Articles | Volume 10, issue 9
https://doi.org/10.5194/bg-10-5977-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-10-5977-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Space–time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea
I. P. Semiletov
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
N. E. Shakhova
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
I. I. Pipko
V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
S. P. Pugach
V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
A. N. Charkin
V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
O. V. Dudarev
V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
D. A. Kosmach
V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
S. Nishino
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
Related authors
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
Sarah Conrad, Johan Ingri, Johan Gelting, Fredrik Nordblad, Emma Engström, Ilia Rodushkin, Per S. Andersson, Don Porcelli, Örjan Gustafsson, Igor Semiletov, and Björn Öhlander
Biogeosciences, 16, 1305–1319, https://doi.org/10.5194/bg-16-1305-2019, https://doi.org/10.5194/bg-16-1305-2019, 2019
Short summary
Short summary
Iron analysis of the particulate, colloidal, and truly dissolved fractions along the Lena River freshwater plume showed that the particulate iron dominates close to the coast. Over 99 % particulate and about 90 % colloidal iron were lost, while the truly dissolved phase was almost constant. Iron isotopes suggest that the shelf acts as a sink for particles and colloids with negative iron isotope values, while colloids with positive iron isotope values travel further out into the Arctic Ocean.
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Robert B. Sparkes, Melissa Maher, Jerome Blewett, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, and Bart E. van Dongen
The Cryosphere, 12, 3293–3309, https://doi.org/10.5194/tc-12-3293-2018, https://doi.org/10.5194/tc-12-3293-2018, 2018
Short summary
Short summary
Ongoing climate change in the Siberian Arctic region has the potential to release large amounts of carbon, currently stored in permafrost, to the Arctic Shelf. Degradation can release this to the atmosphere as greenhouse gas. We used Raman spectroscopy to analyse a fraction of this carbon, carbonaceous material, a group that includes coal, lignite and graphite. We were able to trace this carbon from the river mouths and coastal erosion sites across the Arctic shelf for hundreds of kilometres.
Svetlana P. Pugach, Irina I. Pipko, Natalia E. Shakhova, Evgeny A. Shirshin, Irina V. Perminova, Örjan Gustafsson, Valery G. Bondur, Alexey S. Ruban, and Igor P. Semiletov
Ocean Sci., 14, 87–103, https://doi.org/10.5194/os-14-87-2018, https://doi.org/10.5194/os-14-87-2018, 2018
Short summary
Short summary
This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes on the ESAS. The strong correlation between DOC and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ. The direct estimation of DOM optical parameters in the surface ESAS waters provided by this study will be useful for validating remote sensing data.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Irina I. Pipko, Svetlana P. Pugach, Igor P. Semiletov, Leif G. Anderson, Natalia E. Shakhova, Örjan Gustafsson, Irina A. Repina, Eduard A. Spivak, Alexander N. Charkin, Anatoly N. Salyuk, Kseniia P. Shcherbakova, Elena V. Panova, and Oleg V. Dudarev
Ocean Sci., 13, 997–1016, https://doi.org/10.5194/os-13-997-2017, https://doi.org/10.5194/os-13-997-2017, 2017
Short summary
Short summary
The study of the outer shelf and the continental slope waters of the Eurasian Arctic seas has revealed a general trend in the surface pCO2 distribution, which manifested as an increase in pCO2 values eastward. It has been shown that the influence of terrestrial discharge on the carbonate system of East Siberian Arctic sea surface waters is not limited to the shallow shelf and that contemporary climate change impacts the carbon cycle of the Eurasian Arctic Ocean and influences air–sea CO2 flux.
Alexander N. Charkin, Michiel Rutgers van der Loeff, Natalia E. Shakhova, Örjan Gustafsson, Oleg V. Dudarev, Maxim S. Cherepnev, Anatoly N. Salyuk, Andrey V. Koshurnikov, Eduard A. Spivak, Alexey Y. Gunar, Alexey S. Ruban, and Igor P. Semiletov
The Cryosphere, 11, 2305–2327, https://doi.org/10.5194/tc-11-2305-2017, https://doi.org/10.5194/tc-11-2305-2017, 2017
Short summary
Short summary
This study tests the hypothesis that SGD exists in the Siberian Arctic shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The permafrost cements rocks, forms a confining bed, and as a result makes it difficult for the groundwater escape to the shelf surface. However, the discovery of subterranean outcrops of groundwater springs in the Buor-Khaya Gulf are clear evidence that a groundwater flow system exists in the environment.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Short summary
In this study we investigate land-to-ocean transfer and the fate of permafrost carbon in the East Siberian Sea from the early Holocene until the present day. Our results suggest that there was a high input of terrestrial organic carbon to the East Siberian Sea during the last glacial–interglacial period caused by permafrost destabilisation. This material was mainly characterised as relict Pleistocene permafrost deposited via coastal erosion as a result of the sea level rise.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Ira Leifer, Denis Chernykh, Natalia Shakhova, and Igor Semiletov
The Cryosphere, 11, 1333–1350, https://doi.org/10.5194/tc-11-1333-2017, https://doi.org/10.5194/tc-11-1333-2017, 2017
Short summary
Short summary
Vast Arctic methane deposits may alter global climate and require remote sensing (RS) to map. Sonar has great promise, but quantitative inversion based on theory is challenged by multiple bubble acoustical scattering in plumes. We demonstrate use of a real-world in situ bubble plume calibration using a bubble model to correct for differences in the calibration and seep plumes. Spatial seep sonar maps were then used to improve understanding of subsurface geologic controls.
Célia J. Sapart, Natalia Shakhova, Igor Semiletov, Joachim Jansen, Sönke Szidat, Denis Kosmach, Oleg Dudarev, Carina van der Veen, Matthias Egger, Valentine Sergienko, Anatoly Salyuk, Vladimir Tumskoy, Jean-Louis Tison, and Thomas Röckmann
Biogeosciences, 14, 2283–2292, https://doi.org/10.5194/bg-14-2283-2017, https://doi.org/10.5194/bg-14-2283-2017, 2017
Short summary
Short summary
The Arctic Ocean, especially the Siberian shelves, overlays large areas of subsea permafrost that is degrading. We show that methane with a biogenic origin is emitted from this permafrost. At locations where bubble plumes have been observed, methane can escape oxidation in the surface sediment and rapidly migrate through the very shallow water column of this region to escape to the atmosphere, generating a positive radiative feedback.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Leif G. Anderson, Jörgen Ek, Ylva Ericson, Christoph Humborg, Igor Semiletov, Marcus Sundbom, and Adam Ulfsbo
Biogeosciences, 14, 1811–1823, https://doi.org/10.5194/bg-14-1811-2017, https://doi.org/10.5194/bg-14-1811-2017, 2017
Short summary
Short summary
Waters with very high p>CO2, nutrients and low oxygen concentrations were observed along the continental margin of the East Siberian Sea and well out into the deep Makarov and Canada basins during the SWERUS-C3 expedition in 2014. This water had a low saturation state with respect to calcium carbonate, down to less than 0.8 for calcite and 0.5 for aragonite, and is traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean in the western Fram Strait.
Erik Gustafsson, Christoph Humborg, Göran Björk, Christian Stranne, Leif G. Anderson, Marc C. Geibel, Carl-Magnus Mörth, Marcus Sundbom, Igor P. Semiletov, Brett F. Thornton, and Bo G. Gustafsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-115, https://doi.org/10.5194/bg-2017-115, 2017
Preprint withdrawn
Short summary
Short summary
In this study we quantify key carbon cycling processes on the East Siberian Arctic Shelf. A specific aim is to determine the pathways of terrestrial organic carbon (OC) supplied by rivers and coastline erosion – and particularly to what extent degradation of terrestrial OC contributes to air-sea CO2 exchange. We estimate that the shelf is a weak CO2 sink, although this sink is considerably reduced mainly by degradation of eroded OC and to a lesser extent by degradation of riverine OC.
Joan A. Salvadó, Tommaso Tesi, Marcus Sundbom, Emma Karlsson, Martin Kruså, Igor P. Semiletov, Elena Panova, and Örjan Gustafsson
Biogeosciences, 13, 6121–6138, https://doi.org/10.5194/bg-13-6121-2016, https://doi.org/10.5194/bg-13-6121-2016, 2016
Short summary
Short summary
Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. We assessed its fate and composition in different marine pools with a suite of biomarkers. The dissolved organic carbon is transporting off-shelf “young” and fresh vascular plant material, while sedimentary and near-bottom particulate organic carbon preferentially carries old organic carbon released from thawing permafrost.
Robert B. Sparkes, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, Negar Haghipour, Lukas Wacker, Timothy I. Eglinton, Helen M. Talbot, and Bart E. van Dongen
The Cryosphere, 10, 2485–2500, https://doi.org/10.5194/tc-10-2485-2016, https://doi.org/10.5194/tc-10-2485-2016, 2016
Short summary
Short summary
The permafrost in eastern Siberia contains large amounts of carbon frozen in soils and sediments. Continuing global warming is thawing the permafrost and releasing carbon to the Arctic Ocean. We used pyrolysis-GCMS, a chemical fingerprinting technique, to study the types of carbon being deposited on the continental shelf. We found large amounts of permafrost-sourced carbon being deposited up to 200 km offshore.
