Articles | Volume 10, issue 9
https://doi.org/10.5194/bg-10-6029-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-6029-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Biogeochemical origins of particles obtained from the inversion of the volume scattering function and spectral absorption in coastal waters
Earth System Science and Policy, University of North Dakota, Grand Forks, North Dakota 58202, USA
Y. Huot
Centre d'applications et de recherches en télédétection, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
D. J. Gray
US Naval Research Laboratory Code 7231, Washington, DC 20375, USA
A. Weidemann
US Naval Research Laboratory Code 7330, Stennis Space Center, MS 39529, USA
W. J. Rhea
US Naval Research Laboratory Code 7231, Washington, DC 20375, USA
Related authors
Tatiana Molodtsova, Sergey Molodtsov, Andrei Kirilenko, Xiaodong Zhang, and Jeffrey VanLooy
Nat. Hazards Earth Syst. Sci., 16, 1011–1018, https://doi.org/10.5194/nhess-16-1011-2016, https://doi.org/10.5194/nhess-16-1011-2016, 2016
Short summary
Short summary
One of the Gravity Recovery and Climate Experiment (GRACE) products, the Terrestrial Water Storage Anomaly (TWSA), was used for assessing large-scale flood risk. The efficacy of the methodology was evaluated over the continental USA. The method exhibits higher skill in predicting the large-area, long-duration floods, especially during the summer season.
M. Christensen, J. Zhang, J. S. Reid, X. Zhang, E. J. Hyer, and A. Smirnov
Atmos. Meas. Tech., 8, 2149–2160, https://doi.org/10.5194/amt-8-2149-2015, https://doi.org/10.5194/amt-8-2149-2015, 2015
Short summary
Short summary
Submerged oceanic bubbles, which could have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite-based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine if such bubbles are of sufficient magnitude to impact satellite aerosol optical depth retrievals through perturbation of the lower boundary conditions.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Tatiana Molodtsova, Sergey Molodtsov, Andrei Kirilenko, Xiaodong Zhang, and Jeffrey VanLooy
Nat. Hazards Earth Syst. Sci., 16, 1011–1018, https://doi.org/10.5194/nhess-16-1011-2016, https://doi.org/10.5194/nhess-16-1011-2016, 2016
Short summary
Short summary
One of the Gravity Recovery and Climate Experiment (GRACE) products, the Terrestrial Water Storage Anomaly (TWSA), was used for assessing large-scale flood risk. The efficacy of the methodology was evaluated over the continental USA. The method exhibits higher skill in predicting the large-area, long-duration floods, especially during the summer season.
M. Christensen, J. Zhang, J. S. Reid, X. Zhang, E. J. Hyer, and A. Smirnov
Atmos. Meas. Tech., 8, 2149–2160, https://doi.org/10.5194/amt-8-2149-2015, https://doi.org/10.5194/amt-8-2149-2015, 2015
Short summary
Short summary
Submerged oceanic bubbles, which could have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite-based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine if such bubbles are of sufficient magnitude to impact satellite aerosol optical depth retrievals through perturbation of the lower boundary conditions.
Y. Huot, M. Babin, and F. Bruyant
Biogeosciences, 10, 3445–3454, https://doi.org/10.5194/bg-10-3445-2013, https://doi.org/10.5194/bg-10-3445-2013, 2013
Related subject area
Biogeochemistry: Bio-Optics
Chromophoric dissolved organic matter dynamics revealed through the optimization of an optical–biogeochemical model in the northwestern Mediterranean Sea
Estimating the seasonal impact of optically significant water constituents on surface heating rates in the western Baltic Sea
Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea
Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: ocean colour remote sensing observations and analysis
Comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by K. Michaelian and A. Simeonov (2015)
A limited effect of sub-tropical typhoons on phytoplankton dynamics
The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective N2-yielding section
Diel quenching of Southern Ocean phytoplankton fluorescence is related to iron limitation
A global end-member approach to derive aCDOM(440) from near-surface optical measurements
Floodwater impact on Galveston Bay phytoplankton taxonomy, pigment composition and photo-physiological state following Hurricane Harvey from field and ocean color (Sentinel-3A OLCI) observations
Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments
Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database
Carbon Flux Explorer optical assessment of C, N and P fluxes
Phytoplankton size class in the East China Sea derived from MODIS satellite data
An estuarine-tuned quasi-analytical algorithm (QAA-V): assessment and application to satellite estimates of SPM in Galveston Bay following Hurricane Harvey
Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index
Modelling ocean-colour-derived chlorophyll a
Optical properties of size fractions of suspended particulate matter in littoral waters of Québec
Methods to retrieve the complex refractive index of aquatic suspended particles: going beyond simple shapes
Changes in optical characteristics of surface microlayers hint to photochemically and microbially mediated DOM turnover in the upwelling region off the coast of Peru
Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization
Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors
Autonomous profiling float observations of the high-biomass plume downstream of the Kerguelen Plateau in the Southern Ocean
A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment
Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications
Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea
Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool
A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space
Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea
On the consistency of MODIS chlorophyll $a$ products in the northern South China Sea
Contribution to a bio-optical model for remote sensing of Lena River water
Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting
Apparent optical properties of the Canadian Beaufort Sea – Part 1: Observational overview and water column relationships
Apparent optical properties of the Canadian Beaufort Sea – Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products
Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding
Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space
Variations of net primary productivity and phytoplankton community composition in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data
Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean
Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data
Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics
Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance
Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea
MODIS observed phytoplankton dynamics in the Taiwan Strait: an absorption-based analysis
Global variability of phytoplankton functional types from space: assessment via the particle size distribution
Optical Characterization of an Eddy-induced Diatom Bloom West of the Island of Hawaii
The dissolved yellow substance and the shades of blue in the Mediterranean Sea
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Justyna Meler, Dagmara Litwicka, and Monika Zabłocka
Biogeosciences, 20, 2525–2551, https://doi.org/10.5194/bg-20-2525-2023, https://doi.org/10.5194/bg-20-2525-2023, 2023
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Baltic Sea waters. The light absorption coefficient by all suspended particles (ap), detritus (ad) and phytoplankton (aph) was determined for four size fractions: pico-particles, ultra-particles, nano-particles and micro-particles. We have shown the proportions of particles from the size classes (micro-, nano-, ultra- and pico-particles) in the total ap, ad and aph.
