Articles | Volume 11, issue 19
https://doi.org/10.5194/bg-11-5637-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-5637-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer
NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, the Netherlands
J.-H. Kim
NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, the Netherlands
M. Balsinha
Marine Geology Division, Portuguese Hydrographic Institute, Lisbon, Portugal
D. Dorhout
NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, the Netherlands
C. Fernandes
Marine Geology Division, Portuguese Hydrographic Institute, Lisbon, Portugal
M. Baas
NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, the Netherlands
J. S. Sinninghe Damsté
NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, the Netherlands
Related authors
Lisa Warden, Jung-Hyun Kim, Claudia Zell, Geert-Jan Vis, Henko de Stigter, Jérôme Bonnin, and Jaap S. Sinninghe Damsté
Biogeosciences, 13, 5719–5738, https://doi.org/10.5194/bg-13-5719-2016, https://doi.org/10.5194/bg-13-5719-2016, 2016
Short summary
Short summary
Enhanced analytical techniques were applied to characterize fossilized microbial cell membrane lipids from samples in the Tagus River basin spanning the last 6000 years. Using the novel methods and calibration, the pH estimates were improved upon, and this study reveals new factors that should be considered when using this proxy as well as affirms the importance of examining the provenance of these lipids before applying them for paleoclimate reconstructions.
Tessa Sophia van der Voort, Frank Hagedorn, Cameron McIntyre, Claudia Zell, Lorenz Walthert, Patrick Schleppi, Xiaojuan Feng, and Timothy Ian Eglinton
Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, https://doi.org/10.5194/bg-13-3427-2016, 2016
Short summary
Short summary
This study explores heterogeneity in 14C content of soil organic matter (SOM) at different spatial scales and across climatic and geologic gradients, which is essential for a better understanding of SOM stability. Results reveal that despite dissimilar environmental conditions, 14C contents in topsoils is relatively uniform and 14C trends with depth are similar. Plot-scale variability is significant. Statistical analysis found a significant correlation of 14C contents (0–5 cm) and temperature.
R. L. Sobrinho, M. C. Bernardes, G. Abril, J.-H. Kim, C. I Zell, J.-M. Mortillaro, T. Meziane, P. Moreira-Turcq, and J. S. Sinninghe Damsté
Biogeosciences, 13, 467–482, https://doi.org/10.5194/bg-13-467-2016, https://doi.org/10.5194/bg-13-467-2016, 2016
Short summary
Short summary
The principal objective of the present work is to quantify the fractions of the principal sources of sedimentary organic matter (SOM) in floodplain lakes of the central Amazon basin. The results indicate that the main source of SOM is not the riverine particulate material, as postulated by the literature, but the macrophytes and the forests.
Lisa Warden, Jung-Hyun Kim, Claudia Zell, Geert-Jan Vis, Henko de Stigter, Jérôme Bonnin, and Jaap S. Sinninghe Damsté
Biogeosciences, 13, 5719–5738, https://doi.org/10.5194/bg-13-5719-2016, https://doi.org/10.5194/bg-13-5719-2016, 2016
Short summary
Short summary
Enhanced analytical techniques were applied to characterize fossilized microbial cell membrane lipids from samples in the Tagus River basin spanning the last 6000 years. Using the novel methods and calibration, the pH estimates were improved upon, and this study reveals new factors that should be considered when using this proxy as well as affirms the importance of examining the provenance of these lipids before applying them for paleoclimate reconstructions.
Tessa Sophia van der Voort, Frank Hagedorn, Cameron McIntyre, Claudia Zell, Lorenz Walthert, Patrick Schleppi, Xiaojuan Feng, and Timothy Ian Eglinton
Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, https://doi.org/10.5194/bg-13-3427-2016, 2016
Short summary
Short summary
This study explores heterogeneity in 14C content of soil organic matter (SOM) at different spatial scales and across climatic and geologic gradients, which is essential for a better understanding of SOM stability. Results reveal that despite dissimilar environmental conditions, 14C contents in topsoils is relatively uniform and 14C trends with depth are similar. Plot-scale variability is significant. Statistical analysis found a significant correlation of 14C contents (0–5 cm) and temperature.
Douwe S. Maat, Nicole J. Bale, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, Stefan Schouten, and Corina P. D. Brussaard
Biogeosciences, 13, 1667–1676, https://doi.org/10.5194/bg-13-1667-2016, https://doi.org/10.5194/bg-13-1667-2016, 2016
Short summary
Short summary
This study shows that the phytoplankter Micromonas pusilla alters its lipid composition when the macronutrient phosphate is in low supply. This reduction in phospholipids is directly dependent on the strength of the limitation. Furthermore we show that, when M. pusilla is infected by viruses, lipid remodeling is lower. The study was carried out to investigate how phytoplankton and its viruses are affected by environmental factors and how this affects food web dynamics.
