Articles | Volume 14, issue 17
https://doi.org/10.5194/bg-14-3909-2017
https://doi.org/10.5194/bg-14-3909-2017
Research article
 | 
07 Sep 2017
Research article |  | 07 Sep 2017

A biophysical approach using water deficit factor for daily estimations of evapotranspiration and CO2 uptake in Mediterranean environments

David Helman, Itamar M. Lensky, Yagil Osem, Shani Rohatyn, Eyal Rotenberg, and Dan Yakir

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (24 Jul 2017) by Trevor Keenan
AR by David Helman on behalf of the Authors (26 Jul 2017)  Author's response   Manuscript 
ED: Publish as is (10 Aug 2017) by Trevor Keenan
AR by David Helman on behalf of the Authors (10 Aug 2017)  Manuscript 
Download
Short summary
A remote-sensing biophysical approach for estimating daily evapotranspiration and carbon uptake was tested at Mediterranean forest and non-forest sites in Israel after accounting for root zone water deficit. A newly developed mobile lab system and an active FLUXNET station were used for validation. The model successfully tracked observed changes in fluxes, showing promise for a reliable ecosystem-level assessment. Changes in water use efficiency due to afforestation were assessed in Israel.
Altmetrics
Final-revised paper
Preprint