Jenny Choo, Nagur Cherukuru, Eric Lehmann, Matt Paget, Aazani Mujahid, Patrick Martin, and Moritz Müller
Biogeosciences, 19, 5837–5857, https://doi.org/10.5194/bg-19-5837-2022, https://doi.org/10.5194/bg-19-5837-2022, 2022
Short summary
Short summary
This study presents the first observation of water quality changes over space and time in the coastal systems of Sarawak, Malaysian Borneo, using remote sensing technologies. While our findings demonstrate that the southwestern coast of Sarawak is within local water quality standards, historical patterns of water quality degradation that were detected can help to alert local authorities and enhance management and monitoring strategies of coastal waters in this region.
Lars Olof Björn
Biogeosciences, 19, 1013–1019, https://doi.org/10.5194/bg-19-1013-2022, https://doi.org/10.5194/bg-19-1013-2022, 2022
Short summary
Short summary
The origin and evolution of life do not contradict the laws of thermodynamics, but we have no proof that it is an inevitable consequence of these laws. We do not know if the first life arose under illumination or in darkness in the deep ocean or in the Earth's crust. We have no proof that it arose due to a
thermodynamic imperative of dissipating the prevailing solar spectrum, as there are other ways for entropy increase in solar radiation. The biosphere may instead delay entropy production.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Christina Schallenberg, Robert F. Strzepek, Nina Schuback, Lesley A. Clementson, Philip W. Boyd, and Thomas W. Trull
Biogeosciences, 17, 793–812, https://doi.org/10.5194/bg-17-793-2020, https://doi.org/10.5194/bg-17-793-2020, 2020
Short summary
Short summary
Measurements of phytoplankton health still require the use of research vessels and are thus costly and sparse. In this paper we propose a new way to assess the health of phytoplankton using simple fluorescence measurements, which can be made autonomously. In the Southern Ocean, where the most limiting nutrient for phytoplankton is iron, we found a relationship between iron limitation and the depression of fluorescence under high light, the so-called non-photochemical quenching of fluorescence.
Stanford B. Hooker, Atsushi Matsuoka, Raphael M. Kudela, Youhei Yamashita, Koji Suzuki, and Henry F. Houskeeper
Biogeosciences, 17, 475–497, https://doi.org/10.5194/bg-17-475-2020, https://doi.org/10.5194/bg-17-475-2020, 2020
Short summary
Short summary
A Kd(λ) and aCDOM(440) data set spanned oceanic, coastal, and inland waters. The algorithmic approach, based on Kd end-member pairs, can be used globally. End-members with the largest spectral span had an accuracy of 1.2–2.4 % (RMSE). Validation was influenced by subjective
nonconservativewater masses. The influence of subcategories was confirmed with an objective cluster analysis.
Bingqing Liu, Eurico J. D'Sa, and Ishan D. Joshi
Biogeosciences, 16, 1975–2001, https://doi.org/10.5194/bg-16-1975-2019, https://doi.org/10.5194/bg-16-1975-2019, 2019
Short summary
Short summary
An approach using bio-optical field and ocean color (Sentinel-3A OLCI) data combined with inversion models allowed for the first time an assessment of phytoplankton response (changes in taxonomy, pigment composition and physiological state) to a large hurricane-related floodwater perturbation in a turbid estuary. The study revealed the transition in phytoplankton community species as well as the spatiotemporal distributions of phytoplankton diagnostic pigments in the floodwater-impacted bay.