R. L. Sobrinho, M. C. Bernardes, G. Abril, J.-H. Kim, C. I Zell, J.-M. Mortillaro, T. Meziane, P. Moreira-Turcq, and J. S. Sinninghe Damsté
Biogeosciences, 13, 467–482, https://doi.org/10.5194/bg-13-467-2016, https://doi.org/10.5194/bg-13-467-2016, 2016
Short summary
Short summary
The principal objective of the present work is to quantify the fractions of the principal sources of sedimentary organic matter (SOM) in floodplain lakes of the central Amazon basin. The results indicate that the main source of SOM is not the riverine particulate material, as postulated by the literature, but the macrophytes and the forests.
M. Rodrigo-Gámiz, S. W. Rampen, H. de Haas, M. Baas, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 12, 6573–6590, https://doi.org/10.5194/bg-12-6573-2015, https://doi.org/10.5194/bg-12-6573-2015, 2015
Short summary
Short summary
This research reports a test of the applicability of three organic-derived temperature proxies (UK'37, TEX86 and LDI) at high latitudes around Iceland. A range of samples including suspended particular material (SPM), trapped descending particles and surface sediments were collected to test the different proxies in the water column and the sediment.The combination of three independent SST organic proxies provided important information about seasonality and differences in habitat depth.
M. Sollai, E. C. Hopmans, S. Schouten, R. G. Keil, and J. S. Sinninghe Damsté
Biogeosciences, 12, 4725–4737, https://doi.org/10.5194/bg-12-4725-2015, https://doi.org/10.5194/bg-12-4725-2015, 2015
Short summary
Short summary
The distribution of Thaumarchaeota and anammox bacteria in the water column of the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) was investigated by collecting suspended particulate matter (SPM) and analyzing it for the content of specific intact polar lipids (IPLs) produced by the two microbial groups. We found a clear niche segregation in the distribution of the two groups in the coastal waters of the ETNP but a partial overlap of their niches in the open-water setting.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
L. K. Buckles, J. W. H. Weijers, X.-M. Tran, S. Waldron, and J. S. Sinninghe Damsté
Biogeosciences, 11, 5539–5563, https://doi.org/10.5194/bg-11-5539-2014, https://doi.org/10.5194/bg-11-5539-2014, 2014
C. López-Rodríguez, A. Stadnitskaia, G. J. De Lange, F. Martínez-Ruíz, M. Comas, and J. S. Sinninghe Damsté
Biogeosciences, 11, 3187–3204, https://doi.org/10.5194/bg-11-3187-2014, https://doi.org/10.5194/bg-11-3187-2014, 2014
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
S. K. Lengger, Y. A. Lipsewers, H. de Haas, J. S. Sinninghe Damsté, and S. Schouten
Biogeosciences, 11, 201–216, https://doi.org/10.5194/bg-11-201-2014, https://doi.org/10.5194/bg-11-201-2014, 2014
D. S. Maat, N. J. Bale, E. C. Hopmans, A.-C. Baudoux, J. S. Sinninghe Damsté, S. Schouten, and C. P. D. Brussaard
Biogeosciences, 11, 185–194, https://doi.org/10.5194/bg-11-185-2014, https://doi.org/10.5194/bg-11-185-2014, 2014
N. J. Bale, L. Villanueva, E. C. Hopmans, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 10, 7195–7206, https://doi.org/10.5194/bg-10-7195-2013, https://doi.org/10.5194/bg-10-7195-2013, 2013
J. Etourneau, L. G. Collins, V. Willmott, J.-H. Kim, L. Barbara, A. Leventer, S. Schouten, J. S. Sinninghe Damsté, A. Bianchini, V. Klein, X. Crosta, and G. Massé
Clim. Past, 9, 1431–1446, https://doi.org/10.5194/cp-9-1431-2013, https://doi.org/10.5194/cp-9-1431-2013, 2013
B. Veuger, A. Pitcher, S. Schouten, J. S. Sinninghe Damsté, and J. J. Middelburg
Biogeosciences, 10, 1775–1785, https://doi.org/10.5194/bg-10-1775-2013, https://doi.org/10.5194/bg-10-1775-2013, 2013
Related subject area
Paleobiogeoscience: Organic Biomarkers
Locally Produced Sedimentary Biomarkers in High-Altitude Catchments Outweigh Upstream River Transport in Sedimentary Archives
Comparison of paleobotanical and biomarker records of mountain peatland and forest ecosystem dynamics over the last 2600 years in central Germany
Hyperspectral imaging sediment core scanning tracks high-resolution Holocene variations in (an)oxygenic phototrophic communities at Lake Cadagno, Swiss Alps
A Holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia
Human and livestock faecal biomarkers at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria – potential and limitations
The influence of lateral transport on sedimentary alkenone paleoproxy signals
Exploring the use of compound-specific carbon isotopes as a palaeoproductivity proxy off the coast of Adélie Land, East Antarctica
Development of global temperature and pH calibrations based on bacterial 3-hydroxy fatty acids in soils
Lignin oxidation products in soil, dripwater and speleothems from four different sites in New Zealand
From leaf to soil: n-alkane signal preservation, despite degradation along an environmental gradient in the tropical Andes