Lisa Bröder, Tommaso Tesi, Joan A. Salvadó, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Biogeosciences, 13, 5003–5019, https://doi.org/10.5194/bg-13-5003-2016, https://doi.org/10.5194/bg-13-5003-2016, 2016
Short summary
Short summary
Thawing permafrost may release large amounts of terrestrial organic carbon (TerrOC) to the Arctic Ocean. We assessed its fate in the marine environment with a suite of biomarkers. Across the Laptev Sea their concentrations in surface sediments decreased significantly and showed a trend to qualitatively more degraded TerrOC with increasing water depth. We infer that the degree of degradation of TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport.
Juliane Bischoff, Robert B. Sparkes, Ayça Doğrul Selver, Robert G. M. Spencer, Örjan Gustafsson, Igor P. Semiletov, Oleg V. Dudarev, Dirk Wagner, Elizaveta Rivkina, Bart E. van Dongen, and Helen M. Talbot
Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, https://doi.org/10.5194/bg-13-4899-2016, 2016
Short summary
Short summary
The Arctic contains a large pool of carbon that is vulnerable to warming and can be released by rivers and coastal erosion. We study microbial lipids (BHPs) in permafrost and shelf sediments to trace the source, transport and fate of this carbon. BHPs in permafrost deposits are released to the shelf by rivers and coastal erosion, in contrast to other microbial lipids (GDGTs) that are transported by rivers. Several further analyses are needed to understand the complex East Siberian Shelf system.
X. Feng, Ö. Gustafsson, R. M. Holmes, J. E. Vonk, B. E. van Dongen, I. P. Semiletov, O. V. Dudarev, M. B. Yunker, R. W. Macdonald, D. B. Montluçon, and T. I. Eglinton
Biogeosciences, 12, 4841–4860, https://doi.org/10.5194/bg-12-4841-2015, https://doi.org/10.5194/bg-12-4841-2015, 2015
Short summary
Short summary
Currently very few studies have examined the distribution and fate of hydrolyzable organic carbon (OC) in Arctic sediments, whose fate remains unclear in the context of climate change. Our study focuses on the source, distribution and fate of hydrolyzable OC as compared with plant wax lipids and lignin phenols in the sedimentary particles of nine Arctic and sub-Arctic rivers. This multi-molecular approach allows for a comprehensive investigation of terrestrial OC transfer via Arctic rivers.
R. B. Sparkes, A. Doğrul Selver, J. Bischoff, H. M. Talbot, Ö. Gustafsson, I. P. Semiletov, O. V. Dudarev, and B. E. van Dongen
Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, https://doi.org/10.5194/bg-12-3753-2015, 2015
Short summary
Short summary
Siberian permafrost contains large amounts of organic carbon that may be released by climate warming. We collected and analysed samples from the East Siberian Sea, using GDGT biomarkers to trace the sourcing and deposition of organic carbon across the shelf. We show that branched GDGTs may be used to trace river erosion. Results from modelling show that organic carbon on the shelf is a complex process involving river-derived and coastal-derived material as well as marine carbon production.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
Sarah Conrad, Johan Ingri, Johan Gelting, Fredrik Nordblad, Emma Engström, Ilia Rodushkin, Per S. Andersson, Don Porcelli, Örjan Gustafsson, Igor Semiletov, and Björn Öhlander
Biogeosciences, 16, 1305–1319, https://doi.org/10.5194/bg-16-1305-2019, https://doi.org/10.5194/bg-16-1305-2019, 2019
Short summary
Short summary
Iron analysis of the particulate, colloidal, and truly dissolved fractions along the Lena River freshwater plume showed that the particulate iron dominates close to the coast. Over 99 % particulate and about 90 % colloidal iron were lost, while the truly dissolved phase was almost constant. Iron isotopes suggest that the shelf acts as a sink for particles and colloids with negative iron isotope values, while colloids with positive iron isotope values travel further out into the Arctic Ocean.
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Robert B. Sparkes, Melissa Maher, Jerome Blewett, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, and Bart E. van Dongen
The Cryosphere, 12, 3293–3309, https://doi.org/10.5194/tc-12-3293-2018, https://doi.org/10.5194/tc-12-3293-2018, 2018
Short summary
Short summary
Ongoing climate change in the Siberian Arctic region has the potential to release large amounts of carbon, currently stored in permafrost, to the Arctic Shelf. Degradation can release this to the atmosphere as greenhouse gas. We used Raman spectroscopy to analyse a fraction of this carbon, carbonaceous material, a group that includes coal, lignite and graphite. We were able to trace this carbon from the river mouths and coastal erosion sites across the Arctic shelf for hundreds of kilometres.
Svetlana P. Pugach, Irina I. Pipko, Natalia E. Shakhova, Evgeny A. Shirshin, Irina V. Perminova, Örjan Gustafsson, Valery G. Bondur, Alexey S. Ruban, and Igor P. Semiletov
Ocean Sci., 14, 87–103, https://doi.org/10.5194/os-14-87-2018, https://doi.org/10.5194/os-14-87-2018, 2018
Short summary
Short summary
This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes on the ESAS. The strong correlation between DOC and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ. The direct estimation of DOM optical parameters in the surface ESAS waters provided by this study will be useful for validating remote sensing data.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Naohiro Kosugi, Daisuke Sasano, Masao Ishii, Shigeto Nishino, Hiroshi Uchida, and Hisayuki Yoshikawa-Inoue
Biogeosciences, 14, 5727–5739, https://doi.org/10.5194/bg-14-5727-2017, https://doi.org/10.5194/bg-14-5727-2017, 2017
Short summary
Short summary
Recent variation in air–sea CO2 flux in the Arctic Ocean is focused. In order to understand the relation between sea ice retreat and CO2 chemistry, we conducted hydrographic observations in the Arctic Ocean in 2013. There were relatively high pCO2 surface layer and low pCO2 subsurface layer in the Canada Basin. The former was due to near-equilibration with the atmosphere and the latter primary production. Both were unlikely mixed by disturbance as large sea-ice melt formed strong stratification.
Irina I. Pipko, Svetlana P. Pugach, Igor P. Semiletov, Leif G. Anderson, Natalia E. Shakhova, Örjan Gustafsson, Irina A. Repina, Eduard A. Spivak, Alexander N. Charkin, Anatoly N. Salyuk, Kseniia P. Shcherbakova, Elena V. Panova, and Oleg V. Dudarev
Ocean Sci., 13, 997–1016, https://doi.org/10.5194/os-13-997-2017, https://doi.org/10.5194/os-13-997-2017, 2017
Short summary
Short summary
The study of the outer shelf and the continental slope waters of the Eurasian Arctic seas has revealed a general trend in the surface pCO2 distribution, which manifested as an increase in pCO2 values eastward. It has been shown that the influence of terrestrial discharge on the carbonate system of East Siberian Arctic sea surface waters is not limited to the shallow shelf and that contemporary climate change impacts the carbon cycle of the Eurasian Arctic Ocean and influences air–sea CO2 flux.
Alexander N. Charkin, Michiel Rutgers van der Loeff, Natalia E. Shakhova, Örjan Gustafsson, Oleg V. Dudarev, Maxim S. Cherepnev, Anatoly N. Salyuk, Andrey V. Koshurnikov, Eduard A. Spivak, Alexey Y. Gunar, Alexey S. Ruban, and Igor P. Semiletov
The Cryosphere, 11, 2305–2327, https://doi.org/10.5194/tc-11-2305-2017, https://doi.org/10.5194/tc-11-2305-2017, 2017
Short summary
Short summary
This study tests the hypothesis that SGD exists in the Siberian Arctic shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The permafrost cements rocks, forms a confining bed, and as a result makes it difficult for the groundwater escape to the shelf surface. However, the discovery of subterranean outcrops of groundwater springs in the Buor-Khaya Gulf are clear evidence that a groundwater flow system exists in the environment.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Short summary
In this study we investigate land-to-ocean transfer and the fate of permafrost carbon in the East Siberian Sea from the early Holocene until the present day. Our results suggest that there was a high input of terrestrial organic carbon to the East Siberian Sea during the last glacial–interglacial period caused by permafrost destabilisation. This material was mainly characterised as relict Pleistocene permafrost deposited via coastal erosion as a result of the sea level rise.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Ira Leifer, Denis Chernykh, Natalia Shakhova, and Igor Semiletov
The Cryosphere, 11, 1333–1350, https://doi.org/10.5194/tc-11-1333-2017, https://doi.org/10.5194/tc-11-1333-2017, 2017
Short summary
Short summary
Vast Arctic methane deposits may alter global climate and require remote sensing (RS) to map. Sonar has great promise, but quantitative inversion based on theory is challenged by multiple bubble acoustical scattering in plumes. We demonstrate use of a real-world in situ bubble plume calibration using a bubble model to correct for differences in the calibration and seep plumes. Spatial seep sonar maps were then used to improve understanding of subsurface geologic controls.
