Articles | Volume 13, issue 21
https://doi.org/10.5194/bg-13-5965-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-5965-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Anthropogenically induced environmental changes in the northeastern Adriatic Sea in the last 500 years (Panzano Bay, Gulf of Trieste)
Jelena Vidović
CORRESPONDING AUTHOR
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Rafał Nawrot
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Ivo Gallmetzer
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Alexandra Haselmair
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Adam Tomašových
Earth Science Institute, Slovak Academy of Sciences, Dúbravská
cesta 9, 84005 Bratislava, Slovak Republic
Michael Stachowitsch
Department of Limnology and Bio-Oceanography, Center of Ecology,
University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
Vlasta Ćosović
Department of Geology, Faculty of Science, University of Zagreb,
Horvatovac 102a, 10 000 Zagreb, Croatia
Martin Zuschin
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Related authors
No articles found.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
D. Langlet, C. Baal, E. Geslin, E. Metzger, M. Zuschin, B. Riedel, N. Risgaard-Petersen, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 11, 1775–1797, https://doi.org/10.5194/bg-11-1775-2014, https://doi.org/10.5194/bg-11-1775-2014, 2014
B. Riedel, T. Pados, K. Pretterebner, L. Schiemer, A. Steckbauer, A. Haselmair, M. Zuschin, and M. Stachowitsch
Biogeosciences, 11, 1491–1518, https://doi.org/10.5194/bg-11-1491-2014, https://doi.org/10.5194/bg-11-1491-2014, 2014
M. Blasnig, B. Riedel, L. Schiemer, M. Zuschin, and M. Stachowitsch
Biogeosciences, 10, 7647–7659, https://doi.org/10.5194/bg-10-7647-2013, https://doi.org/10.5194/bg-10-7647-2013, 2013
D. Langlet, E. Geslin, C. Baal, E. Metzger, F. Lejzerowicz, B. Riedel, M. Zuschin, J. Pawlowski, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 10, 7463–7480, https://doi.org/10.5194/bg-10-7463-2013, https://doi.org/10.5194/bg-10-7463-2013, 2013
Related subject area
Paleobiogeoscience: Marine Record
Coupled otolith and foraminifera oxygen and carbon stable isotopes evidence paleoceanographic changes and fish metabolic responses
Ideas and perspectives: Human impacts alter the marine fossil record
Origin and role of non-skeletal carbonate in coralligenous build-ups: new geobiological perspectives in biomineralization processes
Serpulid microbialitic bioherms from the upper Sarmatian (Middle Miocene) of the central Paratethys Sea (NW Hungary) – witnesses of a microbial sea
Massive corals record deforestation in Malaysian Borneo through sediments in river discharge
Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era
Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927)
Variation in calcification of Reticulofenestra coccoliths over the Oligocene–Early Miocene
The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting
Testing the effect of bioturbation and species abundance upon discrete-depth individual foraminifera analysis
Test-size evolution of the planktonic foraminifer Globorotalia menardii in the eastern tropical Atlantic since the Late Miocene
Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes
Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations
Reconstructing past variations in environmental conditions and paleoproductivity over the last ∼ 8000 years off north-central Chile (30° S)
A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster
Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone
Baseline for ostracod-based northwestern Pacific and Indo-Pacific shallow-marine paleoenvironmental reconstructions: ecological modeling of species distributions
Neogene Caribbean elasmobranchs: diversity, paleoecology and paleoenvironmental significance of the Cocinetas Basin assemblage (Guajira Peninsula, Colombia)
Coastal primary productivity changes over the last millennium: a case study from the Skagerrak (North Sea)
A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century
Technical note: An empirical method for absolute calibration of coccolith thickness
Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels
Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia
Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous–Paleogene boundary
Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles
Palaeohydrological changes over the last 50 ky in the central Gulf of Cadiz: complex forcing mechanisms mixing multi-scale processes
Dinocyst assemblage constraints on oceanographic and atmospheric processes in the eastern equatorial Atlantic over the last 44 kyr
Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica
Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse
Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)
Millennial changes in North Atlantic oxygen concentrations
Vanishing coccolith vital effects with alleviated carbon limitation
Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as a function of local hydrography
Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs
Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones
Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
Icehouse–greenhouse variations in marine denitrification
Changes in calcification of coccoliths under stable atmospheric CO2
Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records
The calcareous nannofossil Prinsiosphaera achieved rock-forming abundances in the latest Triassic of western Tethys: consequences for the δ13C of bulk carbonate
The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast
Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records
Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns
Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar
Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation
Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr
First discovery of dolomite and magnesite in living coralline algae and its geobiological implications