Nina Schuback and Philippe D. Tortell
Biogeosciences, 16, 1381–1399, https://doi.org/10.5194/bg-16-1381-2019, https://doi.org/10.5194/bg-16-1381-2019, 2019
Short summary
Short summary
Understanding the dynamics of primary productivity requires mechanistic insight into the coupling of light absorption, electron transport and carbon fixation in response to environmental variability. Measuring such rates over diurnal timescales in contrasting regions allowed us to gain information on the regulation of photosynthetic efficiencies, with implications for the interpretation of bio-optical data, and the parameterization of models needed to monitor productivity over large scales.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Hannah L. Bourne, James K. B. Bishop, Todd J. Wood, Timothy J. Loew, and Yizhuang Liu
Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, https://doi.org/10.5194/bg-16-1249-2019, 2019
Short summary
Short summary
The biological carbon pump, the process by which carbon-laden particles sink out of the surface ocean, is dynamic and fast. The use of autonomous observations will better inform carbon export simulations. The Carbon Flux Explorer (CFE) was developed to optically measure hourly variations of particle flux. We calibrate the optical measurements of the CFE against C and N flux using samples collected during a coastal California cruise in June 2017. Our results yield well-correlated calibrations.
Hailong Zhang, Shengqiang Wang, Zhongfeng Qiu, Deyong Sun, Joji Ishizaka, Shaojie Sun, and Yijun He
Biogeosciences, 15, 4271–4289, https://doi.org/10.5194/bg-15-4271-2018, https://doi.org/10.5194/bg-15-4271-2018, 2018
Short summary
Short summary
The PSC model was re-tuned for regional application in the East China Sea, and successfully applied to MODIS data. We investigated previously unknown temporal–spatial patterns of the PSC in the ECS and analyzed their responses to environmental factors. The results show the PSC varied across both spatial and temporal scales, and was probably affected by the water column stability, upwelling, and Kuroshio. In addition, human activity and riverine discharge may impact the PSC dynamics.
Ishan D. Joshi and Eurico J. D'Sa
Biogeosciences, 15, 4065–4086, https://doi.org/10.5194/bg-15-4065-2018, https://doi.org/10.5194/bg-15-4065-2018, 2018
Short summary
Short summary
The standard quasi-analytical algorithm (QAA) was tuned for various ocean color sensors as QAA-V and optimized for and evaluated in a variety of waters from highly absorbing and turbid to relatively clear shelf waters. The QAA-V-derived optical properties of total absorption and backscattering coefficients showed an obvious improvement when compared to the standard QAA and were used to examine suspended particulate matter dynamics in Galveston Bay following flooding due to Hurricane Harvey.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
Stephanie Dutkiewicz, Anna E. Hickman, and Oliver Jahn
Biogeosciences, 15, 613–630, https://doi.org/10.5194/bg-15-613-2018, https://doi.org/10.5194/bg-15-613-2018, 2018
Short summary
Short summary
This study provides a demonstration that a biogeochemical/ecosystem/optical computer model which explicitly captures how light is radiated at the surface of the ocean and can be used as a laboratory to explore products (such as Chl a) that are derived from satellite measurements of ocean colour. It explores uncertainties that arise from data input used to derive the algorithms for the products, and issues arising from the interplay between optically important constituents in the ocean.
Gholamreza Mohammadpour, Jean-Pierre Gagné, Pierre Larouche, and Martin A. Montes-Hugo
Biogeosciences, 14, 5297–5312, https://doi.org/10.5194/bg-14-5297-2017, https://doi.org/10.5194/bg-14-5297-2017, 2017
Short summary
Short summary
The mass-specific absorption coefficients of total suspended particulate matter (aSPM*) had relatively low (high) values in areas of of the St. Lawrence Estuary influenced by marine (freshwater) waters and dominated by large-sized (small-sized) and organic-rich (mineral-rich) particulates.
The inorganic content of particulates was correlated with size-fractionated aSPM* values at a wavelength of 440 nm and the spectral slope of aSPM* as computed within the spectral range 400–710 nm.
Albert-Miquel Sánchez and Jaume Piera
Biogeosciences, 13, 4081–4098, https://doi.org/10.5194/bg-13-4081-2016, https://doi.org/10.5194/bg-13-4081-2016, 2016
Short summary
Short summary
In this paper, several methods for the retrieval of the refractive indices are used in three different examples modeling different shapes and particle size distributions. The error associated with each method is discussed and analyzed. It is finally demonstrated that those inverse methods using a genetic algorithm provide optimal estimations relative to other techniques that, although faster, are less accurate.
Luisa Galgani and Anja Engel
Biogeosciences, 13, 2453–2473, https://doi.org/10.5194/bg-13-2453-2016, https://doi.org/10.5194/bg-13-2453-2016, 2016
G. E. Kim, M.-A. Pradal, and A. Gnanadesikan
Biogeosciences, 12, 5119–5132, https://doi.org/10.5194/bg-12-5119-2015, https://doi.org/10.5194/bg-12-5119-2015, 2015
Short summary
Short summary
Light absorption by colored detrital material (CDM) was included in a fully coupled Earth system model. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. Concurrently, total biomass decreased leaving more nutrients in the water. Regional changes were analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth.
