Articles | Volume 22, issue 24
https://doi.org/10.5194/bg-22-8093-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-8093-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiscale statistical analysis of thermal and non-thermal components of seawater pCO2 in the Western English Channel: scaling, time-reversibility, and dependence
Kévin Robache
CORRESPONDING AUTHOR
Laboratoire d'Océanologie et Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR LOG 8187, 62930 Wimereux, France
François G. Schmitt
CORRESPONDING AUTHOR
Laboratoire d'Océanologie et Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR LOG 8187, 62930 Wimereux, France
Related authors
Kévin Robache, Zéline Hubert, Clémentine Gallot, Alexandre Epinoux, Arnaud P. Louchart, Jean-Valéry Facq, Alain Lefebvre, Michel Répécaud, Vincent Cornille, Florine Verhaeghe, Yann Audinet, Laurent Brutier, François G. Schmitt, and Luis Felipe Artigas
Ocean Sci., 21, 1787–1811, https://doi.org/10.5194/os-21-1787-2025, https://doi.org/10.5194/os-21-1787-2025, 2025
Short summary
Short summary
By deploying an automated flow cytometer at a coastal monitoring station in France, we tracked phytoplankton changes every 2 h during spring (2021 and 2022) and summer (2022). Our study revealed distinct seasonal shifts, e.g., with diatoms and haptophytes in spring. Rare weather events rapidly altered community composition. We found that most variability occurred on short timescales, underscoring the importance of high-frequency monitoring for understanding marine phytoplankton dynamics.
Zéline Hubert, Arnaud P. Louchart, Kévin Robache, Alexandre Epinoux, Clémentine Gallot, Vincent Cornille, Muriel Crouvoisier, Sébastien Monchy, and Luis Felipe Artigas
Ocean Sci., 21, 679–700, https://doi.org/10.5194/os-21-679-2025, https://doi.org/10.5194/os-21-679-2025, 2025
Short summary
Short summary
This study provides the first assessment of decadal changes in the whole phytoplankton community, addressed by flow cytometry, in the highly productive waters of the Strait of Dover. A significant surface seawater temperature increase of 1°C, associated with an important change in the nutrient concentration and balance, has triggered a change in the phytoplankton communities, characterized by a higher total abundance and an increasing proportion of the smallest cells (picroeukaryotes and picocyanobacteria).
Kévin Robache, François G. Schmitt, and Yongxiang Huang
Nonlin. Processes Geophys., 32, 35–49, https://doi.org/10.5194/npg-32-35-2025, https://doi.org/10.5194/npg-32-35-2025, 2025
Short summary
Short summary
In this work, the multiscale dynamics of 38 oceanic and atmospheric pCO2 time series, sea surface temperature data, and salinity data from fixed buoys recorded with 3 h resolution are considered. The Fourier scaling exponents are estimated. The differences found for three ecosystems – coastal shelf, coral reefs and open ocean – are discussed. Multifractal properties of pCO2 difference between ocean and atmosphere are found and characterized over the scale range from 3 h to 1 year.
Harshal Chavan, Urania Christaki, Luis Felipe Artigas, and Francois G. Schmitt
EGUsphere, https://doi.org/10.5194/egusphere-2025-6235, https://doi.org/10.5194/egusphere-2025-6235, 2026
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
We found that fluctuations in the marine environment during summer can trigger bloom formation in the nutrient-depleted eastern English Channel. Different storm impacts played various roles in promoting the growth of certain phytoplankton. Surplus nutrients supplied by rivers caused diatom blooms, while wind-driven storms supported the growth of pico- and nano-sized phytoplankton.
Kévin Robache, Zéline Hubert, Clémentine Gallot, Alexandre Epinoux, Arnaud P. Louchart, Jean-Valéry Facq, Alain Lefebvre, Michel Répécaud, Vincent Cornille, Florine Verhaeghe, Yann Audinet, Laurent Brutier, François G. Schmitt, and Luis Felipe Artigas
Ocean Sci., 21, 1787–1811, https://doi.org/10.5194/os-21-1787-2025, https://doi.org/10.5194/os-21-1787-2025, 2025
Short summary
Short summary
By deploying an automated flow cytometer at a coastal monitoring station in France, we tracked phytoplankton changes every 2 h during spring (2021 and 2022) and summer (2022). Our study revealed distinct seasonal shifts, e.g., with diatoms and haptophytes in spring. Rare weather events rapidly altered community composition. We found that most variability occurred on short timescales, underscoring the importance of high-frequency monitoring for understanding marine phytoplankton dynamics.
