Articles | Volume 23, issue 1
https://doi.org/10.5194/bg-23-39-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-23-39-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vegetation-mediated surface soil organic carbon formation and potential carbon loss risks in Dongting Lake floodplain, China
Liyan Wang
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem in Hunan Province, Changsha 410125, China
University of Chinese Academy of Sciences, Beijing 100049, China
Zhengmiao Deng
CORRESPONDING AUTHOR
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem in Hunan Province, Changsha 410125, China
Yonghong Xie
CORRESPONDING AUTHOR
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem in Hunan Province, Changsha 410125, China
Tao Wang
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem in Hunan Province, Changsha 410125, China
Feng Li
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem in Hunan Province, Changsha 410125, China
Ye'ai Zou
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem in Hunan Province, Changsha 410125, China
Buqing Wang
Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410600, China
Zhitao Huo
Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410600, China
Cicheng Zhang
College of Geographic Science, Hunan Normal University, Changsha 410081, China
Changhui Peng
Department of Biological Sciences, the University of Québec at Montreal, Montreal, QC H3C 3P8, Canada
Andrew Macrae
Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Rio de Janeiro, BR 21941902, Brazil
Related authors
No articles found.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhongli Liu, Dizhou Wang, Cicheng Zhang, Zhiguo Rao, Xinguang He, and Huade Guan
Atmos. Chem. Phys., 25, 6475–6496, https://doi.org/10.5194/acp-25-6475-2025, https://doi.org/10.5194/acp-25-6475-2025, 2025
Short summary
Short summary
Our study reveals how water vapor, directed by seasonal winds, shapes precipitation isotopes in China's Dongting Lake basin. We traced water vapor paths, showing their impact on water supply and climate. This insight is key for predicting future water resources and climate patterns, offering a clearer understanding of our interconnected environmental systems.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023, https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary
Short summary
With the aim of improving the understanding of seasonal variations in water stable isotopes and catchment hydrological processes, we compared the temporal variations of precipitation and river water isotopes with the hydrometeorological factors in the Xiangjiang River over 13 years. Results showed that the changes in river water isotopes can be variables that reflect the seasonal variations in local environments and extreme events and may show implications for paleoclimate reconstruction.
Cited articles
Adame, M. F. and Fry, B.: Source and stability of soil carbon in mangrove and freshwater wetlands of the Mexican Pacific coast, Wetlands Ecol. Manage., 24, 129–137, https://doi.org/10.1007/s11273-015-9475-6, 2016.
Benner, R., Maccubbin, A. E., and Hodson, R. E.: Anaerobic Biodegradation of the Lignin and Polysaccharide Components of Lignocellulose and Synthetic Lignin by Sediment Microflora, Appl. Environ. Microbiol., 47, 998–1004, https://doi.org/10.1128/aem.47.5.998-1004.1984, 1984.
Boeni, M., Bayer, C., Dieckow, J., Conceiçao, P. C., Dick, D. P., Knicker, H., Salton, J. C., and Macedo, M. C. M.: Organic matter composition in density fractions of Cerrado Ferralsols as revealed by CPMAS 13C NMR: Influence of pastureland, cropland and integrated crop-livestock, Agric., Ecosyst. Environ., 190, 80–86, https://doi.org/10.1016/j.agee.2013.09.024, 2014.
Boye, K., Noël, V., Tfaily, M. M., Bone, S. E., Williams, K. H., Bargar, J. R., and Fendorf, S.: Thermodynamically controlled preservation of organic carbon in floodplains, Nat. Geosci., 10, 415–419, https://doi.org/10.1038/ngeo2940, 2017.
Cano, A. F., Mermut, A. R., Ortiz, R., Benke, M. B., and Chatson, B.: 13C CP/MAS-NMR spectra, of organic matter as influenced by vegetation, climate, and soil characteristics in soils from Murcia, Spain, Can. J. Soil Sci., 82, 403–411, 2002.