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Jeremy N. Bentley, Gregory T. Ventura, Clifford C. Walters, Stefan M. Sievert, and Jeffrey S. Seewald
Biogeosciences, 19, 4459–4477, https://doi.org/10.5194/bg-19-4459-2022, https://doi.org/10.5194/bg-19-4459-2022, 2022
Short summary
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Thore Friesenhagen
Biogeosciences, 19, 777–805, https://doi.org/10.5194/bg-19-777-2022, https://doi.org/10.5194/bg-19-777-2022, 2022
Short summary
Short summary
Size measurements of the planktonic foraminifer Globorotalia menardii and related forms are used to investigate the shell-size evolution for the last 8 million years in the eastern tropical Atlantic Ocean. Long-term changes in the shell size coincide with major climatic, palaeogeographic and palaeoceanographic changes and suggest the occurrence of a new G. menardii type in the Atlantic Ocean ca. 2 million years ago.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Catherine V. Davis, Karen Wishner, Willem Renema, and Pincelli M. Hull
Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021, https://doi.org/10.5194/bg-18-977-2021, 2021
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Luka Šupraha and Jorijntje Henderiks
Biogeosciences, 17, 2955–2969, https://doi.org/10.5194/bg-17-2955-2020, https://doi.org/10.5194/bg-17-2955-2020, 2020
Short summary
Short summary
The cell size, degree of calcification and growth rates of coccolithophores impact their role in the carbon cycle and may also influence their adaptation to environmental change. Combining insights from culture experiments and the fossil record, we show that the selection for smaller cells over the past 15 Myr has been a common adaptive trait among different lineages. However, heavily calcified species maintained a more stable biogeochemical output than the ancestral lineage of E. huxleyi.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Hannah M. Palmer, Tessa M. Hill, Peter D. Roopnarine, Sarah E. Myhre, Katherine R. Reyes, and Jonas T. Donnenfield
Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, https://doi.org/10.5194/bg-17-2923-2020, 2020
Short summary
Short summary
Modern climate change is causing expansions of low-oxygen zones, with detrimental impacts to marine life. To better predict future ocean oxygen change, we study past expansions and contractions of low-oxygen zones using microfossils of seafloor organisms. We find that, along the San Diego margin, the low-oxygen zone expanded into more shallow water in the last 400 years, but the conditions within and below the low-oxygen zone did not change significantly in the last 1500 years.
Yuanyuan Hong, Moriaki Yasuhara, Hokuto Iwatani, and Briony Mamo
Biogeosciences, 16, 585–604, https://doi.org/10.5194/bg-16-585-2019, https://doi.org/10.5194/bg-16-585-2019, 2019
Short summary
Short summary
This study analyzed microfaunal assemblages in surface sediments from 52 sites in Hong Kong marine waters. We selected 18 species for linear regression modeling to statistically reveal the relationship between species distribution and environmental factors. These results show environmental preferences of commonly distributed species on Asian coasts, providing a robust baseline for past environmental reconstruction of the broad Asian region using microfossils in sediment cores.
Jorge Domingo Carrillo-Briceño, Zoneibe Luz, Austin Hendy, László Kocsis, Orangel Aguilera, and Torsten Vennemann
Biogeosciences, 16, 33–56, https://doi.org/10.5194/bg-16-33-2019, https://doi.org/10.5194/bg-16-33-2019, 2019
Short summary
Short summary
By combining taxonomy and geochemistry, we corroborated the described paleoenvironments from a Neogene fossiliferous deposit of South America. Shark teeth specimens were used for taxonomic identification and as proxies for geochemical analyses. With a multidisciplinary approach we refined the understanding about the paleoenvironmental setting and the paleoecological characteristics of the studied groups, in our case, for the bull shark and its incursions into brackish waters.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Shuichang Zhang, Xiaomei Wang, Huajian Wang, Emma U. Hammarlund, Jin Su, Yu Wang, and Donald E. Canfield
Biogeosciences, 14, 2133–2149, https://doi.org/10.5194/bg-14-2133-2017, https://doi.org/10.5194/bg-14-2133-2017, 2017
Liza M. Roger, Annette D. George, Jeremy Shaw, Robert D. Hart, Malcolm Roberts, Thomas Becker, Bradley J. McDonald, and Noreen J. Evans
Biogeosciences, 14, 1721–1737, https://doi.org/10.5194/bg-14-1721-2017, https://doi.org/10.5194/bg-14-1721-2017, 2017
Short summary
Short summary
The shell compositions of bivalve species from south Western Australia are described here to better understand the factors involved in their formation. The shell composition can be used to reconstruct past environmental conditions, but certain species manifest an offset compared to the environmental parameters measured. As shown here, shells that experience the same conditions can present different compositions in relation to structure, organic composition and environmental conditions.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
William Hardy, Aurélie Penaud, Fabienne Marret, Germain Bayon, Tania Marsset, and Laurence Droz
Biogeosciences, 13, 4823–4841, https://doi.org/10.5194/bg-13-4823-2016, https://doi.org/10.5194/bg-13-4823-2016, 2016
Short summary
Short summary
Our approach is based on a multi-proxy study from a core collected off the Congo River and discusses surface oceanic conditions (upwelling cells, river-induced upwelling), land–sea interactions and terrestrial erosion and in particular enables us to spatially constrain the migration of atmospheric systems. This paper thus presents new data highlighting, with the highest resolution ever reached in this region, the great correlation between phytoplanktonic organisms and monsoonal mechanisms.