Zéline Hubert, Arnaud P. Louchart, Kévin Robache, Alexandre Epinoux, Clémentine Gallot, Vincent Cornille, Muriel Crouvoisier, Sébastien Monchy, and Luis Felipe Artigas
Ocean Sci., 21, 679–700, https://doi.org/10.5194/os-21-679-2025, https://doi.org/10.5194/os-21-679-2025, 2025
Short summary
Short summary
This study provides the first assessment of decadal changes in the whole phytoplankton community, addressed by flow cytometry, in the highly productive waters of the Strait of Dover. A significant surface seawater temperature increase of 1°C, associated with an important change in the nutrient concentration and balance, has triggered a change in the phytoplankton communities, characterized by a higher total abundance and an increasing proportion of the smallest cells (picroeukaryotes and picocyanobacteria).
Kévin Robache, François G. Schmitt, and Yongxiang Huang
Nonlin. Processes Geophys., 32, 35–49, https://doi.org/10.5194/npg-32-35-2025, https://doi.org/10.5194/npg-32-35-2025, 2025
Short summary
Short summary
In this work, the multiscale dynamics of 38 oceanic and atmospheric pCO2 time series, sea surface temperature data, and salinity data from fixed buoys recorded with 3 h resolution are considered. The Fourier scaling exponents are estimated. The differences found for three ecosystems – coastal shelf, coral reefs and open ocean – are discussed. Multifractal properties of pCO2 difference between ocean and atmosphere are found and characterized over the scale range from 3 h to 1 year.
Cited articles
An, S.-I. and Jin, F.-F.: Nonlinearity and Asymmetry of ENSO, J. Climate, 17, 2399–2412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2, 2004. a
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a
Batchelor, G. K. and Townsend, A. A.: The Nature of Turbulent Motion at Large Wave-Numbers, P. R. Soc. A: Math. Phy., 199, 238–255, https://doi.org/10.1098/rspa.1949.0136, 1949. a
Bestehorn, M., Michelitsch, T. M., Collet, B. A., Riascos, A. P., and Nowakowski, A. F.: Simple Model of Epidemic Dynamics with Memory Effects, Phys. Rev. E, 105, 024205, https://doi.org/10.1103/PhysRevE.105.024205, 2022. a
Bozec, Y., Merlivat, L., Baudoux, A. C., Beaumont, L., Blain, S., Bucciarelli, E., Danguy, T., Grossteffan, E., Guillot, A., Guillou, J., Répécaud, M., and Tréguer, P.: Diurnal to Inter-Annual Dynamics of pCO2 Recorded by a CARIOCA Sensor in a Temperate Coastal Ecosystem (2003–2009), Mar. Chem., 126, 13–26, https://doi.org/10.1016/j.marchem.2011.03.003, 2011. a, b
Bozec, Y., Loisel, S., and Bureau, S.: ASTAN Cardinal Buoy (Western English Channel, France) Data from 2015 to 2019, SEANOE [data set], https://doi.org/10.17882/106537, 2025. a
Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., and Zehner, C.: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014. a
Corrsin, S.: On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence, J. Appl. Phys., 22, 469–473, https://doi.org/10.1063/1.1699986, 1951. a, b
Crosswell, J. R., Wetz, M. S., Hales, B., and Paerl, H. W.: Extensive CO2 Emissions from Shallow Coastal Waters during Passage of Hurricane Irene (August 2011) over the Mid-Atlantic Coast of the USA, Limnol. Oceanogr., 59, 1651–1665, https://doi.org/10.4319/lo.2014.59.5.1651, 2014. a
Dauvin, J.-C.: The English Channel: La Manche, in: World Seas: An Environmental Evaluation, 2nd. edn., Chapt. 6, edited by: Sheppard, C., Academic Press, 153–188, https://doi.org/10.1016/B978-0-12-805068-2.00008-5, 2019. a
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023. a
Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, https://doi.org/10.1017/CBO9781139170666, 1995. a, b
Gao, Y., Schmitt, F. G., Hu, J., and Huang, Y.: Scaling Analysis of the China France Oceanography Satellite Along-Track Wind and Wave Data, J. Geophys. Res.: Oceans, 126, e2020JC017119, https://doi.org/10.1029/2020JC017119, 2021. a, b
Giancaterini, F., Hecq, A., and Morana, C.: Is Climate Change Time-Reversible?, Econometrics, 10, 36, https://doi.org/10.3390/econometrics10040036, 2022. a
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H.: The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis, P. R. Soc. A: Math. Phy., 454, 903–995, https://doi.org/10.1098/rspa.1998.0193, 1998. a
Hugh-Jones, D.: Ggmagnify: Create a Magnified Inset of Part of a “Ggplot” Object [code], https://hughjonesd.github.io/ggmagnify/ (last access: 17 December 2025), 2023. a