Chen, X., Xu, Y. J., Gao, H. J., Mao, J. D., Chu, W. Y., and Thompson, M. L.: Biochemical stabilization of soil organic matter in straw-amended, anaerobic and aerobic soils, Sci. Total Environ., 625, 1065–1073, https://doi.org/10.1016/j.scitotenv.2017.12.293, 2018.
Deng, Z. M., Li, Y. Z., Xie, Y. H., Peng, C. H., Chen, X. S., Li, F., Ren, Y. J., Pan, B. H., and Zhang, C. Y.: Hydrologic and Edaphic Controls on Soil Carbon Emission in Dongting Lake Floodplain, China, Journal of Geophysical Research-Biogeosciences, 123, 3088–3097, https://doi.org/10.1029/2018jg004515, 2018.
Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z. G., Sommer, M., and Fiener, P.: Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes, Earth-Sci. Rev., 154, 102–122, https://doi.org/10.1016/j.earscirev.2015.12.005, 2016.
Gao, J. F., Zhang, C., Jiang J. H., and Huang, Q.: Changes in Sediment Deposition and Erosion and Their Spatial Distribution in the Dongting Lake, Journal of Geographical Sciences, 11, 402–410, 2001.
Guo, M., Yang, L., Zhang, L., Shen, F. X., Meadows, M. E., and Zhou, C. H.: Hydrology, vegetation, and soil properties as key drivers of soil organic carbon in coastal wetlands: A high-resolution study, Environmental Science and Ecotechnology, 23, https://doi.org/10.1016/j.ese.2024.100482, 2025.
Heger, A., Becker, J. N., Navas, L. K. V., and Eschenbach, A.: Factors controlling soil organic carbon stocks in hardwood floodplain forests of the lower middle Elbe River, Geoderma, 404, https://doi.org/10.1016/j.geoderma.2021.115389, 2021.
Kayranli, B., Scholz, M., Mustafa, A., and Hedmark, Å.: Carbon Storage and Fluxes within Freshwater Wetlands: a Critical Review, Wetlands, 30, 111–124, https://doi.org/10.1007/s13157-009-0003-4, 2010.
Keil, R. G.: Terrestrial influences on carbon burial at sea, P. Natl. Acad. Sci. USA, 108, 9729–9730, https://doi.org/10.1073/pnas.1106928108, 2011.
Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., and Fendorf, S.: Anaerobic microsites have an unaccounted role in soil carbon stabilization, Nat. Commun., 8, https://doi.org/10.1038/s41467-017-01406-6, 2017.
Kelsall, M., Quirk, T., Wilson, C., and Snedden, G. A.: Sources and chemical stability of soil organic carbon in natural and created coastal marshes of Louisiana, Sci. Total Environ., 867, 12, https://doi.org/10.1016/j.scitotenv.2023.161415, 2023.
Kendall, C., Silva, S. R., and Kelly, V. J.: Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States, Hydrol. Process., 15, 1301–1346, https://doi.org/10.1002/hyp.216, 2001.
Kirk, T. K. and Farrell, R. L.: Enzymatic combustion – the microbial-degradation of lignin, Annu. Rev. Microbiol., 41, 465–505, https://doi.org/10.1146/annurev.mi.41.100187.002341, 1987.
Köchy, M., Hiederer, R., and Freibauer, A.: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world, SOIL, 1, 351–365, https://doi.org/10.5194/soil-1-351-2015, 2015.
Li, Y., Zhang, H. B., Tu, C., Fu, C. C., Xue, Y., and Luo, Y. M.: Sources and fate of organic carbon and nitrogen from land to ocean: Identified by coupling stable isotopes with C N ratio, Estuar. Coast. Shelf Sci., 181, 114–122, https://doi.org/10.1016/j.ecss.2016.08.024, 2016.
Liu, S. Y., Li, J. Y., Liang, A. Z., Duan, Y., Chen, H. B., Yu, Z. Y., Fan, R. Q., Liu, H. Y., and Pan, H.: Chemical Composition of Plant Residues Regulates Soil Organic Carbon Turnover in Typical Soils with Contrasting Textures in Northeast China Plain, Agronomy-Basel, 12, https://doi.org/10.3390/agronomy12030747, 2022.
