Articles | Volume 12, issue 22
https://doi.org/10.5194/bg-12-6791-2015
https://doi.org/10.5194/bg-12-6791-2015
Research article
 | 
27 Nov 2015
Research article |  | 27 Nov 2015

Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

E. Opolot and P. A. Finke

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (05 Nov 2015) by Akihiko Ito
AR by Emmanuel Opolot on behalf of the Authors (06 Nov 2015)  Author's response   Manuscript 
ED: Publish as is (11 Nov 2015) by Akihiko Ito
AR by Emmanuel Opolot on behalf of the Authors (12 Nov 2015)
Download
Short summary
This study evaluated the sensitivity of silicate mineral dissolution rates to intrinsic and extrinsic factors using a soil evolution model, SoilGen2.25. Modelling results showed a dominant role of pH and a direct effect of soil texture on dissolution rates. Clay migration and plant nutrient recycling influenced the pH and thus the dissolution rates. These results demonstrate the need to couple different soil processes in order to explain differences between lab and field dissolution rates.
Altmetrics
Final-revised paper
Preprint