J. A. Gamon, O. Kovalchuck, C. Y. S. Wong, A. Harris, and S. R. Garrity
Biogeosciences, 12, 4149–4159, https://doi.org/10.5194/bg-12-4149-2015, https://doi.org/10.5194/bg-12-4149-2015, 2015
Short summary
Short summary
NDVI and PRI sensors (SRS, Decagon Inc.) exhibited complementary responses during spring photosynthetic activation in evergreen and deciduous stands. In evergreens, PRI was most strongly influenced by changing chlorophyll:carotenoid pool sizes over the several weeks of the study, while it was most affected by xanthophyll cycle pigment activity at the diurnal timescale. These automated PRI and NDVI sensors offer new ways to explore environmental and physiological constraints on photosynthesis.
M. Grenier, A. Della Penna, and T. W. Trull
Biogeosciences, 12, 2707–2735, https://doi.org/10.5194/bg-12-2707-2015, https://doi.org/10.5194/bg-12-2707-2015, 2015
Short summary
Short summary
Four bio-profilers were deployed in the high-biomass plume downstream of the Kerguelen Plateau (KP; Southern Ocean) to examine the conditions favouring phytoplankton accumulation. Regions of very high Chla accumulation were mainly associated with surface waters from the northern KP. Light limitation seems to have a limited influence on production. A cyclonic eddy was associated with a significant export of organic matter and a subsequent dissolved inorganic carbon storage in the ocean interior.
I. Cetinić, M. J. Perry, E. D'Asaro, N. Briggs, N. Poulton, M. E. Sieracki, and C. M. Lee
Biogeosciences, 12, 2179–2194, https://doi.org/10.5194/bg-12-2179-2015, https://doi.org/10.5194/bg-12-2179-2015, 2015
Short summary
Short summary
The ratio of simple optical properties measured from underwater autonomous platforms, such as floats and gliders, is used as a new tool for studying phytoplankton distribution in the North Atlantic Ocean. The resolution that optical instruments carried by autonomous platforms provide allows us to study phytoplankton patchiness and its drivers in the oceanic systems.
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
M. Kahru and R. Elmgren
Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, https://doi.org/10.5194/bg-11-3619-2014, 2014
E. J. D'Sa, J. I. Goes, H. Gomes, and C. Mouw
Biogeosciences, 11, 3225–3244, https://doi.org/10.5194/bg-11-3225-2014, https://doi.org/10.5194/bg-11-3225-2014, 2014
A. Matsuoka, M. Babin, D. Doxaran, S. B. Hooker, B. G. Mitchell, S. Bélanger, and A. Bricaud
Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, https://doi.org/10.5194/bg-11-3131-2014, 2014
S. Q. Wang, J. Ishizaka, H. Yamaguchi, S. C. Tripathy, M. Hayashi, Y. J. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. J. Yoo
Biogeosciences, 11, 1759–1773, https://doi.org/10.5194/bg-11-1759-2014, https://doi.org/10.5194/bg-11-1759-2014, 2014
S. L. Shang, Q. Dong, C. M. Hu, G. Lin, Y. H. Li, and S. P. Shang
Biogeosciences, 11, 269–280, https://doi.org/10.5194/bg-11-269-2014, https://doi.org/10.5194/bg-11-269-2014, 2014
H. Örek, R. Doerffer, R. Röttgers, M. Boersma, and K. H. Wiltshire
Biogeosciences, 10, 7081–7094, https://doi.org/10.5194/bg-10-7081-2013, https://doi.org/10.5194/bg-10-7081-2013, 2013
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
D. Antoine, S. B. Hooker, S. Bélanger, A. Matsuoka, and M. Babin
Biogeosciences, 10, 4493–4509, https://doi.org/10.5194/bg-10-4493-2013, https://doi.org/10.5194/bg-10-4493-2013, 2013
S. B. Hooker, J. H. Morrow, and A. Matsuoka
Biogeosciences, 10, 4511–4527, https://doi.org/10.5194/bg-10-4511-2013, https://doi.org/10.5194/bg-10-4511-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin
Biogeosciences, 10, 917–927, https://doi.org/10.5194/bg-10-917-2013, https://doi.org/10.5194/bg-10-917-2013, 2013
S. Takao, T. Hirawake, S. W. Wright, and K. Suzuki
Biogeosciences, 9, 3875–3890, https://doi.org/10.5194/bg-9-3875-2012, https://doi.org/10.5194/bg-9-3875-2012, 2012
R. Röttgers and B. P. Koch
Biogeosciences, 9, 2585–2596, https://doi.org/10.5194/bg-9-2585-2012, https://doi.org/10.5194/bg-9-2585-2012, 2012
A. Sadeghi, T. Dinter, M. Vountas, B. Taylor, M. Altenburg-Soppa, and A. Bracher
Biogeosciences, 9, 2127–2143, https://doi.org/10.5194/bg-9-2127-2012, https://doi.org/10.5194/bg-9-2127-2012, 2012
A. Matsuoka, A. Bricaud, R. Benner, J. Para, R. Sempéré, L. Prieur, S. Bélanger, and M. Babin