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Short summary
Diatoms and biomarkers have been recently used for palaeoclimate reconstructions in the Southern Ocean. Few sediment-based ecological studies have investigated their relationships with environmental conditions. Here, we compare high-resolution sedimentary records with meteorological data to study relationships between our proxies and recent atmospheric and sea surface changes. Our results indicate that coupled wind pattern and sea surface variability act as the proximal forcing at that scale.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, Julia Kirkerowicz, and James S. Klaus
Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, https://doi.org/10.5194/bg-13-1469-2016, 2016
Short summary
Short summary
We present stable isotope proxy data and calcification records from fossil reef corals. The corals investigated derive from the Florida carbonate platform and are of middle Pliocene to early Pleistocene age. From the data we infer an environment subject to intermittent upwelling on annual to decadal timescales. Calcification rates were enhanced during periods of upwelling. This is likely an effect of dampened SSTs during the upwelling.
B. A. A. Hoogakker, D. J. R. Thornalley, and S. Barker
Biogeosciences, 13, 211–221, https://doi.org/10.5194/bg-13-211-2016, https://doi.org/10.5194/bg-13-211-2016, 2016
Short summary
Short summary
Models predict a decrease in future ocean O2, driven by surface water warming and freshening in the polar regions, causing a reduction in ocean circulation. Here we assess this effect in the past, focussing on the response of deep and intermediate waters from the North Atlantic during large-scale ice rafting and millennial-scale cooling events of the last glacial.
Our assessment agrees with the models but also highlights the importance of biological processes driving ocean O2 change.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. P. D'Olivo, M. T. McCulloch, S. M. Eggins, and J. Trotter
Biogeosciences, 12, 1223–1236, https://doi.org/10.5194/bg-12-1223-2015, https://doi.org/10.5194/bg-12-1223-2015, 2015
Short summary
Short summary
The boron isotope composition in the skeleton of massive Porites corals from the central Great Barrier Reef is used to reconstruct the seawater pH over the 1940-2009 period. The long-term decline in the coral-reconstructed seawater pH is in close agreement with estimates based on the CO2 uptake by surface waters due to rising atmospheric levels. We also observed a significant relationship between terrestrial runoff data and the inshore coral boron isotopes records.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
S. C. Löhr and M. J. Kennedy
Biogeosciences, 11, 4971–4983, https://doi.org/10.5194/bg-11-4971-2014, https://doi.org/10.5194/bg-11-4971-2014, 2014
R. Hoffmann, J. A. Schultz, R. Schellhorn, E. Rybacki, H. Keupp, S. R. Gerden, R. Lemanis, and S. Zachow
Biogeosciences, 11, 2721–2739, https://doi.org/10.5194/bg-11-2721-2014, https://doi.org/10.5194/bg-11-2721-2014, 2014
T. J. Algeo, P. A. Meyers, R. S. Robinson, H. Rowe, and G. Q. Jiang
Biogeosciences, 11, 1273–1295, https://doi.org/10.5194/bg-11-1273-2014, https://doi.org/10.5194/bg-11-1273-2014, 2014
C. Berger, K. J. S. Meier, H. Kinkel, and K.-H. Baumann
Biogeosciences, 11, 929–944, https://doi.org/10.5194/bg-11-929-2014, https://doi.org/10.5194/bg-11-929-2014, 2014
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, https://doi.org/10.5194/bg-10-7347-2013, 2013
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
I. Polovodova Asteman, K. Nordberg, and H. L. Filipsson
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, https://doi.org/10.5194/bg-10-1275-2013, 2013
J.-E. Tesdal, E. D. Galbraith, and M. Kienast
Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, https://doi.org/10.5194/bg-10-101-2013, 2013
L. Durantou, A. Rochon, D. Ledu, G. Massé, S. Schmidt, and M. Babin
Biogeosciences, 9, 5391–5406, https://doi.org/10.5194/bg-9-5391-2012, https://doi.org/10.5194/bg-9-5391-2012, 2012
C. A. Grove, J. Zinke, T. Scheufen, J. Maina, E. Epping, W. Boer, B. Randriamanantsoa, and G.-J. A. Brummer
Biogeosciences, 9, 3063–3081, https://doi.org/10.5194/bg-9-3063-2012, https://doi.org/10.5194/bg-9-3063-2012, 2012
D. Wall-Palmer, M. B. Hart, C. W. Smart, R. S. J. Sparks, A. Le Friant, G. Boudon, C. Deplus, and J. C. Komorowski
Biogeosciences, 9, 309–315, https://doi.org/10.5194/bg-9-309-2012, https://doi.org/10.5194/bg-9-309-2012, 2012
S. F. Rella and M. Uchida
Biogeosciences, 8, 3545–3553, https://doi.org/10.5194/bg-8-3545-2011, https://doi.org/10.5194/bg-8-3545-2011, 2011
M. C. Nash, U. Troitzsch, B. N. Opdyke, J. M. Trafford, B. D. Russell, and D. I. Kline
Biogeosciences, 8, 3331–3340, https://doi.org/10.5194/bg-8-3331-2011, https://doi.org/10.5194/bg-8-3331-2011, 2011
Cited articles
Acquavita, A., Covelli, S., Emili, A., Berto, D., Faganeli, J., Giani, M., Horvat, M., Koron, N., and Rampazzo, F.: Mercury in the sediments of the Marano and Grado Lagoon (northern Adriatic Sea): Sources, distribution and speciation, Estuar. Coast Shelf Sci., 113, 20–31, 2012.