McKee, G. A., Soong, J. L., Caldéron, F., Borch, T., and Cotrufo, M. F.: An integrated spectroscopic and wet chemical approach to investigate grass litter decomposition chemistry, Biogeochemistry, 128, 107–123, https://doi.org/10.1007/s10533-016-0197-5, 2016.
Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jorgensen, S. E., and Brix, H.: Wetlands, carbon, and climate change, Landsc. Ecol., 28, 583–597, https://doi.org/10.1007/s10980-012-9758-8, 2013.
Ni, X., Zhao, G. M., White, J. R., Yao, P., Xu, K. H., Sapkota, Y., Liu, J. C., Zheng, H., Su, D. P., He, L., Liu, Q., Yang, S. X., Yuan, H. M., Ding, X. G., Zhang, Y., and Ye, S. Y.: Source and degradation of soil organic matter in different vegetations along a salinity gradient in the Yellow River Delta wetland, Catena, 248, https://doi.org/10.1016/j.catena.2024.108603, 2025.
Preston, C. M., Newman, R. H., and Rother, P.: Using C-13 CPMAS NMR to assess effects of cultivation on the organic-matter of particle-size fractions in a grassland soil, Soil Sci., 157, 26–35, https://doi.org/10.1097/00010694-199401000-00005, 1994.
Quideau, S. A., Chadwick, O. A., Benesi, A., Graham, R. C., and Anderson, M. A.: A direct link between forest vegetation type and soil organic matter composition, Geoderma, 104, 41–60, https://doi.org/10.1016/s0016-7061(01)00055-6, 2001.
Ran, F. W., Nie, X. D., Wang, S. L., Liao, W. F., and Li, Z. W.: Evolutionary patterns of the sedimentary environment signified by grain size characteristics in Lake Dongting during the last century, Journal of Lake Sciences, 35, 1111–1125, 2023.
Ren, J. L., Zheng, Z. B., Li, Y. M., Lv, G. N., Wang, Q., Lyu, H., Huang, C. C., Liu, G., Du, C. G., Mu, M., Lei, S. H., and Bi, S.: Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery, Sci. Total Environ., 625, 1554–1566, https://doi.org/10.1016/j.scitotenv.2018.01.036, 2018.
Robertson, A. I., Bunn, S. E., Boon, P. I., and Walker, K. F.: Sources, sinks and transformations of organic carbon in Australian floodplain rivers, Mar. Freshw. Res., 50, 813–829, https://doi.org/10.1071/mf99112, 1999.
Sasmito, S. D., Kuzyakov, Y., Lubis, A. A., Murdiyarso, D., Hutley, L. B., Bachri, S., Friess, D. A., Martius, C., and Borchard, N.: Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems, Catena, 187, 11, https://doi.org/10.1016/j.catena.2019.104414, 2020.
Shen, D. Y., Ye, C. L., Hu, Z. K., Chen, X. Y., Guo, H., Li, J. Y., Du, G. Z., Adl, S., and Liu, M. Q.: Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan alpine meadow, Soil Biol. Biochem., 126, 11–21, https://doi.org/10.1016/j.soilbio.2018.08.008, 2018.
Shen, R. C., Lan, Z. C., Huang, X. Y., Chen, Y. S., Hu, Q. W., Fang, C. M., Jin, B. S., and Chen, J. K.: Soil and plant characteristics during two hydrologically contrasting years at the lakeshore wetland of Poyang Lake, China, J. Soils Sediments, 20, 3368–3379, https://doi.org/10.1007/s11368-020-02638-8, 2020.
Skjemstad, J. O., Clarke, P., Taylor, J. A., Oades, J. M., and Newman, R. H.: The removal of magnetic-materials from surface soils – a solid-state C-13 CP/MAS NMR-study, Aust. J. Soil Res., 32, 1215–1229, https://doi.org/10.1071/sr9941215, 1994.
Spaccini, R., Mbagwu, J. S. C., Conte, P., and Piccolo, A.: Changes of humic substances characteristics from forested to cultivated soils in Ethiopia, Geoderma, 132, 9–19, https://doi.org/10.1016/j.geoderma.2005.04.015, 2006.