Biogeosciences, 9, 925–940, https://doi.org/10.5194/bg-9-925-2012, https://doi.org/10.5194/bg-9-925-2012, 2012
B. B. Taylor, E. Torrecilla, A. Bernhardt, M. H. Taylor, I. Peeken, R. Röttgers, J. Piera, and A. Bracher
Biogeosciences, 8, 3609–3629, https://doi.org/10.5194/bg-8-3609-2011, https://doi.org/10.5194/bg-8-3609-2011, 2011
G. Dall'Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin
Biogeosciences, 8, 3423–3439, https://doi.org/10.5194/bg-8-3423-2011, https://doi.org/10.5194/bg-8-3423-2011, 2011
H. Loisel, V. Vantrepotte, K. Norkvist, X. Mériaux, M. Kheireddine, J. Ras, M. Pujo-Pay, Y. Combet, K. Leblanc, G. Dall'Olmo, R. Mauriac, D. Dessailly, and T. Moutin
Biogeosciences, 8, 3295–3317, https://doi.org/10.5194/bg-8-3295-2011, https://doi.org/10.5194/bg-8-3295-2011, 2011
S. Shang, Q. Dong, Z. Lee, Y. Li, Y. Xie, and M. Behrenfeld
Biogeosciences, 8, 841–850, https://doi.org/10.5194/bg-8-841-2011, https://doi.org/10.5194/bg-8-841-2011, 2011
T. S. Kostadinov, D. A. Siegel, and S. Maritorena
Biogeosciences, 7, 3239–3257, https://doi.org/10.5194/bg-7-3239-2010, https://doi.org/10.5194/bg-7-3239-2010, 2010
F. Nencioli, G. Chang, M. Twardowski, and T. D. Dickey
Biogeosciences, 7, 151–162, https://doi.org/10.5194/bg-7-151-2010, https://doi.org/10.5194/bg-7-151-2010, 2010
A. Morel and B. Gentili
Biogeosciences, 6, 2625–2636, https://doi.org/10.5194/bg-6-2625-2009, https://doi.org/10.5194/bg-6-2625-2009, 2009
Cited articles
Aas, E.: Refractive index of phytoplankton derived from its metabolite composition, J. Plankton Res., 18, 2223–2249, https://doi.org/10.1093/plankt/18.12.2223, 1996.
Antoine, D., Siegel, D. A., Kostadinov, T., Maritorena, S., Nelson, N. B., Gentili, B., Vellucci, V., and Guillocheau, N.: Variability in optical particle backscattering in contrasting bio-optical oceanic regimes, Limnol. Oceanogr., 56, 955–973, 2011.
Babin, M. and Stramski, D.: Variations in the mass-specific absorption coefficient of mineral particles suspended in water, Limnol. Oceanogr., 49, 756–767, 2004.
Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., and Hoepffner, N.: Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res., 108, 3211, https://doi.org/10.1029/2001JC000882, 2003.
Berthon, J.-F., Shybanov, E., Lee, M. E. G., and Zibordi, G.: Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea, Appl. Optics, 46, 5189–5203, 2007.
Bi, L., Yang, P., Kattawar, G. W., and Kahn, R.: Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra, Appl. Optics, 49, 334–342, 2010.
Bogucki, D. J., Domaradzki, J. A., Stramski, D., and Zaneveld, J. R. V.: Comparison of near-forward light scattering on oceanic turbulence and particles, Appl. Optics, 37, 4669–4677, 1998.
Boss, E., Pegau, W. S., Gardner, W. D., Zaneveld, J. R. V., Barnard, A. H., Twardowski, M. S., Chang, G. C., and Dickey, T. D.: Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf, J. Geophys. Res., 106, 9509–9516, https://doi.org/10.1029/2000jc900077, 2001.
Boss, E., Pegau, W. S., Lee, M., Twardowski, M., Shybanov, E., and Korotaev, G.: Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution, J. Geophys. Res., 109, C01014, https://doi.org/10.1029/2002JC001514, 2004.
Boss, E., Collier, R., Larson, G., Fennel, K., and Pegau, W. S.: Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR, Hydrobiologia, 574, 149–159, 2007.
Boss, E., Slade, W. H., Behrenfeld, M., and Dall'Olmo, G.: Acceptance angle effects on the beam attenuation in the ocean, Opt. Express, 17, 1535–1550, 2009.
Bricaud, A., Morel, A., and Prieur, L.: Optical efficiency factors of some phytoplankters, Limnol. Oceanogr., 28, 816–832, 1983.
Bricaud, A., Bédhomme, A.-L., and Morel, A.: Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation, J. Plankton Res., 10, 851–873, 1988.
Bricaud, A., Morel, A., Babin, M., Allali, K., and Claustre, H.: Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implication for bio-optical models, J. Geophys. Res., 103, 31033–31044, 1998.
Campbell, J. W.: The lognormal distribution as a model for bio-optical variability in the sea, J. Geophys. Res., 100, 13237–13254, 1995.
Carder, K., Betzer, P., and Eggimann, D.: Physical, Chemical, and Optical Measures of Suspended-Particle Concentrations: Their Intercomparison and Application to the West African Shelf, in: Suspended Solids in Water, edited by: Gibbs, R., Marine Science, Springer US, 173–193, 1974.