Comparison of the U37K′, LDI, TEX86H, and RI-OH temperature proxies in sediments from the northern shelf of the South China Sea
Reconstructing N2-fixing cyanobacterial blooms in the Baltic Sea beyond observations using 6- and 7-methylheptadecane in sediments as specific biomarkers
Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula
Organic signatures in Pleistocene cherts from Lake Magadi (Kenya) – implications for early Earth hydrothermal deposits
Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation
Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water
Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”
Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs
Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation
Improved end-member characterisation of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies
Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis
Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions
Biostratigraphic evidence for dramatic Holocene uplift of Robinson Crusoe Island, Juan Fernández Ridge, SE Pacific Ocean
A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea
Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy – Part 1: The Araucariaceae family
Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany)
Occurrence and distribution of ladderane oxidation products in different oceanic regimes
Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes
Alex Brittingham, Michael T. Hren, Sam Spitzschuch, Phil Glauberman, Yonaton Goldsmith, Boris Gasparyan, and Ariel Malinsky-Buller
EGUsphere, https://doi.org/10.5194/egusphere-2024-724, https://doi.org/10.5194/egusphere-2024-724, 2024
Short summary
Short summary
Plant molecules, also called biomarkers, are a tool used for reconstructing climates in the past. In this study, we collected soils and stream sediments in a river catchment in Armenia in order to determine how these molecules move before deposition. We found that trees and grasses produce distinct biomarkers but these are not incorporated equally into stream sediments. Instead, biomarkers from deciduous trees overprint any upstream transport of grass biomarkers.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Paul D. Zander, Stefanie B. Wirth, Adrian Gilli, Sandro Peduzzi, and Martin Grosjean
Biogeosciences, 20, 2221–2235, https://doi.org/10.5194/bg-20-2221-2023, https://doi.org/10.5194/bg-20-2221-2023, 2023
Short summary
Short summary
This study shows, for the first time, that hyperspectral imaging can detect bacteriochlorophyll pigments produced by green sulfur bacteria in sediment cores. We tested our method on cores from Lake Cadagno, Switzerland, and were able to reconstruct high-resolution variations in the abundance of green and purple sulfur bacteria over the past 12 700 years. Climate conditions, flood events, and land use had major impacts on the lake’s biogeochemical conditions over short and long timescales.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Pierre Véquaud, Sylvie Derenne, Alexandre Thibault, Christelle Anquetil, Giuliano Bonanomi, Sylvie Collin, Sergio Contreras, Andrew T. Nottingham, Pierre Sabatier, Norma Salinas, Wesley P. Scott, Josef P. Werne, and Arnaud Huguet
Biogeosciences, 18, 3937–3959, https://doi.org/10.5194/bg-18-3937-2021, https://doi.org/10.5194/bg-18-3937-2021, 2021
Short summary
Short summary
A better understanding of past climate variations is essential to apprehend future climatic changes. The aim of this study is to investigate the applicability of specific organic compounds of bacterial origin, 3-hydroxy fatty acids (3-OH FAs), as temperature and pH proxies at the global level using an extended soil dataset. We show the major potential of 3-OH FAs as such proxies in terrestrial environments through the different models presented and their application for palaeoreconstruction.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Jérôme Kaiser, Norbert Wasmund, Mati Kahru, Anna K. Wittenborn, Regina Hansen, Katharina Häusler, Matthias Moros, Detlef Schulz-Bull, and Helge W. Arz
Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, https://doi.org/10.5194/bg-17-2579-2020, 2020
Short summary
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Manuel Reinhardt, Walter Goetz, Jan-Peter Duda, Christine Heim, Joachim Reitner, and Volker Thiel
Biogeosciences, 16, 2443–2465, https://doi.org/10.5194/bg-16-2443-2019, https://doi.org/10.5194/bg-16-2443-2019, 2019
Short summary
Short summary
Organic matter in Archean hydrothermal cherts may contain molecular traces of early life. Alteration processes during and after deposition, however, may have obliterated potential biosignatures. Our results from modern analog samples (Pleistocene cherts from Lake Magadi, Kenya) show that biomolecules can survive early hydrothermal destruction in the macromolecular fraction of the organic matter. A conservation of molecular biosignatures in Archean hydrothermal cherts therefore seems possible.