Stock, B. C. and Semmens, B. X.: MixSIAR GUI User Manual, Version3.1, https://github.com/brianstock/MixSIAR/, Zenodo [code], https://doi.org/10.5281/zenodo.47719, 2016.
Swinnen, W., Daniëls, T., Maurer, E., Broothaerts, N., and Verstraeten, G.: Geomorphic controls on floodplain sediment and soil organic carbon storage in a Scottish mountain river, Earth Surface Processes and Landforms, 45, 207–223, https://doi.org/10.1002/esp.4729, 2020.
Wang, F. F., Tao, Y. R., Yang, S. C., and Cao, W. Z.: Warming and flooding have different effects on organic carbon stability in mangrove soils, J. Soils Sediments, 10, https://doi.org/10.1007/s11368-023-03636-2, 2023.
Wang, F. F., Zhang, N., Yang, S. C., Li, Y. S., Yang, L., and Cao, W. Z.: Source and stability of soil organic carbon jointly regulate soil carbon pool, but source alteration is more effective in mangrove ecosystem following Spartina alterniflora invasion, Catena, 235, 12, https://doi.org/10.1016/j.catena.2023.107681, 2024a.
Wang, J. J., Dodla, S. K., DeLaune, R. D., Hudnall, W. H., and Cook, R. L.: Soil Carbon Characteristics in Two Mississippi River Deltaic Marshland Profiles, Wetlands, 31, 157–166, https://doi.org/10.1007/s13157-010-0130-y, 2011.
Wang, L., Deng, Z., Xie, Y., Wang, T., Li, F., Zou, Y., Wang, B., Huo, Z., Zhang, C., Peng, C., and Macrae, A.: SOC, figshare [data set], https://doi.org/10.6084/m9.figshare.30781895, 2025a.
Wang, L. Y., Wang, B. Q., Deng, Z. M., Xie, Y. H., Wang, T., Li, F., Wu, S. A., Hu, C., Li, X., Hou, Z. Y., Zeng, J., Zou, Y. A., Liu, Z. L., Peng, C. H., and Andrew, M.: Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022, J. Integr. Agric., 2025b.
Wang, M. L., Lai, J. P., Hu, K. T., and Zhang, D. L.: Compositions of stable organic carbon and nitrogen isotopes in wetland soil of Poyang Lake and its environmental implications, China Environmental Science, 36, 500–505, 2016.
Wang, S. L., Ran, F. W., Li, Z. W., Yang, C. R., Xiao, T., Liu, Y. J., and Nie, X. D.: Coupled effects of human activities and river-Lake interactions evolution alter sources and fate of sedimentary organic carbon in a typical river-Lake system, Water Res., 255, 13, https://doi.org/10.1016/j.watres.2024.121509, 2024b.
Wu, H., Zhang, H. C., Chang, F. Q., Duan, L. Z., Zhang, X. N., Peng, W., Liu, Q., Zhang, Y., and Liu, F. W.: Isotopic constraints on sources of organic matter and environmental change in Lake Yangzong, Southwest China, Journal of Asian Earth Sciences, 217, 11, https://doi.org/10.1016/j.jseaes.2021.104845, 2021a.
Wu, J. P., Deng, Q., Hui, D. F., Xiong, X., Zhang, H. L., Zhao, M. D., Wang, X., Hu, M. H., Su, Y. X., Zhang, H. O., Chu, G. W., and Zhang, D. Q.: Reduced Lignin Decomposition and Enhanced Soil Organic Carbon Stability by Acid Rain: Evidence from 13C Isotope and 13C NMR Analyses, Forests, 11, 14, https://doi.org/10.3390/f11111191, 2020.
Wu, Q. Y., Lin, Y. L., Sun, Y. H., Wei, Q. H., Liu, J. T., Li, X. F., and Cui, G. W.: Research Progress on Effects of Root Exudates on Plant Growth and Soil Nutrient Uptake, Chinese Journal of Grassland, 43, 97–104, 2021b.