Chami, M., Shybanov, E. B., Churilova, T. Y., Khomenko, G. A., Lee, M. E. G., Martynov, O. V., Berseneva, G. A., and Korotaev, G. K.: Optical properties of the particles in the Crimea coastal waters (Black Sea), J. Geophys. Res., 110, C11020, https://doi.org/10.1029/2005jc003008, 2005.
Chami, M., Shybanov, E. B., Khomenko, G. A., Lee, M. E.-G., Martynov, O. V., and Korotaev, G. K.: Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment, Appl. Optics, 45, 3605–3619, 2006.
Chang, G. and Whitmire, A. L.: Effects of bulk particle characteristics on backscattering and optical closure, Opt. Express, 17, 2132–2142, 2009.
Chavez, F. P., Buck, K. R., Bidigare, R. R., Karl, D. M., Hebel, D., Latasa, M., Campbell, L., and Newton, J.: On the chlorophyll a retention properties of glass-fiber GF/F filters, Limnol. Oceanogr., 40, 428–433, 1995.
Chin, J. H., Sliepcevich, C. M., and Tribus, M.: Particle Size Distributions from Angular Variation of Intensity of Forward-Scattered Light at Very Small Angles, J. Phys. Chem., 59, 841–844, https://doi.org/10.1021/j150531a010, 1955.
Ciotti, A. M., Lewis, M. R., and Cullen, J. J.: Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient, Limnol. Oceanogr., 47, 404–417, 2002.
Clavano, W. R., Boss, E., and Karp-Boss, L.: Inherent Optical Properties of Non-Spherical Marine-Like Particles – From Theory to Observation, in: Oceanography and Marine Biology: An Annual Review, edited by: Gibson, R. N., Atkinson, R. J. A., and Gordon, J. D. M., Taylor & Francis, Boca Raton, 1–38, 2007.
Coston, S. D. and George, N.: Particle sizing by inversion of the optical transform pattern, Appl. Optics, 30, 4785–4794, 1991.
Czerski, H., Twardowski, M., Zhang, X., and Vagle, S.: Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods, J. Geophys. Res., 116, C00H11, https://doi.org/10.1029/2011jc007177, 2011.
Dall'Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and Slade, W. H.: Significant contribution of large particles to optical backscattering in the open ocean, Biogeosciences, 6, 947–967, https://doi.org/10.5194/bg-6-947-2009, 2009.
Doxaran, D., Babin, M., and Leymarie, E.: Near-infrared light scattering by particles in coastal waters, Opt. Express, 15, 12834–12849, 2007.
Doxaran, D., Ruddick, K., McKee, D., Gentili, B., Tailliez, D., Chami, M., and Babin, M.: Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared, Limnol. Oceanogr., 54, 1257–1271, 2009.
Estapa, M. L., Boss, E., Mayer, L. M., and Roesler, C. S.: Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters, Limnol. Oceanogr., 57, 97–112, https://doi.org/10.4319/lo.2012.57.1.0097, 2012.
Fournier, G. R. and Forand, J. L.: Analytical phase function for ocean water, SPIE Ocean Optics XII, 2258, 194–201, 1994.
Fujiki, T. and Taguchi, S.: Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance, J. Plankton Res., 24, 859–874, https://doi.org/10.1093/plankt/24.9.859, 2002.
Gordon, H. R. and Brown, O. B.: A theoretical model of light scattering by Sargasso Sea particulates, Limnol. Oceanogr., 17, 826–832, 1972.
Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., and Clark, D. K.: A semianalytic radiance model of ocean color, J. Geophys. Res., 93, 10909–10924, 1988.
Gould, R. W., Arnone, J. R. A., and Martinolich, P. M.: Spectral dependence of the scattering coefficient in case 1 and case 2 waters, Appl. Optics, 38, 2377–2383, 1999.
Green, R. E., Sosik, H. M., Olson, R. J., and DuRand, M. D.: Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates, Appl. Optics, 42, 526–541, 2003.
Haardt, H. and Maske, H.: Specific in vivo absorption coefficient of chlorophyll a at 675 nm, Limnol. Oceanogr., 32, 608–619, 1987.
Huot, Y., Morel, A., Twardowski, M. S., Stramski, D., and Reynolds, R. A.: Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean, Biogeosciences, 5, 495–507, https://doi.org/10.5194/bg-5-495-2008, 2008.
Kirk, J. T. O. and Oliver, R. L.: Optical closure in an ultraturbid lake, J. Geophys. Res., 100, 13221–13225, https://doi.org/10.1029/95jc00533, 1995.
Kitchen, J. C. and Zaneveld, J. R. V.: A three-layered sphere model of the optical properties of phytoplankton, Limnol. Oceanogr., 37, 1680-1690, 1992.
Knight, J. C., Ball, D., and Robertson, G. N.: Analytical inversion for laser diffraction spectrometry giving improved resolution and accuracy in size distribution, Appl. Optics, 30, 4795–4799, 1991.
Kullenberg, G.: Scattering of light by Sargasso Sea water, Deep-Sea Res., 15, 423–432, 1968.