Darci Rush, Helen M. Talbot, Marcel T. J. van der Meer, Ellen C. Hopmans, Ben Douglas, and Jaap S. Sinninghe Damsté
Biogeosciences, 16, 2467–2479, https://doi.org/10.5194/bg-16-2467-2019, https://doi.org/10.5194/bg-16-2467-2019, 2019
Short summary
Short summary
Sapropels are layers of sediment that regularly occur in the Mediterranean. They indicate periods when the Mediterranean Sea water contained no oxygen, a gas vital for most large organisms. This research investigated a key process in the nitrogen cycle (anaerobic ammonium oxidation, anammox), which removes nitrogen – an important nutrient to algae – from the water, during sapropel events. Using lipids to trace this process, we found that anammox was active during the no-oxygen times.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Biogeosciences, 15, 5831–5845, https://doi.org/10.5194/bg-15-5831-2018, https://doi.org/10.5194/bg-15-5831-2018, 2018
Short summary
Short summary
We developed a sensitive method to analyze the lignin composition of organic traces contained in speleothems. Lignin is a main constituent of woody plants and its composition contains information about the type of vegetation. This method offers new possibilities to reconstruct the vegetation of past millennia since it combines the advantages of lignin analysis as a highly specific vegetation biomarker with the benefits of speleothems as unique terrestrial climate archives.
Jan-Peter Duda, Volker Thiel, Thorsten Bauersachs, Helge Mißbach, Manuel Reinhardt, Nadine Schäfer, Martin J. Van Kranendonk, and Joachim Reitner
Biogeosciences, 15, 1535–1548, https://doi.org/10.5194/bg-15-1535-2018, https://doi.org/10.5194/bg-15-1535-2018, 2018
Short summary
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
Wenjie Xiao, Yinghui Wang, Shangzhe Zhou, Limin Hu, Huan Yang, and Yunping Xu
Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016, https://doi.org/10.5194/bg-13-5883-2016, 2016
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
J. Holtvoeth, D. Rushworth, H. Copsey, A. Imeri, M. Cara, H. Vogel, T. Wagner, and G. A. Wolff
Biogeosciences, 13, 795–816, https://doi.org/10.5194/bg-13-795-2016, https://doi.org/10.5194/bg-13-795-2016, 2016
Short summary
Short summary
Lake Ohrid is situated in the southern Balkans between Albania and Macedonia. It is a unique ecosystem with remarkable biodiversity and a sediment record of past climates that goes back more than a million years. Detailed reconstructions of past climate development and human alteration of the environment require underpinned and so in this study we go the present-day lake vegetation and catchment soils and test new proxies over one of the known recent cooling events of the region 8200 years ago.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
S. Ding, Y. Xu, Y. Wang, Y. He, J. Hou, L. Chen, and J.-S. He
Biogeosciences, 12, 3141–3151, https://doi.org/10.5194/bg-12-3141-2015, https://doi.org/10.5194/bg-12-3141-2015, 2015
P. Sepúlveda, J. P. Le Roux, L. E. Lara, G. Orozco, and V. Astudillo
Biogeosciences, 12, 1993–2001, https://doi.org/10.5194/bg-12-1993-2015, https://doi.org/10.5194/bg-12-1993-2015, 2015
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, and V. Thiel
Biogeosciences, 10, 2725–2735, https://doi.org/10.5194/bg-10-2725-2013, https://doi.org/10.5194/bg-10-2725-2013, 2013
Y. Lu, Y. Hautevelle, and R. Michels
Biogeosciences, 10, 1943–1962, https://doi.org/10.5194/bg-10-1943-2013, https://doi.org/10.5194/bg-10-1943-2013, 2013
M. Blumenberg and F. Wiese
Biogeosciences, 9, 4139–4153, https://doi.org/10.5194/bg-9-4139-2012, https://doi.org/10.5194/bg-9-4139-2012, 2012
D. Rush, E. C. Hopmans, S. G. Wakeham, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 9, 2407–2418, https://doi.org/10.5194/bg-9-2407-2012, https://doi.org/10.5194/bg-9-2407-2012, 2012
M. D. Wolhowe, F. G. Prahl, I. Probert, and M. Maldonado
Biogeosciences, 6, 1681–1694, https://doi.org/10.5194/bg-6-1681-2009, https://doi.org/10.5194/bg-6-1681-2009, 2009
Cited articles
Alt-Epping, U., Mil-Homens, M., Hebbeln, D., Abrantes, F., and Schneider, R. R.: Provenance of organic matter and nutrient conditions on a river- and upwelling influenced shelf: A case study from the Portuguese Margin, Mar. Geol., 243, 169–179, 2007.