Idier, D., Dumas, F., and Muller, H.: Tide-surge interaction in the English Channel, Nat. Hazards Earth Syst. Sci., 12, 3709–3718, https://doi.org/10.5194/nhess-12-3709-2012, 2012. a
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023. a
Jiang, L.-Q., Cai, W.-J., Wang, Y., and Bauer, J. E.: Influence of terrestrial inputs on continental shelf carbon dioxide, Biogeosciences, 10, 839–849, https://doi.org/10.5194/bg-10-839-2013, 2013. a
Kolmogorov, A. N.: On Degeneration (Decay) of Isotropic Turbulence in an Incompressible Viscous Liquid, Doklady Akademii Nauk SSSR, 31, 538–540, 1941. a
Levoy, F., Anthony, E. J., Monfort, O., and Larsonneur, C.: The Morphodynamics of Megatidal Beaches in Normandy, France, Mar. Geol., 171, 39–59, https://doi.org/10.1016/S0025-3227(00)00110-9, 2000. a
Marrec, P., Cariou, T., Collin, E., Durand, A., Latimier, M., Macé, E., Morin, P., Raimund, S., Vernet, M., and Bozec, Y.: Seasonal and Latitudinal Variability of the CO2 System in the Western English Channel Based on Voluntary Observing Ship (VOS) Measurements, Mar. Chem., 155, 29–41, https://doi.org/10.1016/j.marchem.2013.05.014, 2013. a, b
Mathai, J. and Mujumdar, P. P.: Use of streamflow indices to identify the catchment drivers of hydrographs, Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022, 2022. a
Northcott, D., Sevadjian, J., Sancho-Gallegos, D. A., Wahl, C., Friederich, J., and Chavez, F. P.: Impacts of Urban Carbon Dioxide Emissions on Sea-Air Flux and Ocean Acidification in Nearshore Waters, PLOS ONE, 14, e0214403, https://doi.org/10.1371/journal.pone.0214403, 2019. a
Obukhov, A. M.: The Structure of the Temperature Field in a Turbulent Flow, Izvestiya Akademii Nauk SSSR. Geografiya i Geofizika, 13, 58–69, 1949. a
Pingree, R. D. and Griffiths, D. K.: Tidal Fronts on the Shelf Seas around the British Isles, J. Geophys. Res.: Oceans, 83, 4615–4622, https://doi.org/10.1029/JC083iC09p04615, 1978. a
Pomeau, Y.: Symétrie des fluctuations dans le renversement du temps, Journal de Physique, 43, 859–867, https://doi.org/10.1051/jphys:01982004306085900, 1982. a
Pomeau, Y.: Time in Science: Reversibility vs. Irreversibility, in: Discrete Integrable Systems, edited by Grammaticos, B., Tamizhmani, T., and Kosmann-Schwarzbach, Y., 425–436, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-40357-9_10, 2004. a
Reid, P. C., Auger, C., Chaussepied, M., and Burn, M.: Quality Status Report of the North Sea 1993: Report on Sub-region 9: The Channel, North Sea Task Force, UK Dep. of the Environ., Républ. Fr. Minist. de l'Environ., Inst. Fr. de Rech. Pour l'Exploit. de la Mer, Brest, 1993. a
Reimer, J. J., Cai, W.-J., Xue, L., Vargas, R., Noakes, S., Hu, X., Signorini, S. R., Mathis, J. T., Feely, R. A., Sutton, A. J., Sabine, C., Musielewicz, S., Chen, B., and Wanninkhof, R.: Time Series pCO2 at a Coastal Mooring: Internal Consistency, Seasonal Cycles, and Interannual Variability, Cont. Shelf. Res., 145, 95–108, https://doi.org/10.1016/j.csr.2017.06.022, 2017. a
Robache, K. and Schmitt, F. G.: Thermal and Non-Thermal Components of pCO2 Estimated from ASTAN Cardinal Buoy (Western English Channel) Data from 2015 to 2019, SEANOE [data set], https://doi.org/10.17882/106550, 2025. a
Schmitt, F. G.: Scaling Analysis of Time-Reversal Asymmetries in Fully Developed Turbulence, Fractal and Fractional, 7, 630, https://doi.org/10.3390/fractalfract7080630, 2023. a, b, c, d
Schmitt, F. G. and Huang, Y.: Stochastic Analysis of Scaling Time Series: From Turbulence Theory to Applications, Cambridge University Press, https://doi.org/10.1017/CBO9781107705548, 2016. a, b
Séférian, R., Bopp, L., Swingedouw, D., and Servonnat, J.: Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes, Earth Syst. Dynam., 4, 109–127, https://doi.org/10.5194/esd-4-109-2013, 2013. a
Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D., Lovejoy, S., and Frontier, S.: Multifractal Analysis of Phytoplankton Biomass and Temperature in the Ocean, Geophys. Res. Lett., 23, 3591–3594, https://doi.org/10.1029/96GL03473, 1996. a, b
Simboura, N., Panayotidis, P., and Papathanassiou, E.: A Synthesis of the Biological Quality Elements for the Implementation of the European Water Framework Directive in the Mediterranean Ecoregion: The Case of Saronikos Gulf, Ecol. Indic., 5, 253–266, https://doi.org/10.1016/j.ecolind.2005.03.006, 2005. a