Célia J. Sapart, Natalia Shakhova, Igor Semiletov, Joachim Jansen, Sönke Szidat, Denis Kosmach, Oleg Dudarev, Carina van der Veen, Matthias Egger, Valentine Sergienko, Anatoly Salyuk, Vladimir Tumskoy, Jean-Louis Tison, and Thomas Röckmann
Biogeosciences, 14, 2283–2292, https://doi.org/10.5194/bg-14-2283-2017, https://doi.org/10.5194/bg-14-2283-2017, 2017
Short summary
Short summary
The Arctic Ocean, especially the Siberian shelves, overlays large areas of subsea permafrost that is degrading. We show that methane with a biogenic origin is emitted from this permafrost. At locations where bubble plumes have been observed, methane can escape oxidation in the surface sediment and rapidly migrate through the very shallow water column of this region to escape to the atmosphere, generating a positive radiative feedback.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Leif G. Anderson, Jörgen Ek, Ylva Ericson, Christoph Humborg, Igor Semiletov, Marcus Sundbom, and Adam Ulfsbo
Biogeosciences, 14, 1811–1823, https://doi.org/10.5194/bg-14-1811-2017, https://doi.org/10.5194/bg-14-1811-2017, 2017
Short summary
Short summary
Waters with very high p>CO2, nutrients and low oxygen concentrations were observed along the continental margin of the East Siberian Sea and well out into the deep Makarov and Canada basins during the SWERUS-C3 expedition in 2014. This water had a low saturation state with respect to calcium carbonate, down to less than 0.8 for calcite and 0.5 for aragonite, and is traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean in the western Fram Strait.
Erik Gustafsson, Christoph Humborg, Göran Björk, Christian Stranne, Leif G. Anderson, Marc C. Geibel, Carl-Magnus Mörth, Marcus Sundbom, Igor P. Semiletov, Brett F. Thornton, and Bo G. Gustafsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-115, https://doi.org/10.5194/bg-2017-115, 2017
Preprint withdrawn
Short summary
Short summary
In this study we quantify key carbon cycling processes on the East Siberian Arctic Shelf. A specific aim is to determine the pathways of terrestrial organic carbon (OC) supplied by rivers and coastline erosion – and particularly to what extent degradation of terrestrial OC contributes to air-sea CO2 exchange. We estimate that the shelf is a weak CO2 sink, although this sink is considerably reduced mainly by degradation of eroded OC and to a lesser extent by degradation of riverine OC.
Michiyo Yamamoto-Kawai, Takahisa Mifune, Takashi Kikuchi, and Shigeto Nishino
Biogeosciences, 13, 6155–6169, https://doi.org/10.5194/bg-13-6155-2016, https://doi.org/10.5194/bg-13-6155-2016, 2016
Short summary
Short summary
Seasonal variation of Ω in bottom water in Hope Valley, a biological hotspot in the southern Chukchi Sea, was reconstructed from 2-year-round mooring data of temperature, salinity and oxygen, with empirical equations derived from ship-based observations.
Joan A. Salvadó, Tommaso Tesi, Marcus Sundbom, Emma Karlsson, Martin Kruså, Igor P. Semiletov, Elena Panova, and Örjan Gustafsson
Biogeosciences, 13, 6121–6138, https://doi.org/10.5194/bg-13-6121-2016, https://doi.org/10.5194/bg-13-6121-2016, 2016
Short summary
Short summary
Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. We assessed its fate and composition in different marine pools with a suite of biomarkers. The dissolved organic carbon is transporting off-shelf “young” and fresh vascular plant material, while sedimentary and near-bottom particulate organic carbon preferentially carries old organic carbon released from thawing permafrost.
Robert B. Sparkes, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, Negar Haghipour, Lukas Wacker, Timothy I. Eglinton, Helen M. Talbot, and Bart E. van Dongen
The Cryosphere, 10, 2485–2500, https://doi.org/10.5194/tc-10-2485-2016, https://doi.org/10.5194/tc-10-2485-2016, 2016
Short summary
Short summary
The permafrost in eastern Siberia contains large amounts of carbon frozen in soils and sediments. Continuing global warming is thawing the permafrost and releasing carbon to the Arctic Ocean. We used pyrolysis-GCMS, a chemical fingerprinting technique, to study the types of carbon being deposited on the continental shelf. We found large amounts of permafrost-sourced carbon being deposited up to 200 km offshore.
Lisa Bröder, Tommaso Tesi, Joan A. Salvadó, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Biogeosciences, 13, 5003–5019, https://doi.org/10.5194/bg-13-5003-2016, https://doi.org/10.5194/bg-13-5003-2016, 2016
Short summary
Short summary
Thawing permafrost may release large amounts of terrestrial organic carbon (TerrOC) to the Arctic Ocean. We assessed its fate in the marine environment with a suite of biomarkers. Across the Laptev Sea their concentrations in surface sediments decreased significantly and showed a trend to qualitatively more degraded TerrOC with increasing water depth. We infer that the degree of degradation of TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport.
Juliane Bischoff, Robert B. Sparkes, Ayça Doğrul Selver, Robert G. M. Spencer, Örjan Gustafsson, Igor P. Semiletov, Oleg V. Dudarev, Dirk Wagner, Elizaveta Rivkina, Bart E. van Dongen, and Helen M. Talbot
Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, https://doi.org/10.5194/bg-13-4899-2016, 2016
Short summary
Short summary
The Arctic contains a large pool of carbon that is vulnerable to warming and can be released by rivers and coastal erosion. We study microbial lipids (BHPs) in permafrost and shelf sediments to trace the source, transport and fate of this carbon. BHPs in permafrost deposits are released to the shelf by rivers and coastal erosion, in contrast to other microbial lipids (GDGTs) that are transported by rivers. Several further analyses are needed to understand the complex East Siberian Shelf system.
Shigeto Nishino, Takashi Kikuchi, Amane Fujiwara, Toru Hirawake, and Michio Aoyama
Biogeosciences, 13, 2563–2578, https://doi.org/10.5194/bg-13-2563-2016, https://doi.org/10.5194/bg-13-2563-2016, 2016
Short summary
Short summary
We analysed mooring and ship-based data obtained from a biological hotspot in the southern Chukchi Sea. Mooring data were collected for the first time in this site and were captured during spring and autumn blooms with high chlorophyll a concentrations. The data suggest that a dome-like structure of the bottom water and nutrient regeneration at the bottom play important roles in maintaining the autumn bloom of the biological hotspot.
Naoya Yokoi, Kohei Matsuno, Mutsuo Ichinomiya, Atsushi Yamaguchi, Shigeto Nishino, Jonaotaro Onodera, Jun Inoue, and Takashi Kikuchi
Biogeosciences, 13, 913–923, https://doi.org/10.5194/bg-13-913-2016, https://doi.org/10.5194/bg-13-913-2016, 2016
Short summary
Short summary
We studied short-term changes in the microplankton community in the Chukchi Sea with regards to responses to the strong wind event (SWE) during autumn (September 2013). It is assumed that atmospheric turbulences, such as SWE, may supply sufficient nutrients to the surface layer that subsequently enhance the small bloom under the weak stratification. After the bloom, the dominant diatom community then shifts from centric-dominated to one where centric/pennate are more equal in abundance.
A. Fujiwara, T. Hirawake, K. Suzuki, L. Eisner, I. Imai, S. Nishino, T. Kikuchi, and S.-I. Saitoh
Biogeosciences, 13, 115–131, https://doi.org/10.5194/bg-13-115-2016, https://doi.org/10.5194/bg-13-115-2016, 2016
Short summary
Short summary
This study provides the general relationship between the timing of sea ice retreat and phytoplankton size structure during the marginal ice zone bloom period in the Chukchi and Bering shelves using a satellite remote sensing approach. We also found that not only the length of the ice-free season but also the annual phytoplankton size composition positively correlated with annual net primary production.
A. Ooki, S. Kawasaki, K. Kuma, S. Nishino, and T. Kikuchi
Biogeosciences, 13, 133–145, https://doi.org/10.5194/bg-13-133-2016, https://doi.org/10.5194/bg-13-133-2016, 2016
Short summary
Short summary
We conducted a shipboard observation over the Chukchi Sea and the Canada Basin
in the western Arctic Ocean to obtain vertical distributions of four volatile organic iodine compounds (VOIs) in seawater. High concentrations of four VOIs were found in the bottom layer water over the Chukchi Sea shelf, in which layer the concentration maximum of ammonium occurred simultaneously. We considered that the VOI production is associated with degradation of organic matter in the bottom sediment.