Albani, A., Serandrei Barbero, R., and Donnici, S.: Foraminifera as ecological indicators in the Lagoon of Venice, Italy, Ecol. Indic., 7, 239–253, 2007.
Aleffi, I. F., Bettoso, N., Celio, M., Tamberlich, F., Predonzani, S., and Solis-Weiss, V.: Effects of suspended mussel culture on the macrozoobenthos in the Gulf of Trieste (Northern Adriatic Sea), Ann. Ser. Hist. Nat., 16, 35–146, 2006.
Allen, A. P., Kosnik, M. A., and Kaufman, D. S.: Characterizing the dynamics of amino acid racemization using time-dependent reaction kinetics: A Bayesian approach to fitting age-calibration models, Quat. Geochronol., 18, 63–77, 2013.
Alve, E., Korsun, S., Schönfeld, J., Dijkstra, N., Golikova, E., Hess, S., Husum, K., and Panieri, G.: Foram-AMBI: A sensitivity index based on benthic foraminiferal faunas from North-East Atlantic and Arctic fjords, continental shelves and slopes, Mar. Micropalaeontol., 122, 1–12, 2016.
Armynot du Châtelet, E., Debenay, J. P., and Soulard, R.: Foraminiferal Proxies from pollution monitoring in moderately polluted harbors, Environ. Pollut., 127, 27–40, 2004.
Barmawidjaja, D. M., Jorissen, F. J., Puskaric, S., and Van der Zwaan, G. J.: Microhabitat selection by benthic foraminifera in the Northern Adriatic Sea, J. Foraminifer. Res., 22, 297–317, 1992.
Barmawidjaja, D. M., Van der Zwaan, G. J., Jorissen, F. J., and Puškarić, S.: 150 years of eutrophication in the northern Adriatic Sea: Evidence from a benthic foraminiferal record, Mar. Geol., 122, 367–384, 1995.
Barras, C., Jorissen, F. J., Labrune, C., Andral, B., and Boissery, P.: Live benthic foraminiferal faunas from the French Mediterranean Coast: Towards a new biotic index of environmental quality, Ecol. Indic., 36, 719–743, 2014.
Bennett, K. D.: Determination of the number of zones in a biostratigraphical sequence, New Phytol., 132, 155–170, 1996.
Birks, H. J. B.: Chapter 11: Analysis of stratigraphical data, in: Tracking environmental change using lake sediments, Data handling and numerical techniques, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Springer, Dordrecht, 5, 355–378, 2012.
Blanchet, F. G., Legendre, P., and Borcard, D.: Forward selection of explanatory variables, Ecology, 89, 2623–2632, 2008.
Burton, G. A.: Sediment quality criteria in use around the world, Limnology, 3, 65–75, 2002.
Campos, V.: Trace Elements in Pesticides, Commun. Soil Sci. Plant Anal., 34, 9–10, 2003.
Cibic, T., Blasutto, O., Falconi, C., and Fonda-Umani, S.: Microphytobenthic biomass, species composition and nutrient availability in sublittoral sediments of the Gulf of Trieste, Estuar. Coast Shelf Sci., 75, 50–62, 2007.
Cimerman, F. and Langer, M. R.: Mediterranean foraminifera, Razred za naravoslovne vede, classis IV: Historia Naturalis, Dela-Opera 30, Slovenska akademija, Ljubljana, 119 pp., 1991.
Coccioni, R., Gabbianelli, G., and Gentiloni Silverj, D.: Benthic foraminiferal response to heavy metal pollution in the Goro Lagoon (Italy), in: First International Conference on Applications of Micropaleontology in Environmental Sciences, June 15–20, Tel Aviv, Israel, 47–48, 1997.
Coccioni, R., Frontalini, F., Marsili, A., and Mana, D.: Benthic foraminifera and trace element distribution: a case-study from the heavily polluted lagoon of Venice (Italy), Mar. Pollut. Bull., 59, 257–267, 2009.
Covelli, S., Piani, R., Kotnik, J., Horvat, M., Faganeli, J., and Brambati, A.: Behaviour of Hg species in a microtidal deltaic system: the Isonzo River mouth (northern Adriatic Sea), Sci. Total. Environ., 368, 210–223, 2006.