Ambar, I., Fiúza, A. F. G.: Some features of the Portugal current system: a poleward slope undercurrent, an upwellingrelated summer southward flow and an autumn–winter poleward coastal surface current, in: Proceedings of the second international conference on air–sea interaction and on meteorology and oceanography of the coastal zone, edited by: Katsaros, K. B., Fiúza, A. F. G., and Ambar, I., Boston, USA, Am. Meteorol. Soc., 286–287, 1994.
Ballantyne, A. P., Greenwood, D. R., Sinninghe Damsté, J. S., Csank, A. Z., Eberle, J. J., and Rybczynski, N.: Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies, Geology, 38, 603–606, https://doi.org/10.1130/G30815.1, 2010.
Bendle, J. A., Weijers, J. W. H., Maslin, M. A., Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., Boot, C. S., and Pancost, R. D.: Major changes in glacial and Holocene terrestrial temperatures and sources of organic carbon recorded in the Amazon fan by tetraether lipids, Geochem. Geophys. Geosyst., 11, 14, https://doi.org/10.1029/2010GC003308, 2010.
Castañeda, I. S., Schefuß, E., Pätzold, J., Sinninghe Damsté, J. S., Weldeab, S., and Schouten, S.: Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27 000 years, Paleoceanography, 25, PA1208, https://doi.org/10.1029/2009PA001740, 2010.
Cleveland, C. C., Wieder, W. R., Reed, S. C., and Townsend, A. R.: Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere, Ecology, 91, 2313–2323, 2010.
D'Anjou, R. M., Wei, J. H., Castañeda, I. S., Brigham-Grette, J., Petsch, S. T., and Finkelstein, D. B.: High-latitude environmental change during MIS 9 and 11: Biogeochemical evidence from Lake El'gygytgyn, Far East Russia, Clim. Past, 9, 567–581, https://doi.org/10.5194/cp-9-567-2013, 2013.
De Jonge, C., Hopmans, E. C., Stadnitskaia, A., Rijpstra, W. I. C., Hofland, R., Tegelaar, E., and Sinninghe Damsté, J. S.: Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS, Org. Geochem., 54, 78–82, 2013.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, and Sinninghe Damsté, J. S.: In-situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia, Geochim. Cosmochim. Acta, 125, 476–491, 2014.
Dirghangi, S. S., Pagani, M., Hren, M. T., and Tipple, B. J.: Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA, Org. Geochem., 59, 49–60, 2013.
Donders, T. H., Weijers, J. W. H., Munsterman, D. K., Kloosterboer-van Hoeve, M. L., Buckles, L. K., Pancost, R. D., Schouten, S., Sinninghe Damsté, J. S., and Brinkhuis, H.: Strong climate coupling of terrestrial and marine environments in the Miocene of northwest Europe, Earth Planet. Sci. Lett. 281, 215–225, 2009.
Fawcett, P. J., Werne, J. P., Anderson, R. S., Heikoop, J. M., Brown, E. T., Berke, M. A., Smith, S. J., Goff, F., Donohoo-Hurley, L., Cisneros-Dozal, L. M., Schouten, S., Sinninghe Damsté, J. S., Huang, Y., Toney, J., Fessenden, J., WoldeGabriel, G., Atudorei, V., Geissman, J. W., and Allen, C. D.: Extended megadroughts in the southwestern United States during Pleistocene interglacials, Nature, 470, 518–521, https://doi.org/10.1038/nature09839, 2011.
Fietz, S., Martínez-Garcia, A., Huguet, C., Rueda, G., and Rosell-Melé, A.: Constraints in the application of the Branched and Isoprenoid Tetraether index as a terrestrial input proxy, J. Geophys. Res., 116, C10, https://doi.org/10.1029/2011JC007062, 2011.
Fiúza, A. F. G., Macedo, M. E., and Guerreiro, M. R.: Climatological space and time variation of the Portuguese Coastal Upwelling, Oceanol. Acta, 5, 31–40, 1982.
Fry, B. and Sherr E. B.: d13C measurements as indicators of carbon flow in marine and freshwater ecosystems, Contrib. Mar. Sci., 27, 13–47, 1984.
Herfort, L., Schouten, S., Boon, J. P., Woltering, M., Baas, M., Weiers, J. W. H., and Sinninghe Damsté, J. S.: Characterization of transport and deposition of terrestrial organic matter in the southern North Sea using the BIT index, Limnol. Ocean. 51, 2196–2205, 2006.
Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett., 224, 107–116, 2004.
Hu, J., Meyers, P. A., Chen, G., Peng, P., and Yang, Q.: Archaeal and bacterial glycerol dialkyl glycerol tetraethers in sediments from the Eastern Lau Spreading Center, South Pacific Ocean, Org. Geochem., 43, 162–167, 2012.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe Damsté, J. S., and Schouten, S.: An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org. Geochem., 37, 1036–1041, 2006.
