Articles | Volume 12, issue 22
https://doi.org/10.5194/bg-12-6791-2015
https://doi.org/10.5194/bg-12-6791-2015
Research article
 | 
27 Nov 2015
Research article |  | 27 Nov 2015

Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

E. Opolot and P. A. Finke

Related authors

Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023,https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023,https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Modelling the effect of catena position and hydrology on soil chemical weathering
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022,https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Sensitivity analysis and calibration of a soil carbon model (SoilGen2) in two contrasting loess forest soils
Y. Y. Yu, P. A. Finke, H. B. Wu, and Z. T. Guo
Geosci. Model Dev., 6, 29–44, https://doi.org/10.5194/gmd-6-29-2013,https://doi.org/10.5194/gmd-6-29-2013, 2013

Related subject area

Biogeochemistry: Modelling, Terrestrial
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulfur and nitrogen atmospheric deposition
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
Biogeosciences, 22, 535–554, https://doi.org/10.5194/bg-22-535-2025,https://doi.org/10.5194/bg-22-535-2025, 2025
Short summary
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025,https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024,https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Representation of the terrestrial carbon cycle in CMIP6
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
Biogeosciences, 21, 5321–5360, https://doi.org/10.5194/bg-21-5321-2024,https://doi.org/10.5194/bg-21-5321-2024, 2024
Short summary

Cited articles

Anderson, S. P., von Blanckenburg, F., and White, A. F.: Physical and Chemical Controls on the Critical Zone, Elements, 3, 315–319, https://doi.org/10.2113/gselements.3.5.315, 2007.
Beaulieu, E., Goddéris, Y., Labat, D., Roelandt, C., Calmels, D., and Gaillardet, J.: Modeling of water-rock interaction in the Mackenzie basin: Competition between sulfuric and carbonic acids, Chem. Geol., 289, 114–123, https://doi.org/10.1016/j.chemgeo.2011.07.020, 2011.
Blatt, H. and Tracy, R.J.: Petrology: Igneous, sedimentary and metamorphic, 2nd ed. New York, W. H. Freeman, ISBN 0-7167-2438-3, 1996.
Blum, A. E. and Stillings, L. L.: Feldspar dissolution kinetics, in: Chemical Weathering Rates of Silicate Minerals, edited by: White, A. F. and Brantley, S. L., Mineralogical Society of America, 31, 291–351, 1995.
Brady, P. V. and Walther, J.V.: Kinetics of quartz dissolution at low temperatures, Chem. Geol., 82, 253–264, 1990.
Download
Short summary
This study evaluated the sensitivity of silicate mineral dissolution rates to intrinsic and extrinsic factors using a soil evolution model, SoilGen2.25. Modelling results showed a dominant role of pH and a direct effect of soil texture on dissolution rates. Clay migration and plant nutrient recycling influenced the pH and thus the dissolution rates. These results demonstrate the need to couple different soil processes in order to explain differences between lab and field dissolution rates.
Share
Altmetrics
Final-revised paper
Preprint