Covelli, S., Langone, L., Acquavita, A., Piani, R., and Emili, A.: Historical flux of mercury associated with mining and industrial sources in the Marano and Grado Lagoon (northern Adriatic Sea), Estuar. Coast Shelf Sci., 113, 7–19, 2012.
Covelli, S., Emili, A., and Acquavita, A.: Natural background values for heavy metals in the sediments of a contaminated Northern Adriatic lagoon environment: a geochemical perspective, E3S Web of Conferences, 1, 06007, https://doi.org/10.1051/e3sconf/20130106007, 2013.
Cozzi, S. and Giani, M.: River water and nutrient discharges in the northern Adriatic Sea: Current importance and long term changes, Cont. Shelf Res., 31, 1881–1893, 2011.
CPM: The history of The port of Monfalcone, http://www.c-p-m.it/en/history, last access: 1 February 2016.
Danovaro, R., Gambi, C., Luna, G. M, and Mirto, S.: Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): evidence from biochemical, microbial and meiofaunal indicators, Mar. Pollut. Bull., 49, 325–333, 2004.
Debenay, J. P., Guillou, J. J., Redois, F., and Geslin, E.: Distribution trends of foraminiferal assemblages in paralic environments: a base for using foraminifera as bioindicators, in: Environmental Micropaleontology: the Application of Microfossils to Environmental Geology, edited by: Martin, R., Springer, 39–47, 2000.
Debenay, J. P., Tsakiridis, E., Soulard, R., and Grossel, H.: Factors determining the distribution of foraminiferal assemblages in Port Joinville Harbor (Ille d'Yeu, France): the influence of pollution, Mar. Micropaleontol., 43, 75–118, 2001.
Di Bella, L. and Casieri, S.: The Late Glacial–Holocene record from Central Adriatic Sea: Paleoenvironmental reconstruction based on benthic foraminiferal assemblages, Geobios, 46, 473–489, 2013.
Di Bella, L., Casieri, S., and Carboni, M. G.: Late Quaternary paleoenvironmental reconstruction of the Tremiti structural high (Central Adriatic Sea) from benthic foraminiferal assemblages, Geobios, 41, 729–742, 2008.
Dimiza, M. D., Triantaphyllou, M. V., Koukousioura, O., Hallock, P., Simboura, N., Karageorgis, A. P., and Papathanasiou, E.: The Foram Stress Index: A new tool for environmental assessment of soft-bottom environments using benthic foraminifera, A case study from the Saronikos Gulf, Greece, Eastern Mediterranean, Ecol. Indic., 60, 611–62, 2016.
Diz, P. and Francés, G.: Postmortem processes affecting benthic foraminiferal assemblages in the Ría de Vigo, Spain: implications for paleoenvironmental studies, J. Foraminifer. Res., 39, 166–179, 2009.
Donnici, S. and Serandrei Barbero, R.: The benthic foraminiferal communities of the northern Adriatic continental shelf, Mar. Micropalaeontol., 44, 93–123, 2002.
Faganeli, J., Horvat, M., Covelli, S., Fajon, V., Logar, M., Lipej, L., and Cermelj, B.: Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea), Sci. Total Environ., 304, 315–326, 2003.
Ferraro, L., Sprovieri, M., Alberico, I., Lirer, F., Prevedello, L., and Marsella, E.: Benthic foraminifera and heavy metals distribution: a case study from the Naples Harbour (Tyrrhenian Sea, Southern Italy), Environ. Pollut., 142, 274–284, 2006.
Finch, H. J. S., Samuel, A. M., and Lane, G. P. F.: Lockhart & Wiseman's Crop husbandry including grassland, 9th Edn., Fertilisers and manures, Woodhead Publishing, 63–91, 2014.
Fossato, V. U., Campesan, G., Craboledda, L., Dolci, F., and Stocco, G.: Organic micropollutants and trace metals in water and suspended particulate matter, in: Venice Lagoon Ecosystem, Unesco/Murst, edited by: Lasserre, P. and Marzollo, A., 1, 8 pp., 1996.
Fossato, V. U., Campesan, G., Dolci, F., and Stocco, G.: Trends in chlorinated hydrocarbons and heavy metals in sediments of Venetian canals, Rapp. Comm. Int. Mer Médit., 35, 258–259, 1998.
Fossilworks: Gateway to Paleobiology Database, http://fossilworks.org, last access 15 June 2016.
Franzo, A., Cibic, T., Del Negro, P., and Solidoro, C.: Microphytobenthic response to mussel farm biodeposition in coastal sediments of the northern Adriatic Sea, Mar. Pollut. Bull., 79, 379–388, 2014.
Franzo, A., Cibic, T., and Del Negro, P.: Integrated approach for the assessment of the benthic ecosystem functioning at a coastal site in the northern Adriatic Sea, Cont. Shelf Res., 121, 35–47, 2015.
