguez-Caballero, E., Stanelle, T., Egerer, S., Cheng, Y., Su, H., Canton, Y., Belnap, J., Andreae, M. O., Tegen, I., Reick, C. H., Pöschl, U., and Weber, B.: Global cycling and climate effects of aeolian dust controlled by biological soil crusts, Nat. Geosci., 15, 458–463, https://doi.org/10.1038/s41561-022-00942-1, 2022.
Rutherford, W. A., Painter, T. H., Ferrenberg, S., Belnap, J., Okin, G. S., Flagg, C., and Reed, S. C.: Albedo feedbacks to future climate via climate change impacts on dryland biocrusts, Sci. Rep., 7, https://doi.org/10.1038/srep44188, 2017.
Soil Survey Staff: Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd edn., Natural Resources Conservation Service, US Department of Agriculture, Handbook 436, https://www.nrcs.usda.gov/resources/guides-and-instructions/soil-taxonomy (last access: 15 December 2025), 1999.
Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, O., Trubl, G., McFarlane, K., Stuart, R., Nuccio, E., Weber, P., Jiao, Y., Zavarin, M., Kimbrel, J., Morrison, K., Adhikari, D., Bhattacharaya, A., Nico, P., Tang, J., Didonato, N., Paša-Tolić, L., Greenlon, A., Sieradzki, E. T., Dijkstra, P., Schwartz, E., Sachdeva, R., Banfield, J., and Pett-Ridge, J.: Life and death in the soil microbiome: how ecological processes influence biogeochemistry, Nature Reviews Microbiology, 20, 415–430, https://doi.org/10.1038/s41579-022-00695-z, 2022.
Steven, B., Gallegos-Graves, L. V., Belnap, J., and Kuske, C. R.: Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material, FEMS Microbiology Ecology, 86, 101–113, https://doi.org/10.1111/1574-6941.12143, 2013.
Walters, K. E. and Martiny, J. B. H.: Alpha-, beta-, and gamma-diversity of bacteria varies across habitats, PLoS One, 15, https://doi.org/10.1371/journal.pone.0233872, 2020.
Weber, B., Belnap, J., Büdel, B., Antoninka, A. J., Barger, N. N., Chaudhary, V. B., Darrouzet-Nardi, A., Eldridge, D. J., Faist, A. M., Ferrenberg, S., Havrilla, C. A., Huber-Sannwald, E., Malam Issa, O., Maestre, F. T., Reed, S. C., Rodriguez-Caballero, E., Tucker, C., Young, K. E., Zhang, Y., Zhao, Y., Zhou, X., and Bowker, M. A.: What is a biocrust? A refined, contemporary definition for a broadening research community, Biological Reviews, 97, 1768–1785, https://doi.org/10.1111/brv.12862, 2022.
Whitaker, J. M., Vanapalli, S., and Fortin, D.: Improving the strength of sandy soils via ureolytic CaCO3 solidification by Sporosarcina ureae, Biogeosciences, 15, 4367–4380, https://doi.org/10.5194/bg-15-4367-2018, 2018.
Xu, L., Zhu, B., Li, C., Yao, M., Zhang, B., and Li, X.: Development of biological soil crust prompts convergent succession of prokaryotic communities, Catena, 187, https://doi.org/10.1016/j.catena.2019.104360, 2020.
Short summary
Microbial-induced calcite precipitation (MICP) is considered an environmentally conscious technology for soil amelioration. We study the response of microbiomes to MICP stimulation in arid soils from different sites and depths. We show that different soil depths host distinct microbiomes, and that biostimulation selects for specific taxa while suppressing others. The study provides evidence for the effectiveness of biostimulation, yet shows that it comes with a cost for biodiversity.
Microbial-induced calcite precipitation (MICP) is considered an environmentally conscious...
Altmetrics
Final-revised paper
Preprint