X. Feng, Ö. Gustafsson, R. M. Holmes, J. E. Vonk, B. E. van Dongen, I. P. Semiletov, O. V. Dudarev, M. B. Yunker, R. W. Macdonald, D. B. Montluçon, and T. I. Eglinton
Biogeosciences, 12, 4841–4860, https://doi.org/10.5194/bg-12-4841-2015, https://doi.org/10.5194/bg-12-4841-2015, 2015
Short summary
Short summary
Currently very few studies have examined the distribution and fate of hydrolyzable organic carbon (OC) in Arctic sediments, whose fate remains unclear in the context of climate change. Our study focuses on the source, distribution and fate of hydrolyzable OC as compared with plant wax lipids and lignin phenols in the sedimentary particles of nine Arctic and sub-Arctic rivers. This multi-molecular approach allows for a comprehensive investigation of terrestrial OC transfer via Arctic rivers.
K. Matsuno, A. Yamaguchi, S. Nishino, J. Inoue, and T. Kikuchi
Biogeosciences, 12, 4005–4015, https://doi.org/10.5194/bg-12-4005-2015, https://doi.org/10.5194/bg-12-4005-2015, 2015
Short summary
Short summary
We performed high-frequency samplings of zooplankton community and gut pigment of copepods in the Chukchi Sea. Zooplankton showed no changes with a strong wind event and dominant copepods prepared for diapause. Yet, feeding activity of the copepods increased as a result of temporal phytoplankton bloom, enhanced by the wind event. Because of the long generation length of copepods, a smaller effect was detected for their abundance, population, lipid accumulation and gonad maturation.
R. B. Sparkes, A. Doğrul Selver, J. Bischoff, H. M. Talbot, Ö. Gustafsson, I. P. Semiletov, O. V. Dudarev, and B. E. van Dongen
Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, https://doi.org/10.5194/bg-12-3753-2015, 2015
Short summary
Short summary
Siberian permafrost contains large amounts of organic carbon that may be released by climate warming. We collected and analysed samples from the East Siberian Sea, using GDGT biomarkers to trace the sourcing and deposition of organic carbon across the shelf. We show that branched GDGTs may be used to trace river erosion. Results from modelling show that organic carbon on the shelf is a complex process involving river-derived and coastal-derived material as well as marine carbon production.
Related subject area
Biogeochemistry: Greenhouse Gases
Observations of methane net sinks in the upland Arctic tundra
Intercomparison of biogenic CO2 flux models in four urban parks in the city of Zurich
CO2 flux characteristics of the open savanna and its response to environmental factors in the dry–hot valley of Jinsha River, China
Rising Arctic seas and thawing permafrost: uncovering the carbon cycle impact in a thermokarst lagoon system in the outer Mackenzie Delta, Canada
Modelling decadal trends and the impact of extreme events on carbon fluxes in a temperate deciduous forest using a terrestrial biosphere model
Surface CO2 gradients challenge conventional CO2 emission quantification in lentic water bodies under calm conditions
Spatiotemporal variability of CO2, N2O and CH4 fluxes from a semi-deciduous tropical forest soil in the Congo Basin
Organic soil carbon balance in drained and undrained hemiboreal forests
Eddy-covariance fluxes of CO2, CH4 and N2O in a drained peatland forest after clear-cutting
Eddy covariance evaluation of ecosystem fluxes at a temperate saltmarsh in Victoria, Australia, shows large CO2 uptake
Interferences caused by the biogeochemical methane cycle in peats during the assessment of abandoned oil wells
Carbon sequestration in different urban vegetation types in Southern Finland
Groundwater-CO2 Emissions Relationship in Dutch Peatlands Derived by Machine Learning Using Airborne and Ground-Based Eddy Covariance Data
Proglacial methane emissions driven by meltwater and groundwater flushing in a high-Arctic glacial catchment
Technical Note: Pondi – a low-cost logger for long-term monitoring of methane, carbon dioxide, and nitrous oxide in aquatic and terrestrial systems
Seasonal and interannual variability in CO2 fluxes in southern Africa seen by GOSAT
Environmental drivers constraining the seasonal variability of satellite-observed methane at Northern high latitudes
Water chemistry and greenhouse gas concentrations in waterbodies of a thawing permafrost peatland complex in northern Norway
Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in northern Europe
Ensemble estimates of global wetland methane emissions over 2000–2020
Seasonal carbon fluxes from vegetation and soil in a Mediterranean non-tidal salt marsh
Explainable machine learning for modeling of net ecosystem exchange in boreal forests
Dynamics of CO2 and CH4 fluxes in Red Sea mangrove soils
Inferring methane emissions from African livestock by fusing drone, tower, and satellite data
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Technical note: A low-cost, automatic soil–plant–atmosphere enclosure system to investigate CO2 and evapotranspiration flux dynamics
Reviews and syntheses: Contribution of sulfate to methane oxidation in upland soils: a mini-review
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Uncertainties in carbon emissions from land use and land cover change in Indonesia
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations
Saturating response of photosynthesis to increasing leaf area index allows selective harvest of trees without affecting forest productivity
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Interannual and seasonal variability of the air–sea CO2 exchange at Utö in the coastal region of the Baltic Sea
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Methane, carbon dioxide and nitrous oxide emissions from two clear-water and two turbid-water urban ponds in Brussels (Belgium)
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Antonio Donateo, Daniela Famulari, Donato Giovannelli, Arturo Mariani, Mauro Mazzola, Stefano Decesari, and Gianluca Pappaccogli
Biogeosciences, 22, 2889–2908, https://doi.org/10.5194/bg-22-2889-2025, https://doi.org/10.5194/bg-22-2889-2025, 2025
Short summary
Short summary
This study focuses on measurements of CO2 and CH4 turbulent fluxes in tundra ecosystems in the Svalbard islands over a 2-year period. Our results reveal dynamic interactions between climatic conditions and ecosystem activities such as photosynthesis and microbial activity. In summer, photosynthesis and microbial activity increase, leading to net carbon uptake and methane consumption. Wind influences soil drying and CH4 emissions. Thermal anomalies can reduce annual carbon uptake.
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
Biogeosciences, 22, 2133–2161, https://doi.org/10.5194/bg-22-2133-2025, https://doi.org/10.5194/bg-22-2133-2025, 2025
Short summary
Short summary
The balance between CO2 uptake and emissions from urban green areas is still not well understood. This study evaluated for the first time the urban park CO2 exchange simulations with four different types of biosphere model by comparing them with observations. Even though some advantages and disadvantages of the different model types were identified, there was no strong evidence that more complex models performed better than simple ones.
Chaolei Yang, Yufeng Tian, Jingqi Cui, Guangxiong He, Jingyuan Li, Canfeng Li, Haichuang Duan, Zong Wei, Liu Yan, Xin Xia, Yong Huang, Aihua Jiang, and Yuwen Feng
Biogeosciences, 22, 2097–2114, https://doi.org/10.5194/bg-22-2097-2025, https://doi.org/10.5194/bg-22-2097-2025, 2025
Short summary
Short summary
Due to the influence of extreme-drought events in southwest China, the carbon sequestration capacity of the open savanna in the dry–hot valley of the Jinsha River has been significantly diminished, with soil water content being the key environmental factor governing CO2 flux. Under the climate scenario where the frequency and severity of extreme droughts are expected to continue increasing, the CO2 emissions from the open savanna are also anticipated to rise persistently.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
Biogeosciences, 22, 2069–2086, https://doi.org/10.5194/bg-22-2069-2025, https://doi.org/10.5194/bg-22-2069-2025, 2025
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases under more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in future.
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025, https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary
Short summary
Climate change has the potential to influence the carbon sequestration potential of terrestrial ecosystems, and here the nitrogen cycle is also important. We used the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) in a mixed deciduous forest in Canada. We investigated the usefulness of using the leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves the way for using spaceborne observations in model parameterizations, also including information on the nitrogen cycle.
Patrick Aurich, Uwe Spank, and Matthias Koschorreck
Biogeosciences, 22, 1697–1709, https://doi.org/10.5194/bg-22-1697-2025, https://doi.org/10.5194/bg-22-1697-2025, 2025
Short summary
Short summary
Lakes can be sources and sinks of the greenhouse gas carbon dioxide. The gas exchange between the atmosphere and the water can be measured by taking gas samples from them. However, the depth of water samples is not well defined, which may cause errors. We hypothesized that gradients of CO2 concentrations develop under the surface when wind speeds are very low. Our measurements show that such a gradient can occur on calm nights, potentially shifting lakes from a CO2 sink to a source.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025, https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gases (GHGs) since 1750 is attributed to human activity. However, natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo Basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source of CO2 and N2O and a minor sink of CH4.
Aldis Butlers, Raija Laiho, Andis Lazdiņš, Thomas Schindler, Kaido Soosaar, Jyrki Jauhiainen, Arta Bārdule, Muhammad Kamil-Sardar, Ieva Līcīte, Valters Samariks, Andreas Haberl, Hanna Vahter, Dovilė Čiuldienė, Jani Anttila, and Kęstutis Armolaitis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1032, https://doi.org/10.5194/egusphere-2025-1032, 2025
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated the carbon balance of drained and undrained nutrient-rich forest organic soils, ranging from highly mineralized soils close to the threshold of organic soil definition to deep peat. The soils varied in pH, macronutrient levels, and C:N ratio, which contributed to the observed behavior of the soils demonstrating carbon sink and source dynamics under both drained and undrained conditions.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025, https://doi.org/10.5194/bg-22-1277-2025, 2025
Short summary
Short summary
The emissions of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clear-cut peatland forest site. The measurements covered the whole year of 2022, which was the second growing season after the clear-cut. The site was a strong GHG source, and the highest emissions came from CO2, followed by N2O and CH4. A statistical model that included information on different surfaces at the site was developed to unravel surface-type-specific GHG fluxes.