Frontalini, F. and Coccioni, R.: Benthic foraminifera for heavy metal pollution monitoring: a case study from the central Adriatic Sea coast of Italy, Estuar. Coast Shelf Sci., 76, 404–417, 2008.
Frontalini, F. and Coccioni, R.: Benthic foraminifera as bioindicators of pollution: A review of Italian research over the last three decades, Rev. Micropaleontol., 54, 115–127, 2011.
Frontalini, F., Buosi, C., Da Pelo, S., Coccini, R., Cherchi, A., and Bucci, C.: Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla Lagoon (Cagliari, Italy), Mar. Pollut. Bull., 58, 858–877, 2009.
Gallmetzer, I., Haselmair, A., Stachowitsch, M., and Zuschin, M.: An innovative piston corer for large volume sediment samples, Limnol. Oceanog. Methods, in press, 2016.
Hall, P. O. J., Anderson, L. G., Holby, O., Kollberg, S., and Samuelsson, M. O.: Chemical fluxes and mass balances in a marine fish cage farm, I. Carbon, Mar. Ecol. Prog. Ser., 61, 61–73, 1990.
Hall, P. O. J., Holby, O., Kollberg, S., and Samuelsson, M. O.: Chemical fluxes and mass balances in a marine fish cage farm. IV. Nitrogen, Mar. Ecol. Prog. Ser., 89, 81–91, 1992.
He, Z. L., Yang, X. E., and Stoffella, P. J.: Trace elements in agroecosystems and impacts on the environment, J. Trace Elem. Med. Bio., 19, 125–140, 2005.
Heath, E., Ogrinc, N., Faganeli, J., and Covelli, S.: Sedimentary record of polycyclic aromatic hydrocarbons in the Gulf of Trieste (Northern Adriatic Sea), Water Air Soil Pollut., 6, 605–614, 2006.
Hedges, J. I. and Stern, J. H.: Carbon and nitrogen determination of carbonate-containing solids, Limnol. Oceanogr., 29, 657–663, 1984.
Hill, M.: Diversity and evenness: a unifying notation and its consequences, Ecology, 54, 427–432, 1973.
Hohenegger, H., Piller, W. E., and Baal, C.: Horizontal and vertical spatial microdistribution of foraminifers in the shallow subtidal Gulf of Trieste, northern Adriatic Sea, J. Foraminifer., Res., 23, 79–101, 1993.
Holby, O. and Hall, P. O. J.: Chemical fluxes and mass balances in a marine fish cage farm, II. Phosphorus, Mar. Ecol. Prog. Ser., 70, 263–272, 1991.
Horvat, M., Covelli, S., Faganeli, J., Logar, M., Mandić, V., Rajar, R., Širca, A., and Žagar, D.: Mercury in contaminated coastal environments; a case study: the Gulf of Trieste, Sci. Total Environ., 237/238, 43–56, 1999.
IAEA: World-wide and regional intercomparison for the determination of organochlorine compounds, petroleum hydrocarbons and sterols in sediment sample, International Atomic Energy Agency I.A.E.A-417, 2001.
IAEA: World-wide and regional intercomparison for the determination of organochlorine compounds, petroleum hydrocarbons and sterols in sediment sample, International Atomic Energy Agency I.A.E.A-159, 2007.
IAEA: World-wide and regional intercomparison on the determination of organochlorine compounds, polybrominated diphenyl ethers and petroleum hydrocarbons in sediment sample, International Atomic Energy Agency I.A.E.A-459, 2012.
Jorissen, F. J.: The distribution of benthic foraminifera in the Adriatic Sea, Mar. Micropaleontol., 12, 21–48, 1987.
Jorissen, F. J.: Benthic foraminifera from the Adriatic Sea: principles of phenotypic variation, Utrecht Micropaleontol. Bull., 37, 1–174, 1988.
Jorissen, F. J., Barmawidjaja, D. M., Puskaric, S., and Van der Zwaan, G. J.: Vertical distribution of benthic foraminifera in the northern Adriatic Sea: The relation with the organic flux, Mar. Micropaleontol., 19, 131–146, 1992.
Jost, L.: Entropy and diversity, Oikos, 113, 363–375, 2006.
Juggins, S.: Analysis of Quaternary Science Data, R package version 0.9-5, 2015.
Kaufman, D. S. and Manley, W. F.: A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography, Quaternary Sci. Rev., 17, 987–1000, 1998.
Langer, M. R.: Epiphytic Foraminifera, Mar. Micropaleontol., 20, 235–265, 1993.
Langlet, D., Geslin, E., Baal, C., Metzger, E., Lejzerowicz, F., Riedel, B., Zuschin, M., Pawlowski, J., Stachowitsch, M., and Jorissen, F. J.: Foraminiferal survival after one year of experimentally induced anoxia, Biogeosciences, 10, 7463–7480, https://doi.org/10.5194/bg-10-7463-2013, 2013.