Huguet, C., Smittenberg, R.H., Boer, W., Sinninghe Damsté, J. S., and Schouten, S.: Twentieth century proxy records of temperature and soil organic matter input in the Drammensfjord, southern Norway, Org. Geochem, 38, 1838–1849, 2007.
Huguet, C., de Lange, G. J., Gustafsson, Ö., Middelburg, J. J., Sinninghe Damsté, J. S., and Schouten, S.: Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain), Geochim. Cosmochim. Acta, 72, 6061–6068, 2008.
Huguet, C., Kim, J.-H., de Lange, G. J., Sinninghe Damsté, J. S., and Schouten, S.: Effects of long term oxic degradation on the , TEX86 and BIT organic proxies, Org. Geochem., 40, 1188–1194, 2009.
Jia, G., Rao, Z., Zhang, J., Li, Z., and Chen, F.: Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau, Front. Microbiol., 4, 199, https://doi.org/10.3389/fmicb.2013.00199, 2013.
Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl. 10, 423–436, 2000.
Jouanneau, J. M., Garcia, C., Oliveira, A., Rodrigues, A., Dias, J. A., and Weber, O.: Dispersal and deposition of suspended sediment on the shelf off the Tagus and Sado estuaries, S. W. Portugal. Prog. Ocean, 42, 233–257, 1998.
Kim, J.-H., Zarzycka, B., Buscail, R., Peterse, F., Bonnin, J., Ludwig, W., Schouten, S., and Sinninghe Damsté, J. S.: Contribution of river-borne soil organic carbon to the Gulf of Lions (NW Mediterranean), Limnol. Oceanogr. 55, 507–518, 2010.
Loomis, S.E., Russell James, M., Ladd, B., Street-Perrott, A., and Sinninghe Damsté, J. S.: Calibration and application of the branched GDGT temperature proxy on East African lake sediments, Earth Planet. Sci. Lett., 42, 357–358, 2012.
Lorrain, A., Savoye, N., Chauvaud, L., Paulet, Y.-M., and Naulet, N.: Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material, Anal. Chim. Acta, 491, 125–133, 2003.
Loureiro, J. M., and Macedo, M. E.: Bacia hidrografica do rio Tejo. In Monografias hidrologicas dos principais cursops de agua de Portugal continental. Direccao Geral dos Recursos e Aproveitamentos Hidraulicos, 281–337, 1986.
Martins, C. S., Hamann, M., and Fuiza, A. F. G.: Surface circulation in the eastern North Atlantic from drifters and altimetry, J. Geophys. Res., 107, 3217, https://doi.org/10.1029/2000JC000345, 2002.
Menges, J., Huguet, C., Alcañiz, J. M., Fietz, S., Sachse, D., and Rosell-Melé, A.: Water availability determines branched glycerol dialkyl glycerol tetraether distributions in soils of the Iberian Peninsula, Biogeosciences, 11, 2571–2581, https://doi.org/10.5194/bg-11-2571-2014, 2014.
Mougenot, D.: Géologie de la Marge Portugaise, Thèse de Doctorat d'Etat és Sciences Naturelles, Univ. Pierre et Marie Curie, Paris VI, 1988.
Niemann, H., Stadnitskaia, A., Wirth, S. B., Gilli, A., Anselmetti, F. S., Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., and Lehmann, M. F.: Bacterial GDGTs in Holocene sediments and catchment soils of a high Alpine lake: application of the MBT/CBT-paleothermometer, Clim. Past, 8, 889–906, 2012.
Ninyerola, M., Pons, X., and Roure, J.: Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. ISBN 932860-8-7, Universidad Autónoma de Barcelona, Bellaterra, 2005.
Oppermann, B. I., Michaelis, W., Blumenberg, M., Frerichs, J., Schulz, H. M., Schippers, A., Beaubien, S. E., and Krüger, M.: Soil microbial community changes as a result of long-term exposure to a natural CO2 vent, Geochim. Cosmochim. Acta 74, 2697–2716, 2010.
Paiva, P., Jouanneau, J.-M., Araújo, F., Weber, O., Rodrigues, A., and Dias, J. M. A.: Elemental distribution in a sedimentary deposit on the shelf off the Tagus estuary (Portugal), Water. Air. Soil Pollut., 99, 507–514, 1997.
Pancost, R. D. and Sinninghe Damsté, J. S.: Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings, Chem. Geol. 195, 29–58, 2003.
Pearson, E. J., Juggins, S., Talbot, H. M., Weckström, J., Rosén, P., Ryves, D. B., Roberts, S. J., and Schmidt, R.: A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT-paleothermometry in lakes, Geochim. Cosmochim. Acta, 75, 6225–6238, 2011.