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
Biogeosciences, 22, 1149–1162, https://doi.org/10.5194/bg-22-1149-2025, https://doi.org/10.5194/bg-22-1149-2025, 2025
Short summary
Short summary
Studies show that saltmarshes excel at capturing carbon from the atmosphere. In this study, we measured CO2 flux in an Australian temperate saltmarsh on French Island. The temperate saltmarsh exhibited strong seasonality. During the warmer growing season, the saltmarsh absorbed 10.5 g CO2 m−2 on average daily from the atmosphere. Even in winter, when plants were dormant, it continued to be a CO2 sink, albeit a smaller one. Cool temperatures and high cloud cover inhibit carbon sequestration.
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
Biogeosciences, 22, 809–830, https://doi.org/10.5194/bg-22-809-2025, https://doi.org/10.5194/bg-22-809-2025, 2025
Short summary
Short summary
Using a multilayer approach, we studied the methane flux, soil gas composition, and isotopic signatures of soil methane and carbon dioxide at eight cut and buried abandoned oil wells in a peat-rich area of northern Germany. The detected methane emissions were of biogenic, peat origin and were not associated with the abandoned wells. Additional microbial analysis and methane oxidation rate measurements demonstrated a high methane emission mitigation potential in the studied peat soils.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
Biogeosciences, 22, 725–749, https://doi.org/10.5194/bg-22-725-2025, https://doi.org/10.5194/bg-22-725-2025, 2025
Short summary
Short summary
Cities aim for carbon neutrality and seek to understand urban vegetation's role as a carbon sink. Direct measurements are challenging, so models are used to estimate the urban carbon cycle. We evaluated model performance at estimating carbon sequestration in lawns, park trees, and urban forests in Helsinki, Finland. Models captured seasonal and annual variations well. Trees had higher sequestration rates than lawns, and irrigation often enhanced carbon sinks.
Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes
EGUsphere, https://doi.org/10.5194/egusphere-2025-431, https://doi.org/10.5194/egusphere-2025-431, 2025
Short summary
Short summary
We combine two types of carbon dioxide (CO2) data from Dutch peatlands in a machine learning model: from fixed measurement towers and from a light research aircraft. We find that emissions increase with deeper water table depths (WTD) by 4.6 tonnes CO2 per hectare per year, per 10 cm deeper WTD on average. The effect is stronger in winter than in summer and varies between locations. This variability should be taken into account when developing mitigation measures.
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025, https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Martino E. Malerba, Blake Edwards, Lukas Schuster, Omosalewa Odebiri, Josh Glen, Rachel Kelly, Paul Phan, Alistair Grinham, and Peter I. Macreadie
EGUsphere, https://doi.org/10.31219/osf.io/54rd2, https://doi.org/10.31219/osf.io/54rd2, 2025
Short summary
Short summary
The Pondi is a cost-effective, lightweight logger designed for long-term monitoring of carbon dioxide, methane, and nitrous oxide emissions in both terrestrial and aquatic ecosystems. It addresses key challenges in greenhouse gas monitoring by providing an automated, low-cost, solar-powered solution with cloud connectivity and real-time analytics. Its robust design enables deployment in diverse environmental conditions, supporting large-scale, high-resolution emission assessments.
Eva-Marie Metz, Sanam Noreen Vardag, Sourish Basu, Martin Jung, and André Butz
Biogeosciences, 22, 555–584, https://doi.org/10.5194/bg-22-555-2025, https://doi.org/10.5194/bg-22-555-2025, 2025
Short summary
Short summary
We estimate CO2 fluxes in semiarid southern Africa from 2009 to 2018 based on satellite CO2 measurements and atmospheric inverse modeling. By selecting process-based vegetation models, which agree with the satellite CO2 fluxes, we find that soil respiration mainly drives the seasonality, whereas photosynthesis substantially influences the interannual variability. Our study emphasizes the need for better representation of the response of semiarid ecosystems to soil rewetting in vegetation models.
Ella Kivimäki, Tuula Aalto, Michael Buchwitz, Kari Luojus, Jouni Pulliainen, Kimmo Rautiainen, Oliver Schneising, Anu-Maija Sundström, Johanna Tamminen, Aki Tsuruta, and Hannakaisa Lindqvist
EGUsphere, https://doi.org/10.5194/egusphere-2025-249, https://doi.org/10.5194/egusphere-2025-249, 2025
Short summary
Short summary
We investigate how environmental variables influencing natural methane fluxes explain the large-scale seasonal variability of satellite-observed methane at Northern high latitudes. Our findings show that soil moisture, snow cover, and soil temperature have the strongest influence, with snowmelt playing a surprisingly significant role, likely through soil isolation and wetting. This study highlights the value of multi-satellite observations for understanding large-scale wetland emissions.
Jacqueline Kay Knutson, François Clayer, Peter Dörsch, Sebastian Westermann, and Heleen A. de Wit
EGUsphere, https://doi.org/10.5194/egusphere-2025-184, https://doi.org/10.5194/egusphere-2025-184, 2025
Short summary
Short summary
Thawing permafrost at Iškoras in northern Norway is transforming peat plateaus into thermokarst ponds and wetlands. These small ponds show striking oversaturation of dissolved greenhouse gases like carbon dioxide (CO2) and methane (CH4), partly due to organic matter processing. Streams nearby emit CO2 driven by turbulence. As permafrost disappears, carbon dynamics will change, potentially increasing emissions of CH4. This study highlights the need to integrate these changes into climate models.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025, https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in northern Europe using ecosystem models, atmospheric inversions, and upscaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions, and upscaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Lorena Carrasco-Barea, Dolors Verdaguer, Maria Gispert, Xavier D. Quintana, Hélène Bourhis, and Laura Llorens
Biogeosciences, 22, 289–304, https://doi.org/10.5194/bg-22-289-2025, https://doi.org/10.5194/bg-22-289-2025, 2025
Short summary
Short summary
Carbon dioxide fluxes have been measured seasonally in four plant species in a Mediterranean non-tidal salt marsh, highlighting the high carbon removal potential that these species have. Carbon dioxide and methane emissions from soil showed high variability among the habitats studied, and they were generally higher than those observed in tidal salt marshes. Our results are important for making more accurate predictions regarding carbon emissions from these ecosystems.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
Biogeosciences, 22, 257–288, https://doi.org/10.5194/bg-22-257-2025, https://doi.org/10.5194/bg-22-257-2025, 2025
Short summary
Short summary
Machine learning (ML) models are gaining popularity in biogeosciences. They are applied as gap-filling methods and used to upscale carbon fluxes to larger areas. Here we use explainable artificial intelligence (XAI) methods to elucidate the performance of machine learning models for carbon dioxide fluxes in boreal forests. We show that statistically equal models treat input variables differently. XAI methods can help scientists make informed decisions when applying ML models in their research.
Jessica Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos M. Duarte
Biogeosciences, 22, 117–134, https://doi.org/10.5194/bg-22-117-2025, https://doi.org/10.5194/bg-22-117-2025, 2025
Short summary
Short summary
Mangrove carbon storage in the Red Sea is lower than average due to challenging growth conditions. We collected mangrove soil cores over multiple seasons to measure greenhouse gas (GHG) flux of carbon dioxide and methane. GHG emissions are a small offset to mangrove carbon storage overall but punctuated by periods of high emission. This variation is linked to environmental and soil properties, which were also measured. The findings aid understanding of GHG dynamics in arid mangrove ecosystems.
Alouette van Hove, Kristoffer Aalstad, Vibeke Lind, Claudia Arndt, Vincent Odongo, Rodolfo Ceriani, Francesco Fava, John Hulth, and Norbert Pirk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3994, https://doi.org/10.5194/egusphere-2024-3994, 2025
Short summary
Short summary
Research on methane emissions from African livestock is limited. We used a probabilistic method fusing drone and flux tower observations with an atmospheric model to estimate emissions from various herds. This approach proved robust under non-stationary wind conditions and effective in estimating emissions as low as 100 g h-1. We also detected herd locations using spectral anomalies in satellite data. Our approach can be used to estimate diverse sources, thereby improving emission inventories.
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024, https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024, https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil–plant enclosure system to monitor CO2 and evapotranspiration fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, where multiple chambers connect to a single gas analyzer via a low-cost multiplexer. This system provides precise, accurate measurements and high temporal resolution, enabling comprehensive monitoring of plant–soil responses to various treatments and conditions.