Langlet, D., Baal, C., Geslin, E., Metzger, E., Zuschin, M., Riedel, B., Risgaard-Petersen, N., Stachowitsch, M., and Jorissen, F. J.: Foraminiferal specific responses to experimentally induced anoxia in the Adriatic Sea, Biogeosciences, 11, 1775–1797, https://doi.org/10.5194/bg-11-1775-2014, 2014.
Le Cadre, V. and Debenay, J. P.: Morphological and cytological responses of Ammonia (foraminifera) to copper contamination: Implication for the use of foraminifera as bioindicators of pollution, Environ. Pollut., 143, 304–317, 2006. Loeblich Jr., A. R. and Tappan, H.: Foraminiferal Genera and their Classification,Van Nostrand Reinhold, New York, 970 pp., 1987.
Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., and Jackson, J. B. C.: Depletion, degradation, and recovery potential of estuaries and coastal seas, Science, 312, 1806–1809, 2006.
Mantzavrakos, E., Kornaros, M., Lyberatos, G., and Kaspiris, P.: Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment, Desalination, 210, 110–124, 2007.
Martinez-Colón, M., Hallock, P., and Green-Ruíz, C.: Strategies for using shallow water benthic foraminifers as bioindicators of potentially toxic elements: a review, J. Foraminifer. Res., 39, 278–299, 2009.
Mateu-Vicens, G., Box, A., Deudero, S., and Rodriguez, B.: Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass Posidonia oceanica and invasive macroalgae Caulerpa spp., J. Foraminifer. Res., 40, 134–147, 2010.
Melaku Canu, D. and Solidoro, C.: Socio-economic analysis and stakeholder involvement: Mussel-farming in the Gulf of Trieste, Mar. Policy., 43, 55–62, 2014.
Melis, R. and Covelli, S.: Distribution and morphological abnormalities of recent foraminifera in the Marano and Grado Lagoon (North Adriatic Sea, Italy), Mediterr. Mar. Sci., 14, 432–450, 2013.
Miklavčič, V.: Mercury in the town of Idrija (Slovenia) after 500 years of mining and smelting, in: Mercury in contaminated sites, characterisation, risk assessment and remediation, edited by: Ebinghaus, R., Turner, R. R., de Lacerda, L. D., Vasiliev, O., and Salomons, W., Berlin Heidelberg-New York, Springer-Verlag, 259–269, 1999.
Mook, W. T., Chakrabarti, M. H., Aroua, M. K., Khan, G. M., Ali, B. S., Islam, M. S., and Abu Hassan, M. A.: Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology, A review, Desalination, 285, 1–13, 2012.
Murray, J. W.: Ecology and palaeoecology of benthic foraminifera, John Wiley and Sons Inc, New York, 402 pp., 1991.
Murray, J. W.: Ecology and applications of benthic foraminifera, Cambridge University Press, Cambridge, 426 pp., 2006.
Naeher, S., Geraga, M., Papatheodorou, G., Ferentinos, G., Kaberi, H., and Schubert, C. J.: Environmental variations in a semi-enclosed embayment (Amvrakikos Gulf, Greece) – reconstructions based on benthic foraminifera abundance and lipid biomarker pattern, Biogeosciences, 9, 5081–5094, https://doi.org/10.5194/bg-9-5081-2012, 2012.
Notar, M., Leskovšek, H., and Faganeli, J.: Composition, Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Sediments of the Gulf of Trieste, Northern Adriatic Sea, Mar. Pollut. Bull., 42, 36–44, 2001.
Ogorelec, B., Mišič, M., and Faganeli, J.: Marine geology of the Gulf of Trieste (northern Adriatic): Sedimentological aspects, Mar. Geol., 99, 79–92, 1991.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.: Community Ecology Package, R package version 2.3-2, 2015.
Piva, A., Asioli, A., Trincardi, F., Schneider, R. R., and Vigliotti, L.: Late-Holocene climate variability in the Adriatic Sea (Central Mediterranean), Holocene, 18, 153–167, 2008.
Popadić, A., Vidović, J., Ćosović, V., Medaković, D., Dolenec, M., and Felja, I.: Impact evaluation of the industrial activities in the Bay of Bakar (Adriatic Sea, Croatia): recent benthic foraminifera and heavy metals, Mar. Pollut. Bull., 76, 333–348, 2013.
Pozo, K., Lazzerini, D., Perra, G., Volpi, V., Corsolini, S., and Focardi, S.: Levels and spatial distribution of polychlorinated biphenyls (PCBs) in superficial sediment from 15 Italian Marine Protected Areas (MPA), Mar. Pollut. Bull., 58, 765–786, 2009.
R Core Team: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
Raccanelli, S., Libralato, S., and Tundo, S.: Fate of Persistent Organic Pollutants in the Venice Lagoon: from the Environment to Human Beings Through Biological Exploitation?, in: NATO Science for Peace and Security Series C: Environmental Security, edited by: Bahadir, A. M. and Duca, G., 15–25, 2009.