Lambert, C. E., Jehanno, C., Silverberg, N., Brun-Cottan, J. C., and Chesselet, R.: Log-normal distribution of suspended particles in the open ocean, J. Mar. Res., 39, 77–98, 1981.
Lee, M. E. and Lewis, M. R.: A New Method for the Measurement of the Optical Volume Scattering Function in the Upper Ocean, J. Atmos. Ocean Tech., 20, 563–571, 2003.
Lee, Z., Carder, K. L., and Arnone, R. A.: Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters, Appl. Optics, 41, 5755–5772, 2002.
Leymarie, E., Doxaran, D., and Babin, M.: Uncertainties associated to measurements of inherent optical properties in natural waters, Appl. Optics, 49, 5415–5436, 2010.
Magnuson, A., Harding Jr., L. W., Mallonee, M. E., and Adolf, J. E.: Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight, Estuar. Coast. Shelf. S., 61, 403–424, https://doi.org/10.1016/j.ecss.2004.06.020, 2004.
Marshall, H. G., Burchardt, L., and Lacouture, R.: A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries, J. Plankton Res., 27, 1083–1102, 10.1093/plankt/fbi079, 2005.
Martinez-Vicente, V., Dall'Olmo, G., Tarran, G., Boss, E., and Sathyendranath, S.: Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean, Geophys. Res. Lett., 40, 1–5, https://doi.org/10.1002/grl.50252, 2013.
McKee, D., Piskozub, J., and Brown, I.: Scattering error corrections for in situ absorption and attenuation measurements, Opt. Express, 16, 19480–19492, 2008.
Meyer, R. A.: Light scattering from biological cells: Dependence of backscattering radiation on membrane thickness and refractive index, Appl. Optics, 18, 585–588, 1979.
Mishchenko, M. I., Travis, L. D., and Lacis, A. A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge University Press, Cambridge, 478 pp., 2006.
Morel, A.: The scattering of light by seawater: experimental results and theoretical approach, NATO Advisory Group for Aerospace Research and Development, No. 61, 171, 1973.
Morel, A.: Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters), J. Geophys. Res., 93, 10749–10768, 1988.
Morel, A. and Ahn, Y.-H.: Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells, J. Mar. Res., 49, 177–202, 1991.
Morel, A. and Bricaud, A.: Theoretical results concerning light absorption in a discrete medium and application to specific absorption of phytoplankton, Deep-Sea Res., 28, 1375–1393, 1981.
Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res., 106, 7163–7180, 2001.
Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709–722, 1977.
Osborne, B. A. and Geider, R. J.: Problems in the assessment of the package effect in five small phytoplankters, Mar. Biol., 100, 151–159, 10.1007/bf00391954, 1989.
Pegau, W. S., Zaneveld, J. R. V., and Voss, K. J.: Toward closure of the inherent optical properties of natural waters, J. Geophys. Res., 100, 13193–13199, 1995.
Peng, F. and Effler, S. W.: Characterizations of individual suspended mineral particles in western Lake Erie: Implications for light scattering and water clarity, J. Great Lakes Res., 36, 686–698, https://doi.org/10.1016/j.jglr.2010.08.003, 2010.
Petzold, T. J.: Volume scattering function for selected ocean waters, Scripps Institute of Oceanography, La JollaSIO Ref. 72–78, 79, 1972.
Preisendorfer, R. W.: Hydrologic Optics: Introduction, Pacific Mar. Environ. lab/NOAA, Seattle, 218 pp., 1976.
Privoznik, K. G., Daniel, K. J., and Incropera, F. P.: Absorption, extinction and phase function measurements for algal suspensions of chlorella pyrenoidosa, J. Quant. Spectrosc. Ra., 20, 345–352, 1978.
Quirantes, A. and Bernard, S.: Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers, J. Quant. Spectrosc. Ra., 100, 315–324, https://doi.org/10.1016/j.jqsrt.2005.11.048, 2006.
Riley, J. B. and Agrawal, Y. C.: Sampling and inversion of data in diffraction particle sizing, Appl. Optics, 30, 4800–4817, 1991.
Sathyendranath, S., Prieur, L., and Morel, A.: A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters, Int. J. Remote Sens., 10, 1373–1394, https://doi.org/10.1080/01431168908903974, 1989.
Siegel, D. A., Maritorena, S., Nelson, N. B., and Behrenfeld, M. J.: Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption, J. Geophys. Res.-Oceans, 110, C07011, https://doi.org/10.1029/2004JC002527, 2005.
Slade, W. H. and Boss, E. S.: Calibrated near-forward volume scattering function obtained from the LISST particle sizer, Opt. Express, 14, 3602–3615, 2006.
Stramski, D. and Kiefer, D. A.: Light scattering by microorganisms in the open ocean, Prog. Oceanogr., 28, 343–383, 1991.
Stramski, D. and Wozniak, S. B.: On the role of colloidal particles in light scattering in the ocean, Limnol. Oceanogr., 50, 1581–1591, 2005.
Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community, Appl. Optics, 40, 2929–2945, 2001.