Xia, S. P., Wang, W. Q., Song, Z. L., Kuzyakov, Y., Guo, L. D., Van Zwieten, L., Li, Q., Hartley, I. P., Yang, Y. H., Wang, Y. D., Quine, T. A., Liu, C. Q., and Wang, H. L.: Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics, Global Change Biology, 27, 1627–1644, https://doi.org/10.1111/gcb.15516, 2021.
Xiao, T., Ran, F. W., Li, Z. W., Wang, S. L., Nie, X. D., Liu, Y. J., Yang, C. R., Tan, M., and Feng, S. R.: Sediment organic carbon dynamics response to land use change in diverse watershed anthropogenic activities, Environ. Int., 172, https://doi.org/10.1016/j.envint.2023.107788, 2023.
Xie, Y. H., Yue, T., Chen, X. S., Feng, L., Li, F., and Deng, Z. M.: The impact of Three Gorges Dam on the downstream eco-hydrological environment and vegetation distribution of East Dongting Lake, Ecohydrology, 8, 738–746, https://doi.org/10.1002/eco.1543, 2015.
Yang, Y., Jia, G. D., Yu, X. X., and Cao, Y. X.: Land use conversion impacts on the stability of soil organic carbon in Qinghai Lake using 13C NMR and C cycle-related enzyme activities, Land Degrad. Dev., 34, 3606–3617, https://doi.org/10.1002/ldr.4706, 2023.
Yu, Y. W., Mei, X. F., Dai, Z. J., Gao, J. J., Li, J. B., Wang, J., and Lou, Y. Y.: Hydromorphological processes of Dongting Lake in China between 1951 and 2014, J. Hydrol., 562, 254–266, https://doi.org/10.1016/j.jhydrol.2018.05.015, 2018.
Yuan, J. H., Ren, Q., Zhou, L. Y., Miao, L. J., Chi, Y. Y., Wan, F., Wang, J. P., and Wan, S. X.: Characteristics and influencing factors of soil organic carbon components under different environmental conditions in Poyang Lake wetland, Chinese Jounal of Ecology, 42, 1323–1329, 2023.
Zhang, J. Q., Hao, Q., Li, Q., Zhao, X. W., Fu, X. L., Wang, W. Q., He, D., Li, Y., Zhang, Z. Q., Zhang, X. D., and Song, Z. L.: Source identification of sedimentary organic carbon in coastal wetlands of the western Bohai Sea, Sci. Total Environ., 913, https://doi.org/10.1016/j.scitotenv.2023.169282, 2024.
Zhang, W. L., Gu, J. F., Li, Y., Lin, L., Wang, P. F., Wang, C., Qian, B., Wang, H. L., Niu, L. H., Wang, L. F., Zhang, H. J., Gao, Y., Zhu, M. J., and Fang, S. Q.: New Insights into Sediment Transport in Interconnected River–Lake Systems Through Tracing Microorganisms, Environ. Sci. Technol., 53, 4099–4108, https://doi.org/10.1021/acs.est.8b07334, 2019.
Zhu, L. L., Deng, Z. M., Xie, Y. H., Zhang, C. Y., Chen, X. R., Li, X., Li, F., Chen, X. S., Zou, Y. A., and Wang, W.: Effects of hydrological environment on litter carbon input into the surface soil organic carbon pool in the Dongting Lake floodplain, Catena, 208, https://doi.org/10.1016/j.catena.2021.105761, 2022.
Short summary
We employed stable isotope and ¹³C nuclear magnetic resonance spectroscopy analyses to characterize soil organic carbon sources and stability in Dongting Lake wetlands. Our results revealed vegetation elevated soil organic carbon (Miscanthus: 13.76; Carex: 12.98 g kg-1 > mudflat: 6.88 g kg-1), with plant-derived carbon dominating (47.5–53.3 %). Miscanthus exhibited lower soil organic carbon stability (high O-alkyl C), suggesting a higher risk of organic carbon loss in its floodplain ecosystems.
We employed stable isotope and ¹³C nuclear magnetic resonance spectroscopy analyses to...
Altmetrics
Final-revised paper
Preprint