Rampazzo, F., Berto, D., Giani, M., Brigolin, D., Covelli, S., Cacciatore, F., Boscolo Brusà, R., Bellucci, L. G., and Pastres, R.: Impact of mussel farming on sedimentary geochemical properties of a Northern Adriatic area influenced by freshwater inflows, Estuar. Coast Shelf Sci., 129, 49–58, 2013.
Reimer, P, Bard, E., Bayliss, A., Beck, J., Blackwell, P., Bronk Ramsey, C., Buck, C., Cheng, H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T., Hoffmann, D., Hogg, A., Hughen, K., Kaiser, K., Kromer, B., Manning, S., Niu, M., Reimer, R., Richards, D., Scott, E., Southon, J., Staff, R., Turney, C., and Van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Romano, E., Bergamin, L., Finoia, M. G., Carboni, M. G., Ausili, A., and Gabellini, M.: Industrial pollution at Bagnoli (Naples, Italy): benthic foraminifera as a tool in integrated programs of environmental characterization, Mar. Pollut. Bull., 56, 439–457, 2008.
Romano, E., Langone, L., Frignani, M., Albertazzi, S., Focaccia, P., Bellucci, L. C., and Ravaioli, M.: Historical pattern and mass balance of trace metals in sediments of the northwestern Adriatic Sea Shelf, Mar. Pollut. Bull., 76, 32–41, 2013.
Schönfeld, J.: History and development of methods in Recent benthic foraminiferal studies, J. Micropaleontol., 31, 53–72, 2012.
Shepard, F. P.: Nomenclature based on sand-silt-clay ratios, J. Sediment. Petrol., 24, 151–158, 1954.
Siani, G., Paterne, M., Arnold, M., Bard, E., Metivier, B., Tisnerat, N., and Bassinot, F.: Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea, Radiocarbon, 42, 271–280, 2000.
Singh, N. and Turner, A.: Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments, Mar. Pollut. Bull., 58, 559–564, 2009.
Sollis-Weiss, V., Aleffi, F., Bettoso, N., Rossin, P., and Orel, G.: The benthic macrofauna at the outfalls of the underwater sewage discharges in the Gulf of Trieste (northern Adriatic Sea), Annales Ser. Hist. Nat., 17, 1–16, 2007.
Stuiver, M. and Reimer, P. J.: Extended 14C data base and revised CALIB 3.0 C age calibration program, Radiocarbon, 35, 215–230, 1993.
The Monfalcone Thermoelectric Plant: The description of the plant and the history of the thermoelectric production, http://www.a2a.eu/en/plants_networks/thermoelectric/monfalcone, last access: 15 January 2016.
Turk, V., Mozetič, P., and Malej, A.: Overwiew of eutrophication-related events and another irregular episodes in Slovenian Sea (Gulf of Trieste, Adriatic Sea), Ann. Ser. Hist. Nat., 17, 197–216, 2007.
Van der Zwaan, G. J. and Jorissen, F. J.: Biofacial patterns in river-induced shelf anoxia, in: Modern and Ancient Continental Shelf Anoxia, Geological Society, Spec. Publ., edited by: Tyson, R. V. and Pearson T. H., 58, 65–82, 1991.
Vaniček, V., Juračić, M., Bajraktarević, Z., and Ćosović, V.: Benthic foraminiferal assemblages in a restricted environment – An example from the Mljet Lakes (Adriatic Sea, Croatia), Geol. Croat., 53, 269–279, 2000.
Vidović, J., Ćosović, V., Juračić, M., and Petricioli, D.: Impact of fish farming on foraminiferal community, Drvenik Veliki Island, Adriatic Sea, Croatia, Mar. Pollut. Bull., 58, 1297–1309, 2009.
Vidović, J., Dolenec, M., Dolenec, T., Karamarko, V., and Žvab Rožič, P.: Benthic foraminifera assemblages as elemental pollution bioindicator in marine sediments around fish farm (Vrgada Island, Central Adriatic, Croatia), Mar. Pollut. Bull., 83, 198–213, 2014.
Ward, J. N., Pond, D. W., and Murray, J. W.: Feeding of benthic foraminifera on diatoms and sewage-derived organic matter: an experimental application of lipid biomarker techniques, Mar. Environ. Res., 56, 515–530, 2003.
Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A., and Katsuki, K.: Human-induced marine ecological degradation: micropaleontological perspectives, Ecol. Evol., 2, 3242–3268, 2012.
Zuschin, M. and Piller, W. E.: Sedimentology and facies zonation along a transect through the Gulf of Trieste, Northern Adriatic Sea, Beitr. Palaeontol., 18, 75–114, 1994.
Zuschin, M., Stachowitsch, M., Pervesler, P., and Kollmann, H.: Structural features and taphonomic pathways of a high-biomass epifauna in the northern Gulf of Trieste, Adriatic Sea, Lethaia, 32, 299–317, 1999.
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only...
Altmetrics
Final-revised paper
Preprint