Sutton, A. J., Sabine, C. L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C., Feely, R. A., Mathis, J. T., Musielewicz, S., Bott, R., McLain, P. D., Fought, H. J., and Kozyr, A.: A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system, Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, 2014. a
Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W.-J., Cronin, M. F., De Carlo, E. H., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden, M. J., Meléndez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W., Vandemark, D. C., and Weller, R. A.: Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends, Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, 2019. a
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global Sea–Air CO2 Flux Based on Climatological Surface Ocean pCO2, and Seasonal Biological and Temperature Effects, Deep-Sea Res. Pt. II, 49, 1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6, 2002. a
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological Mean and Decadal Change in Surface Ocean pCO2, and Net Sea–Air CO2 Flux over the Global Oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009. a, b, c, d, e, f
Torres, O., Kwiatkowski, L., Sutton, A. J., Dorey, N., and Orr, J. C.: Characterizing Mean and Extreme Diurnal Variability of Ocean CO2 System Variables Across Marine Environments, Geophys. Res. Lett., 48, e2020GL090228, https://doi.org/10.1029/2020GL090228, 2021. a
Wand, M. P. and Jones, M. C.: Kernel Smoothing, CRC Press, https://doi.org/10.1201/b14876, 1994. a
Wanninkhof, R., Pierrot, D., Sullivan, K., Mears, P., and Barbero, L.: Comparison of Discrete and Underway CO2 Measurements: Inferences on the Temperature Dependence of the Fugacity of CO2 in Seawater, Mar. Chem., 247, 104178, https://doi.org/10.1016/j.marchem.2022.104178, 2022. a
Weiss, R. F.: The Solubility of Nitrogen, Oxygen and Argon in Water and Seawater, Deep Sea Research and Oceanographic Abstracts, 17, 721–735, https://doi.org/10.1016/0011-7471(70)90037-9, 1970. a
Wickham, H. and RStudio: Tidyverse: Easily Install and Load the “Tidyverse”, Version 2.0.0, CRAN [code], https://doi.org/10.32614/CRAN.package.tidyverse, 2023. a
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.: Welcome to the Tidyverse, Journal of Open Source Software, 4, 1686, https://doi.org/10.21105/joss.01686, 2019. a
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., van den Brand, T., Posit, and PBC: Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, Version 3.5.1, CRAN [code], https://doi.org/10.32614/CRAN.package.ggplot2, 2025. a
Wimart-Rousseau, C., Lajaunie-Salla, K., Marrec, P., Wagener, T., Raimbault, P., Lagadec, V., Lafont, M., Garcia, N., Diaz, F., Pinazo, C., Yohia, C., Garcia, F., Xueref-Remy, I., Blanc, P.-E., Armengaud, A., and Lefèvre, D.: Temporal Variability of the Carbonate System and Air–Sea CO2 Exchanges in a Mediterranean Human-Impacted Coastal Site, Estuar. Coast. Shelf S., 236, 106641, https://doi.org/10.1016/j.ecss.2020.106641, 2020. a, b
Xu, H., Ouellette, N. T., and Bodenschatz, E.: Curvature of Lagrangian Trajectories in Turbulence, Phys. Rev. Lett., 98, 050201, https://doi.org/10.1103/PhysRevLett.98.050201, 2007. a, b
Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y., and Liang, C.: Effects of Typhoons on Surface Seawater pCO2 and Air–Sea CO2 Fluxes in the Northern South China Sea, J. Geophys. Res.: Oceans, 125, e2020JC016258, https://doi.org/10.1029/2020JC016258, 2020. a
Zongo, S. B. and Schmitt, F. G.: Scaling properties of pH fluctuations in coastal waters of the English Channel: pH as a turbulent active scalar, Nonlin. Processes Geophys., 18, 829–839, https://doi.org/10.5194/npg-18-829-2011, 2011. a
Short summary
Partial pressure of CO2 (pCO2) measurements were collected on the Astan buoy over nearly 5 years. Using advanced statistical tools, this study revealed that pCO2 variations, along with other parameters, follow turbulent and intermittent dynamics. We highlights the irreversibility of the thermal and non-thermal components of pCO2 and explores their links to temperature, biological production, and atmospheric or terrigenous inputs, providing new insights into high-frequency pCO2 variability.
Partial pressure of CO2 (pCO2) measurements were collected on the Astan buoy over nearly 5...
Altmetrics
Final-revised paper
Preprint