Rui Su, Kexin Li, Nannan Wang, Fenghui Yuan, Ying Zhao, Yunjiang Zuo, Ying Sun, Liyuan He, Xiaofeng Xu, and Lihua Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3347, https://doi.org/10.5194/egusphere-2024-3347, 2024
Short summary
Short summary
This research examines the effect of sulfate on methane oxidation in soil, finding that sulfate may facilitate methane oxidation. Considering methane's role as a greenhouse gas and rising sulfate deposition, the study aims to predict changes in methane oxidation due to acid deposition. Future experiments will explore microbial mechanisms, as sulfate reduces methane emissions while enhancing its consumption, providing insights for mitigation strategies.
Zhao-Jun Yong, Wei-Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin
Biogeosciences, 21, 5247–5260, https://doi.org/10.5194/bg-21-5247-2024, https://doi.org/10.5194/bg-21-5247-2024, 2024
Short summary
Short summary
We measured CO2 and CH4 fluxes from mangrove stems and soils of Avicennia marina and Kandelia obovata during tidal cycles. Both stem types served as CO2 and CH4 sources, emitting less CH4 than soils, with no difference in CO2 flux. While A. marina stems showed increased CO2 fluxes from low to high tides, they acted as a CH4 sink before flooding and as a source after ebbing. However, K. obovata stems showed no flux pattern. This study highlights the need to consider tidal influence and species.
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024, https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the eddy covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate-change-induced droughts.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3165, https://doi.org/10.5194/egusphere-2024-3165, 2024
Short summary
Short summary
Indonesia is 3 world's highest carbon emitter from land use change. However, there are uncertainties of the carbon emission of Indonesia that can be reduced with satellite-based datasets. But later, we found that the uncertainties are also caused by the difference of carbon pool in various models. Our best estimation of carbon emissions from land use change in Indonesia is 0.12 ± 0.02 PgC/yr with steady trend. This double when include peat fire and peat drainage emissions.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Thomas Bauduin, Nathalie Gypens, and Alberto V. Borges
EGUsphere, https://doi.org/10.5194/egusphere-2024-1315, https://doi.org/10.5194/egusphere-2024-1315, 2024
Short summary
Short summary
Greenhouse gases (GHG) emissions from ponds can vary depending on the state of ponds (clear-water with macrophytes or turbid-water with phytoplankton). We studied CO2, CH4, and N2O emissions in clear and turbid urban ponds (June 2021 to December 2023) in Brussels. We observed seasonal differences in methanogenesis pathways, in CH4 emissions between clear and turbid ponds, and annual differences in total emissions of GHG, likely from intense El Niño event in 2023.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Cited articles
ACIA: Impacts of a Warming Arctic: Arctic Climate Impact Assessment, Cambridge University Press, Cambridge, 139 pp., 2004.
Alling, V., Sánchez-García, L., Porcelli, D., Pugach, S., Vonk, J., van Dongen, B., Mörth, C. M., Anderson, L. G., Sokolov, A., Andersson, P., Humborg, C., Semiletov, I., and Gustafsson, Ö.: Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas, Global Biogeochem. Cy., 24, GB4033, https://doi.org/10.1029/2010GB003834, 2010.
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 538 pp., 2012.
Amon, R. M. W. and Benner, R.: Bacterial utilization of different size classes of dissolved organic matter, Limnol. Oceanogr., 41, 41–51, 1996a.
Amon, R. M. W. and Benner, R.: Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system, Geochim. Cosmochim. Ac., 60, 10, 1783–1792, 1996b.
Anderson, L. G., Jutterström, S., Hjalmarsson, S., Wahlström, I., and Semiletov, I.: Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition, Geophys. Res. Lett., 36, L20601, https://doi.org/10.1029/2009GL040046, 2009.
Anderson, L. G., Björk, G., Jutterström, S., Pipko, I., Shakhova, N., Semiletov, I., and Wåhlström, I.: East Siberian Sea, an Arctic region of very high biogeochemical activity, Biogeosciences, 8, 1745–1754, https://doi.org/10.5194/bg-8-1745-2011, 2011.
Arrigo, K. R. and van Dijken, G.: Secular trends in Arctic Ocean net primary production, J. Geophys. Res., 116, C09011, https://doi.org/10.1029/2011JC007151, 2011.
Belzile, C. C., Roesler, S., Christensen, J. P., Shakhova, N., and Semiletov, I.: Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption, Estuar. Coast. Shelf Sci., 67, 41–49, 2006.
Boucsein, B., Fahl, K., and Stein, R.: Variability of river discharge and Atlantic-water inflow at the Laptev Sea continental margin during the past 15,000 years: Implications from maceral and biomarker records, Int. J. Earth Sci., 89, 578–591, 2000.
Bruevich, S. V.: Instruction for Chemical Investigation of Seawater, Glavsevmorput, Moscow, 83 pp., 1944 (in Russian).
Canadell, J. G. and Raupach, M. R.: Land carbon cycle feedbacks, in: Sommerkorn, M. and Hassol, S. J. (Eds.): Arctic Climate Feedbacks: Global Implications, WWF International Arctic Programme, Oslo, 70–80, 2009.
Charkin, A. N., Dudarev, O. V., Semiletov, I. P., Kruhmalev, A. V., Vonk, J. E., Sánchez-García, L., Karlsson, E., and Gustafsson, Ö.: Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea, Biogeosciences, 8, 2581–2594, https://doi.org/10.5194/bg-8-2581-2011, 2011.
Cooke, M. P., van Dongen, B., Talbot, H., Semiletov, I., Shakhova, N., Guo, L., and Gustafsson, Ö.: Bacteriohopanepolyol biomarker composition of organic matter exported to the Arctic Ocean by seven of the major Arctic rivers, Org. Geochem., 40, 1151–1159, https://doi.org/10.1016/j.orggeochem.2009.07.014, 2009.
Cooper, L. W., Benner, R., McClelland, J. W., Peterson, B. J., Holmes, R. M., Raymond, P. A., Hansell, D. A., Grebmeier, J. M., and Codispoti, L. A.: Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean, J. Geophys. Res., 110, G02013, https://doi.org/10.1029/2005JG000031, 2005.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review, Mar. Chem., 83, 103–120, 2003.
DOE: Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, Version 2, edited by: Dickson, A. G. and Goyet, C., 1994.
Dudarev, O., Semiletov, I., Botsul, A., and Charkin, A.: Modern sedimentation in the coastal cryolithozone of the Dmitry Laptev Strait/East-Siberian Sea, Russ. J. Pac. Geol., 22, 51–60, 2003 (translated into English).
Dudarev, O. V., Semiletov, I. P., and Charkin, A. N.: Particulate material composition in the Lena River-Laptev Sea system: scales of heterogeneities, Dokl. Earth Sci., 411, 1445–1451, 2006.
Feng, X., Vonk, J. E., van Dongen, B. E., Gustafsson, O., Semiletov, I. P., Dudarev, O. V., Wangh, Z., Montlucon, D. B., Wackeri, L., and Eglinton, T. I.: Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins, P. Natl. Acad. Sci. USA, 110, 14168–14173, https://doi.org/10.1073/pnas.1307031110, 2013.
Fichot, C. G., Kaiser, K., Hooker, S. B., Amon, R. M. W., Babin, M., Bélanger, S., Walker, S. A., and Benner, R.: Pan-Arctic distributions of continental runoff in the Arctic Ocean, Sci. Rep. 3, 1053, https://doi.org/10.1038/srep01053, 2013.
Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., and Fenner, N.: Export of organic carbon from peat soils, Nature, 412, 785, https://doi.org/10.1038/35090628, 2001.
Goñi, M. A., Yunker, M. B., Macdonald, R. W., and Eglinton, T. I.: The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean, Mar. Chem., 93, 53–73, 2005.
Gordeev, V. V., Martin, J. M., Sidorov, I. S., and Sidorova, M. V.: A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean, Am. J. Sci., 296, 664–691, 1996.
Grigoriev, M. N.: Criomorphogenesis of the mouth area of the Lena River, Yakutsk, Institute of Permafrost Study of the Siberian Branch of the Russian Academy of Science, 1–176, 1993 (in Russian).
Grigoriev, M. N.: Cryomorphogenesis and Lithodynamics of the Coastal-shelf Zone of the Seas of Eastern Siberia. PhD thesis, Yakutsk Melnikov Permafrost Inst., 40 pp., 2008 (in Russian).
Grigoriev, M. N. and Kunitsky, V. V.: Destruction of the sea coastal ice-complex in Yakutia, in: Hydrometeorological and Biogeochemical Research in the Arctic, Proc. Arctic Regional Center, 2, edited by: Semiletov, I. P., Dal'nauka Press, Vladivostok, 109–116, 2000 (in Russian).
Grigoriev, M. N., Razumov, S. O., Kunitzkiy, V. V., and Spektor, V. B.: Dynamics of the Russian East Arctic Sea coast: Major factors, regularities and tendencies, Earth's Cryosphere, X, 74–94, 2006 (in Russian).