Peterse, F., Kim, J.-H., Schouten, S., Klitgaard Kristensen, D., Koç, N., and Sinninghe Damsté, J. S.: Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway), Org. Geochem. 40, 692–699, 2009.
Peterse, F., Nicol, G. W., Schouten, S., and Sinninghe Damsté, J. S.: Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil, Org. Geochem., 41, 1171–1175, https://doi.org/10.1016/j.orggeochem.2010.07.004, 2010.
Peterse, F., Prins, M. A., Beets, C. J., Troelstra, S. R., Zheng, H., Gu, Z., Schouten, S., and Sinninghe Damsté, J. S.: Decoupled warming and monsoon precipitation in East Asia over the last deglaciation, Earth Planet. Sci. Lett., 301, 256–264, 2011a.
Peterse, F., Hopmans, E. C., Schouten, S., Mets, A., Rijpstra, W. I. C., and Sinninghe Damsté, J. S.: Identification and distribution of intact polar branched tetraether lipids in peat and soil, Org. Geochem. 42, 1007–1015, 2011b.
Peterse, F., van der Meer, J., Schouten, S., Weijers, J. W. H., Fierer, N., Jackson, R. B., Kim, J.-H., and Sinninghe Damsté, J. S.: Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim, Cosmochim. Acta, 96, 215–229, 2012.
Pitcher, A., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions, Org. Geochem. 40, 12–19, 2009.
Rueda, G., Rosell-Melé, A., Escala, M., Gyllencreutz, R., and Backman, J.: Comparison of instrumental and GDGT-based estimates of sea surface and air temperatures from the Skagerrak, Org. Geochem., 40, 287–291, 2009.
Schmidt, F., Hinrichs, K.-U. and Elvert, M.: Sources, transport, and partitioning of organic matter at a highly dynamic continental margin, Mar. Chem., 118, 37–55, 2010.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., and Sinninghe Damsté, J. S.: Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, Anal. Chem., 79, 2940–2944, 2007.
Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., Schouten, S., and Geenevasen, J. A. J.: Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments, Chem. Commun., 1683–1684, 2000.
Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., and Verschuren, D.: Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings, Geochim, Cosmochim. Acta, 73, 4232–4249, 2009.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Weijers, J. W. H., Foesel, B. U., Overmann, J., and Dedysh, S. N.: 13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3. Appl, Environ. Microbiol. 77, 4147–4154, 2011.
Strong, D. J., Flecker, R., Valdes, P. J., Wilkinson, I. P., Rees, J. G., Zong, Y. Q., Lloyd, J. M., Garrett, E., and Pancost, R. D.: Organic matter distribution in the modern sediments of the Pearl River Estuary, Org. Geochem., 49, 68–82, 2012.
Sun, Q., Chu, G. Q., Liu, M. M., Xie, M. M., Li, S. Q., Ling, Y. A., Wang, X. H., Shi, L. M., Jia, G. D., and Lu, H. Y.: Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal, J. Geophys. Res., 116, G1, https://doi.org/10.1029/2010JG001365, 2011.
Smith, R. W., Bianchi, T. S., and Li, X.: A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: Implications for the BIT Index, Geochim. Cosmochim. Acta, 80, 14–29, 2012.
Tierney, J. E., Russell, J. M., Eggermont, H., Hopmans, E. C., Verschuren, D., and Sinninghe Damsté, J. S.: Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments, Geochim. Cosmochim. Acta, 74, 4902–4918, 2010.
Trigo R. M., Añel J., Barriopedro D., Gimeno L., Allen M., Nieto R., Neil Massey N., Castillo R., and García-Herrera R.: The record winter drought of 2011–2012 in the Iberian Peninsula, In 'Explaining extreme weather events of 2012 from a climate perspective', Special supplement of B. Am. Meterol. Soc., 94, 41–45, 2013.
Tyler, J. J., Nederbragt, A. J., Jones, V. J., and Thurow, J. W.: Assessing past temperature and soil pH estimates from bacterial tetraether membrane lipids: Evidence from the recent lake sediments of Lochnagar, Scotland, J. Geophys. Res., 115, G1, https://doi.org/10.1029/2009JG001109, 2010.
Vale, C., Ferreira, A., Micaelo, C., Caetano, M., Pereira, E., Madureira, M., and Ramalhosa, E.: Mobility of contaminants inrelation to dredging operations in a mesotidal estuary (Tagus Estuary, Portugal), Water Sci. Technol., 37, 25–31, 1998.
Walsh, E. M., Ingalls, A. E., and Keil, R. G.: Sources and Transport of Terrestrial Organic Matter in Vancouver Island Fjords and the Vancouver-Washington Margin: A Multiproxy Approach Using d13Corg, Lignin Phenols, and the Ether Lipid BIT Index, Limnol. Oceanogr., 53, 1054–1063, 2008.