Stramski, D., Boss, E., Bogucki, D., and Voss, K. J.: The role of seawater constituents in light backscattering in the ocean, Prog. Oceanogr., 61, 27–56, 2004.
Sullivan, J. M., Twardowski, M. S., Donaghay, P. L., and Freeman, S. A.: Use of optical scattering to discriminate particle types in coastal waters, Appl. Optics, 44, 1667–1680, 2005.
Sullivan, J. M., Twardowski, M. S., Zaneveld, J. R. V., Moore, C. M., Barnard, A. H., Donaghay, P. L., and Rhoades, B.: Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range, Appl. Optics, 45, 5294–5309, 2006.
Sullivan, J. M. and Twardowski, M. S.: Angular shape of the oceanic particulate volume scattering function in the backward direction, Appl. Optics, 48, 6811–6819, 2009.
Taguchi, S.: Relationship between photosynthesis and cell size of marine diatom, J. Phycol., 12, 185–189, https://doi.org/10.1111/j.1529-8817.1976.tb00499.x, 1976.
Twardowski, M., Zhang, X., Vagle, S., Sullivan, J., Freeman, S., Czerski, H., You, Y., Bi, L., and Kattawar, G.: The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations, J. Geophys. Res., 117, C00H17, https://doi.org/10.1029/2011JC007347, 2012.
Twardowski, M. S., Sullivan, J. M., Donaghay, P. L., and Zaneveld, J. R. V.: Microscale Quantification of the Absorption by Dissolved and Particulate Material in Coastal Waters with an ac-9, J. Atmos. Ocean Tech., 16, 691–707, https://doi.org/10.1175/1520-0426(1999)016<0691:MQOTAB<2.0.CO;2, 1999.
Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H., and Zaneveld, J. R. V.: A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters, J. Geophys. Res., 106, 14129–14142, 2001.
Twardowski, M. S., Claustre, H., Freeman, S. A., Stramski, D., and Huot, Y.: Optical backscattering properties of the "clearest" natural waters, Biogeosciences, 4, 1041–1058, https://doi.org/10.5194/bg-4-1041-2007, 2007.
Twomey, S.: Introduction to the mathematics of inversion in remote sensing and indirect measurements, Developments in Geomathematics, Elsevier Scientific Publishing Company, Amsterdam, 243 pp., 1977.
Ulloa, O., Sathyendranath, S., and Platt, T.: Effect of the particle-size distribution on the backscattering ratio in seawater, Appl. Optics, 33, 7070–7077, 1994.
Vaillancourt, R. D. and Balch, W. M.: Size distribution of marine submicron particles determined by flow field-flow fractionation, Limnol. Oceanogr., 45, 485–492, 2000.
van de Hulst, H. C.: Light Scattering by Small Particles, Dover Publications, Inc., New York, 1981.
Van Heukelem, L. and Thomas, C. S.: Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments, J. Chromatogr. A, 910, 31–49, https://doi.org/10.1016/S0378-4347(00)00603-4, 2001.
Westberry, T. K., Dall'Olmo, G., Boss, E., Behrenfeld, M. J., and Moutin, T.: Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments, Opt. Express, 18, 15419–15425, 2010.
Whitmire, A. L., Pegau, W. S., Karp-Boss, L., Boss, E., and Cowles, T. J.: Spectral backscattering properties of marine phytoplankton cultures, Opt. Express, 18, 15073–15093, 2010.
Wozniak, B. and Dera, J.: Light Absorption in Sea Water, Atmospheric and Oceanographic Sciences Library, edited by: Mysak, L. A. and Hamilton, K., Springer, New York, 452 pp., 2007.
Yentsch, C. S.: Measurement of visible light absorption by particulate matter in the ocean, Limnol. Oceanogr., 7, 207–217, 1962.
Zaneveld, J. R. V.: Optical Closure: From theory to measurement, in: Ocean Optics, edited by: Spinrad, R. W., Carder, K. L., and Perry, M. J., Oxford University Press, New York, 59–73, 1994.
Zaneveld, J. R. V., Roach, D. M., and Pak, H.: The determination of the index of refraction distribution of oceanic particulates, J. Geophys. Res., 79, 4091–4095, 1974.
Zaneveld, J. R. V., Kitchen, J. C., and Moore, C.: The scattering error correction of reflecting-tube absorption meters, SPIE Ocean Optics XII, 2258, 44–55, 1994.
Zhang, X., Lewis, M. R., and Johnson, B. D.: Influence of bubbles on scattering of light in the ocean, Appl. Optics, 37, 6525–6536, 1998.
Zhang, X., Hu, L., and He, M.-X.: Scattering by pure seawater: Effect of salinity, Opt. Express, 17, 5698–5710, 2009.
Zhang, X., Twardowski, M., and Lewis, M.: Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function, Appl. Optics, 50, 1240–1259, 2011.
Zhang, X., Gray, D., Huot, Y., You, Y., and Bi, L.: Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles, Appl. Optics, 51, 5085–5099, 2012.
Altmetrics
Final-revised paper
Preprint