Gruber, N., Friedlingstein, P., Field, C. B., Valentini, R., Heimann, M., Richey, C. B., Romero-Lankao, P., Schulze, D., and Chen, C.-T. A.: The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions, in: The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, edited by: Field, C. B. and Raupach, M. R., Island Press, Washington, DC, 45–76, 2004.
Guo, L., Semiletov, I., Gustafsson, Ö., Ingri, J., Andersson, P., Dudarev, O., and White, D.: Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export, Global Biogeochem. Cy., 18, GB1036, https://doi.org/10.1029/2003GB002087, 2004.
Gustafsson, Ö., Haghseta, F., Chan, C., MacFarlane, J., and Gschwend, P. M.: Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability, Environ. Sci. Technol., 31, 203–209, 1997.
Gustafsson, Ö., van Dongen, B. E., Vonk, J. E., Dudarev, O. V., and Semiletov, I. P.: Widespread release of old carbon across the Siberian Arctic echoed by its large rivers, Biogeosciences, 8, 1737–1743, https://doi.org/10.5194/bg-8-1737-2011, 2011.
Haraldsson, C., Anderson, L. G., Hassellov, M., Hulth, S., and Olsson, K.: Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters, Deep-Sea Res. Pt. I, 44, 2031–2044, 1997.
Heim, B., Abramova, E., Doerffer, R., Günther, F., Hölemann, J., Kraberg, A., Lantuit, H., Loginova, A., Martynov, F., Overduin, P. P., and Wegner, C.: Ocean Colour remote sensing in the Southern Laptev Sea: evaluation and applications, Biogeosciences Discuss., 10, 3849–3889, https://doi.org/10.5194/bgd-10-3849-2013, 2013.
Holemann, J., Kirillov, S., Klagge, T., Novikhin, A., Kassens, H., and Timokhov, L.: Near-bottom water warming in the Laptev Sea in response to atmospheric sea-ice conditions in 2007, Polar Res., 30, 6425–6440, 2011.
Holmes, R. M., Peterson, B. J., Zhulidov, A. V., Gordeev, V. V., Makkaveev, P. N., Stunzas, P. A., Kosmenko, L. S., Kohler, G. H., Shiklomanov, A. I.: Nutrient chemistry of the Ob' and Yenisey rivers, Siberia: results from June 2000 expedition and evaluation of long-term data sets, Mar. Chem., 75, 219–227, 2001.
Holmes, R. M., McClelland, J. W., Raymond, P. A., Franzer, B. B., Peterson, B. J., and Stieglitz, M.: Lability of DOC transported by Alaskan rivers to the Arctic Ocean, Geophys. Res. Lett., 35, L03402, https://doi.org/10.1029/2007GL032837, 2008.
IPCC: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and NY, NY, USA, Climate Change, 996 pp., 2007.
Jørgensen, N. O. G., Tranvik, L., Edling, H., Granéli, W., and Lindell, M.: Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake water, FEMS Microbiol. Ecol., 25, 217–227, 1998.
Karlsson, E. S., Charkin, A., Dudarev, O., Semiletov, I., Vonk, J. E., Sánchez-García, L., Andersson, A., and Gustafsson, Ö.: Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea, Biogeosciences, 8, 1865–1879, https://doi.org/10.5194/bg-8-1865-2011, 2011.
Kassens, H., Bauch, H. A., Dmitrenko, J. A., Eicken, H., Hubberten, H. W., Melles, M., Thiede, J., and Timokhov, L. A.: Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Springer, Berlin Heidelberg New York, 711 pp., 1999.
Kodina, L. A.: The carbon isotope composition of phytoplankton along the Ob-Kara Sea transect in August-September 1999, Rep. Polar Res., 393, 157–160, 2001.
Kodina, L. A.: Carbon isotope composition of phytoplankton in the Yenisei River-estuary-open sea system and the application of isotopic approach for evaluation of phytoplankton contribution to the Yenisei POC load, Ber. Polarforsch., 419, 143–149, 2002.
Lara, R. J., Rachold, V., Kattner, G., Hubberten, H.-W., Guggenbergen, G., Skoog, A., and Thomas, D. N.: Dissolved organic matter and nutrients in the Lena River, Siberian Arctic: Characteristics and distribution, Mar. Chem., 59, 301–309, 1998.
Lewis, E. and Wallace, D. W. R.: Program developed for CO2 system calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 1998.
Macdonald, R. W., Anderson, L. G., Christensen, J. P., Miller, L. A., Semiletov, I. P., and Stein, R.: The Arctic Ocean: Budgets and fluxes, in: Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, edited by: Liu, K.-K., Atkinson, L., Quinones, R., and Talaue-McManus, L., Springer, Berlin, 291–303, 2008.
Mantoura, R. F. C. and Woodward, E. M. S.: Conservative behavior of riverine dissolved organic-carbon in the Severn Estuary – chemical and geochemical implications, Geochim. Cosmochim. Ac., 47, 1293–1309, 1983.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Nicolsky, D. and Shakhova, N.: Modeling sub-sea permafrost in the East-Siberian Arctic Shelf: the Dmitry Laptev Strait, Env. Res. Lett., 5, https://doi.org/10.1088/1748-9326/5/1/015006, 2010.
Nicolsky, D. J., Romanovsky, V. E., Romanovskii, N. N., Kholodov, A. L., Shakhova, N. E., and Semiletov, I. P.: Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region, J. Geophys. Res., 117, F03028, https://doi.org/10.1029/2012JF002358, 2012.
Nikiforov, E. G. and Shpaikher, A. O.: Features of the formation of hydrological regime large-scale variations in the Arctic Ocean, Hydrometeoizdat, Leningrad, 269 pp., 1980 (in Russian).
Pavlova, G. Yu., Tishchenko, P. Ya., Volkova, T. I., Dickson, A., and Wallmann, K.: Intercalibration of Bruevich's method to determine the total alkalinity in seawater, Oceanology, 48, 460–465, 2008.
Petelin, V. P.: New method of water-mechanical analysis of marine bottom sediment, Oceanology, 1, 143–148, 1961 (in Russian).
Pipko, I. I., Semiletov, I. P., and Pugach, S. P.: The carbonate system of the East Siberian Sea waters, Dokl. Earth Sci., 402, 624–627, 2005.
Pipko, I., Semiletov, I. P., Tishchenko, P. Ya., Pugach, S. P., and Savel'eva, N. I.: Variability of the carbonate system parameters in the coast–shelf zone of the East Siberian Sea during the autumn season, Oceanology, 48, 1, 54–67, 2008.
Pipko, I. I., Pugach, S. P., Dudarev, O. V., Charkin, A. N., and Semiletov, I. P.: Carbonate parameters of the Lena River: Characteristics and distribution, Geochem. Int., 48, 1131–1137, 2010.
Pipko, I. I., Semiletov, I. P., Pugach, S. P., Wåhlström, I., and Anderson, L. G.: Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea, Biogeosciences, 8, 1987–2007, https://doi.org/10.5194/bg-8-1987-2011, 2011a.
Pipko, I. I., Pugach, S. P., Semiletov, I. P., and Salyuk, A. N.: Carbonate Characteristics of Waters of the Arctic Ocean Continental Slope, Dokl. Earth Sci., 438, 858–863, 2011b.
Porcelli, D., Andersson, P., Baskaran, M., Frank, M., Björk, G., and Semiletov, I.: The distribution of neodymium isotopes in Arctic Ocean basins, Geochim. Cosmochim. Ac., 73, 2645–2659, 2009.
Proshutinsky, A. Y. and Johnson, M. A.: Two circulation regimes of the wind-driven Arctic Ocean, J. Geophys. Res., 102, 12493–12514, 1997.
Proshutinsky, A., Timmermans, M.-L., Ashik, I., Beszczynska-Moeller, A., Carmack, E., Frolov, I., Ingvaldsen, R., Itoh, M., Kikuchi, T., Krishfield, R., McLaughlin, F., Loeng, H., Nishino, S., Puickart, R., Rabe, B., Rudels, B., Semiletov, I., Schauer, U., Shakhova, N., Shimada, K., Sokolov, V., Steele, M., Toole, J., Weingarther, T., Williams, W., Woodgate, R., Yamamoto-Kawai, M., and Zimmermann, S.: The Arctic Ocean, in: State of the Climate in 2011, B. Am. Meteorol. Soci., 93, S142–S145, 2012.
Pugach, S. P. and Pipko, I. I.: Dynamic of colored dissolved organic matter on the East-Siberian Sea shelf, Dokl. Earth Sci., 448, 153–156, 2013.
Rachold, V., Grigoriev, M. N., Are, F. E., Solomon, S., Reimnnitz, E., Kassens, H., and Antonow, M.: Coastal erosion vs. riverine sediment discharge in the Arctic shelf seas, Int. J. Earth Sci., 89, 450–460, 2000.
Rachold, V., Eicken, H., Gordeev, V., Grigoriev, M., Hubberten, H., Lisitzin, A., Shevchenko, V., and Schirmeister, L.: Modern terrigenous organic carbon input to the Arctic Ocean, in: edited by: The Organic Carbon Cycle in the Arctic Ocean, Stein, R. and Macdonald, R. W., Springer-Verlag, Berlin, Heidelberg, New York, 512 pp., 2004.