Weijers, J. W. H., Schouten, S., Hopmans, E. C., Geenevasen, J. A. J., David, O. R. P., Coleman, J. M., Pancost, R. D., and Sinninghe Damsté, J. S.: Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits, Environ. Microbiol., 8, 648–657, 2006a.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index, Org. Geochem., 37, 1680–1693, 2006b.
Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C., and Sinninghe Damsté, J. S.: Environmental controls on bacterial tetraether membrane lipid distribution in soils, Geochim. Cosmochim. Acta, 71, 703–713, 2007a.
Weijers, J. W. H., Schefuß, E., Schouten, S., and Sinninghe Damsté, J. S.: Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation, Science, 315, 1701–1704, 2007b.
Weijers, J. W. H., Schouten, S., Schefuá, E., Schneider, R. R., and Sinninghe Damsté, J. S.: Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: A multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan, Geochim. Cosmochim. Acta, 73, 119–132, 2009.
Weijers, J. W. H., Wiesenberg, G. L. B., Bol, R., Hopmans, E. C., and Pancost, R. D.: Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s), Biogeosciences, 7, 2959–2973, https://doi.org/10.5194/bg-7-2959-2010, 2010.
Weijers, J. W. H., Bernhardt, B., Peterse, F., Werne, J. P., Dungait, J. A. J., Schouten, S., and Sinninghe Damsté, J. S.: Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils, Geochim. Cosmochim. Acta, 75, 3179–3190, 2011.
Williams, M., Shimabukuro, Y. E., Herbert, D. A., Pardi Lacruz, S., Renno, C., and Rastetter, E. B.: Heterogeneity of Soils and Vegetation in an Eastern Amazonian Rain Forest: Implications for Scaling Up Biomass and Production, Ecosystems, 5, 692–704, 2002.
Wu, W., Zhao, L., Pei, Y., Ding, W., Yang, H., and Xu, Y.: Variability of tetraether lipids in Yellow River-dominated continental margin during the past eight decades: Implications for organic matter sources and river channel shifts, Org. Geochem., 60, 33–39, 2013.
Xie, S., Pancost, R. D., Chen, L., Evershed, R. P., Yang, H., Zhang, K., Huang, J., and Xu, Y.: Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene, Geology, 40, 291–294, 2012.
Yang, G., Zhang, C. L., Xie, S., Chen, Z., Gao, M., Ge, Z., and Yang, Z.: Microbial glycerol dialkyl glycerol tetraethers from river water and soil near the Three Gorges Dam on the Yangtze River, Org. Geochem., 56, 40–50, 2013.
Yang, H., Ding, W., Wang, J., Jin, C., He, G., Qin, Y., and Xie, S.: Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China, Sci. China Earth Sci., 55, 236–245, 2011.
Zech, R., Gao, L., Tarozo, R., and Huang, Y.: Branched glycerol dialkyl glycerol tetraethers in Pleistocene loess-paleosol sequences: three case studies, Org. Geochem., 53, 38–44, 2012.
Zell, C., Kim, J.-H., Abril, G., Sobrinho, R. L., Dorhout, D., Moreira-Turcq, P., and Sinninghe Damsté, J. S.: Impact of seasonal hydrological variation on the distributions of tetraether lipids along the Amazon River in the central Amazon basin: implications for the MBT/CBT paleothermometer and the BIT index, Front. Microbiol., 4, 228, https://doi.org/10.3389/fmicb.2013.00228, 2013a.
Zell, C., Kim, J.-H., Moreira-Turcq, P., Abril, G., Hopmans, E. C., Bonnet, M.-P., Lima Sobrinho, R., and Sinninghe Damsté, J. S.: Disentangling the origins of branched tetraether lipids and crenarchaeol in the lower Amazon River: Implications for GDGT-based proxies, Limnol. Ocean., 58, 343–353, 2013b.
Zhang, C.L., Wang, J., Wei, Y., Zhu, C., Huang, L., and Dong, H.: Production of branched tetraether lipids in the lower pearl river and estuary: effects of extraction methods and impact on bGDGT proxies, Front. Microbiol., 2, 274, https://doi.org/10.3389/fmicb.2011.00274, 2012.
Zhu, C., Weijers, J. W. H., Wagner, T., Pan, J. M., Chen, J. F., and Pancost, R. D.: Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin, Org. Geochem., 42, 376–386, 2011.
Zink, K.-G., Vandergoes, M. J., Mangelsdorf, K., Dieffenbacher-Krall, A. C., and Schwark, L.: Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to develop modern and past temperature estimates from New Zealand lakes, Org. Geochem., 41, 1060–1066, 2010.
Altmetrics
Final-revised paper
Preprint