Sánchez-Garcia, L., Alling, V., Pugach, S., Vonk, J., van Dongen, B., Humborg, C., Dudarev, O., Semiletov, I., and Gustafsson, Ö.: Inventories and behavior of particulate organic carbon in the Laptev and East Siberian seas, Global Biogeochem. Cy., 25, GB2007, https://doi.org/10.1029/2010GB003862, 2011.
Savelieva, N. I., Semiletov, I. P., Vasilevskaya, L. N., and Pugach, S. P.: A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia, Prog. Oceanogr., 47, 279–297, 2000.
Semiletov, I. P.: Ancient ice air content of the Vostok Ice Core, in: Biogeochemistry of Trace Gases, edited by: Oremland, S., Chapman and Hall Inc., New York, 46–59, 1993.
Semiletov, I. P.: On aquatic sources and sinks of CO2 and CH4 in the polar regions, J. Atmos. Sci., 56, 286–306, 1999a.
Semiletov, I. P.: The failure of coastal frozen rock as an important factor in the biogeochemistry of the arctic shelf water, Dokl. Earth Sci., 369(8), 1140–1143, 1999b.
Semiletov, I. P. and Pipko, I. I.: Sinks and sources of carbon dioxide in the Arctic Ocean: Results of direct instrumental measurements, Dokl. Earth Sci., 414, 642–645, 2007.
Semiletov, I. P., Pipko, I. I., Pivovarov, N. Ya., Popov, V. V., Zimov, S. A., Voropaev, Yu. V., and Daviodov, S. P.: Atmospheric carbon emission from north Asian lakes: A factor of global significance, Atmos. Environ., 30, 1657–1671, 1996a.
Semiletov, I. P., Pivovarov, N. Ya., Pipko, I. I., Gukov, A.Yu., Volkova, T. I., Sharp, J. P., Shcherbakov, Yu. S., and Fedorov, K. P.: Dynamics of dissolved CH4 and CO2 in the Lena River Delta and Laptev Sea, Transactions (Doklady) of the Russian Academy of Sciences, 350, 401–404, 1996b (translated into English).
Semiletov, I. P., Savelieva, N. I., Weller, G. E., Pipko, I. I., Pugach, S. P., Gukov, A. Yu., and Vasilevskaya, L. N.: The dispersion of Siberian river flows into coastal waters: Meteorological, hydrological and hydrochemical aspects, in: The Freshwater Budget of the Arctic Ocean, NATO Meeting/NATO ASI Series, edited by: Lewis, E. L., Kluwer Academic Publishers, Dordrecht, 323–367, 2000.
Semiletov, I. P., Makshtas, A., Akasofu, S.-I., and Andreas, E.: Atmospheric CO2 balance: The role of Arctic sea ice, Geophys. Res. Lett., 31, L05121, https://doi.org/10.1029/2003GL017996, 2004.
Semiletov, I., Dudarev, O., Luchin, V., Charkin, A., Shin, K., and Tanaka, N.: The East-Siberian Sea as a transition zone between the Pacific origin water and local shelf water, Geophys. Res. Lett., 32, L10614, https://doi.org/10.1029/2005GL022490, 2005.
Semiletov, I. P., Pipko, I. I., Repina, I., and Shakhova, N. E.: Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic, J. Marine Syst., 66, 204–226, 2007.
Semiletov, I. P., Pipko, I. I., Shakhova, N. E., Dudarev, O. V., Pugach, S. P., Charkin, A. N., McRoy, C. P., Kosmach, D., and Gustafsson, Ö.: Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion, Biogeosciences, 8, 2407–2426, https://doi.org/10.5194/bg-8-2407-2011, 2011.
Semiletov, I. P., Shakhova, N. E., Sergienko, V. I., Pipko, I. I., and Dudarev, O. V.: On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system, Environ. Res. Lett., 7, 015201, https://doi.org/10.1088/1748-9326/7/1/015201, 2012.
Shakhova, N. and Semiletov, I.: Methane release and coastal environment in the East Siberian Arctic shelf, J. Mar. Syst., 66 , 227–243, 2007.
Shakhova, N. and Semiletov, I.: Trace gas emissions from sub-sea permafrost. In: Climate Change and the Cryosphere: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): An Arctic Council "Cryosphere Project" in Cooperation with IASC, CliC and IPY, A report of the Arctic Monitoring and Assessment Program (AMAP), Oslo, Norway, 97–104, 2012.
Shakhova, N. E., Nicolsky, D., and Semiletov, I. P.: Current state of subsea permafrost on the East Siberian Shelf: Tests of modeling results based on field observations, Dokl. Earth Sci., 429, 1518–1521, 2009a.
Shakhova, N. E., Sergienko, V. I., and Semiletov, I. P.: Modern state of the role of the East Siberian Shelf in the methane cycle, Her. Russ. Acad. Sci.+, 79, 507–518, 2009b (translated into English by Springer).
Shakhova, N., Semiletov, I., Leifer, I., Rekant, P., Salyuk, A., and Kosmach, D.: Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf, J. Geophys. Res., 115, C08007, https://doi.org/10.1029/2009JC005602, 2010a.
Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and Gustafsson, Ö.: Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 327, 1246–1250, 2010b.
Shakhova, N., Semiletov I., and Gustafsson, Ö.: Methane from the East Siberian Arctic Shelf/Response, Science, 329, 1147–1148, 2010c.
Shepard, F. P.: Nomenclature based on sand-silt-clay ratios, J. Sediment. Petrol., 24, 151–158, 1954.
Soloviev, V. A., Ginzburg, G. D., Telepnev, E. B., and Mihalyuk, Yu. N.: Cryothermia and natural gas hydrates within the Arctic Ocean, Sevmorgeologiya, Leningrad, 150 pp., 1987 (in Russian).
Sondergaard, M. and Middelboe, M.: A cross-system analysis of labile dissolved organic carbon, Mar. Ecol.-Prog. Ser., 118, 283–294, 1995.
Sorokin, Yu. A. and Sorokin, P. Yu.: Plankton and primary production in the Lena River estuary and in the South-eastern Laptev Sea, Estuar. Coast. Shelf Sci., 43, 399–418, 1996.
Stein, R. and Macdonald, R. W.: The Organic Carbon Cycle in the Arctic Ocean, Springer-Verlag, Berlin, 417 pp., 2004.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cy., 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
van Dongen, B. E., Semiletov, I. P., Weijers, J. W. H., and Gustafsson, Ö.: Contrasting lipid biomarker composition of terrestrial organic matter exported from across the Eurasian Arctic by the five Great Russian Arctic Rivers, Global Biogeochem. Cy., 22, GB1011, https://doi.org/10.1029/2007GB002974, 2008.
Vonk, J. E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., and Gustafsson, Ö.: Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea, Biogeosciences, 7, 3153–3166, https://doi.org/10.5194/bg-7-3153-2010, 2010.
Vonk, J. E., Sánchez-García, L., van Dongen, B. E., Alling, V., Kosmach, D., Charkin, A., Semiletov, I. P., Dudarev, O. V., Shakhova, N., Roos, P., Eglinton, T. I., Andersson, A. and Gustafsson, Ö.: Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia, Nature, 489, 137–140, 2012.
Walsh, J. J., McRoy, C. P., Coachman, L. K., Goering, J. J., Nihoul, J. J., Whitledge, T. E., Blackburn, T. H., Parker, P. L., Wirick, C. D., Shuert, P. G., Grebmeier, J. M., Springer, A. M., Tripp, R. D., Hansell, D. A., Djenidi, S., Deleersnijder, E., Henriksen, K., Lund, B. A., Andersen, P., Muller-Karger, F. E., and Dean, K.: Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean, Prog. Oceanogr., 22, 277–359, 1989.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373–7382, 1992.
Wanninkhof, R. and McGillis, W. R.: A cubic relationship between air-sea CO2 exchange and wind speed, Geophys. Res. Lett., 26, 1889–1892, 1999.
Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and seawater, Deep-Sea Res., 17, 721–735, 1970.
Weiss, R. F.: Determination of gas carbon dioxide and methane by duel catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography, J. Chromatogr. Sci., 19, 611–616, 1981.
Wiegner, T. N. and Seitzinger, S. P.: Photochemical and microbial degradation of external dissolved organic matter inputs to rivers, Aquat. Microb. Ecol., 24, 27–40, 2001.
Zimov, S. A., Semiletov, I. P., Daviodov, S. P., Voropaev, Yu. V., Prosyannikov, S. F., Wong, C. S., and Chan, Y.-H.: Wintertime CO2 emission from soils of Northeastern Siberia, Arctic, 46, 197–204, 1993.
Zimov, S. A., Voropaev, Yu. V., Semiletov, I. P., Daviodov, S. P., Chapin, F. S., and Trumbore, S.: North Siberian lakes: a methane source fueled by Pleistocene carbon, Science, 277, 800–802, 1997.
Altmetrics
Final-revised paper
Preprint