Articles | Volume 15, issue 17
https://doi.org/10.5194/bg-15-5455-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5455-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia,
Universidade de Lisboa, PT, Lisbon, Portugal
Manuel Campagnolo
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia,
Universidade de Lisboa, PT, Lisbon, Portugal
Joana Faria
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia,
Universidade de Lisboa, PT, Lisbon, Portugal
Carla Nogueira
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia,
Universidade de Lisboa, PT, Lisbon, Portugal
Maria da Conceição Caldeira
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia,
Universidade de Lisboa, PT, Lisbon, Portugal
Related authors
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
A. Porcar-Castell, A. Mac Arthur, M. Rossini, L. Eklundh, J. Pacheco-Labrador, K. Anderson, M. Balzarolo, M. P. Martín, H. Jin, E. Tomelleri, S. Cerasoli, K. Sakowska, A. Hueni, T. Julitta, C. J. Nichol, and L. Vescovo
Biogeosciences, 12, 6103–6124, https://doi.org/10.5194/bg-12-6103-2015, https://doi.org/10.5194/bg-12-6103-2015, 2015
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Raquel Lobo-do-Vale, Cathy Kurz Besson, Maria Conceição Caldeira, Maria Manuela Chaves, and João Santos Pereira
Biogeosciences, 16, 1265–1279, https://doi.org/10.5194/bg-16-1265-2019, https://doi.org/10.5194/bg-16-1265-2019, 2019
Short summary
Short summary
By comparing the cork oak tree vegetative phenology in two contrasting precipitation years in a Mediterranean ecosystem, we showed the critical role of water availability in extending the length of the growing season and determining tree growth. The observed higher transfer of nitrogen from senescent to green leaves in response to drought might compensate for the limited nitrogen uptake by the roots. Our results improve our understanding of the ecosystem's responses to climate change.
A. Porcar-Castell, A. Mac Arthur, M. Rossini, L. Eklundh, J. Pacheco-Labrador, K. Anderson, M. Balzarolo, M. P. Martín, H. Jin, E. Tomelleri, S. Cerasoli, K. Sakowska, A. Hueni, T. Julitta, C. J. Nichol, and L. Vescovo
Biogeosciences, 12, 6103–6124, https://doi.org/10.5194/bg-12-6103-2015, https://doi.org/10.5194/bg-12-6103-2015, 2015
Related subject area
Biogeophysics: Environmental Optics
Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data
Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations
Assessing shaded-leaf effects on photochemical reflectance index (PRI) for water stress detection in winter wheat
Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014
A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures
Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance
High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing
Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa
Technical Note: Multispectral lidar time series of pine canopy chlorophyll content
A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa
Nitrogen food-print: N use related to meat and dairy consumption in France
Remote sensing-based estimation of gross primary production in a subalpine grassland
Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region
Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data
Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Trina Merrick, Stephanie Pau, Matteo Detto, Eben N. Broadbent, Stephanie A. Bohlman, Christopher J. Still, and Angelica M. Almeyda Zambrano
Biogeosciences, 18, 6077–6091, https://doi.org/10.5194/bg-18-6077-2021, https://doi.org/10.5194/bg-18-6077-2021, 2021
Short summary
Short summary
Remote sensing measurements of forest structure promise to improve monitoring of tropical forest health. We investigated drone-based vegetation measurements' abilities to capture different structural and functional elements of a tropical forest. We found that emerging vegetation indices captured greater variability than traditional indices and one new index trends with daily change in carbon flux. These new tools can help improve understanding of tropical forest structure and function.
Xin Yang, Shishi Liu, Yinuo Liu, Xifeng Ren, and Hang Su
Biogeosciences, 16, 2937–2947, https://doi.org/10.5194/bg-16-2937-2019, https://doi.org/10.5194/bg-16-2937-2019, 2019
Short summary
Short summary
The photochemical reflectance index (PRI) derived from remotely sensed data has emerged to be a pre-visual indicator of water stress. This study evaluated the impact of the varying shaded-leaf fractions on estimating relative water content (RWC) across growth stages of winter wheat using PRI derived from hyperspectral imagery. Results showed that PRI of the pure shaded leaves may yield inaccurate estimates of plant water status, but the accuracy of RWC predictions was not significantly affected.
Philipp M. M. Groetsch, Stefan G. H. Simis, Marieke A. Eleveld, and Steef W. M. Peters
Biogeosciences, 13, 4959–4973, https://doi.org/10.5194/bg-13-4959-2016, https://doi.org/10.5194/bg-13-4959-2016, 2016
Short summary
Short summary
Phytoplankton spring bloom phenology was derived from a 15-year time series (2000–2014) of ship-of-opportunity chlorophyll a fluorescence observations in the Baltic Sea. Bloom peak concentrations have declined over the study period, while bloom duration has increased. It is concluded that nutrient reduction efforts led to decreasing bloom intensity, while changes in Baltic Sea environmental conditions associated with global change corresponded to a lengthening spring bloom period.
Rebecca N. Handcock, D. L. Gobbett, Luciano A. González, Greg J. Bishop-Hurley, and Sharon L. McGavin
Biogeosciences, 13, 4673–4695, https://doi.org/10.5194/bg-13-4673-2016, https://doi.org/10.5194/bg-13-4673-2016, 2016
Short summary
Short summary
Proximal sensors can assist in managing feed in livestock production systems but raw data needs calibration to biophysical values such as biomass and ground cover. Our pilot project monitored tropical pastures for 18 months using digital cameras, multispectral sensors, soil moisture sensors, and field observations. We developed stringent data cleaning rules that are applicable to other sensor projects. Proximal sensors were found to deliver continual and timely pasture data.
T. Tagesson, R. Fensholt, S. Huber, S. Horion, I. Guiro, A. Ehammer, and J. Ardö
Biogeosciences, 12, 4621–4635, https://doi.org/10.5194/bg-12-4621-2015, https://doi.org/10.5194/bg-12-4621-2015, 2015
Short summary
Short summary
Relationships between ecosystem properties of semi-arid savanna and reflected solar radiance between 35 and 1800nm were investigated. Normalised combinations of reflectance for the near infrared, shortwave infrared, and 600 to 700nm were strongly affected by solar and viewing angle effects. Ecosystem properties of savannas were strongly correlated with reflectance at 350-1800nm, and normalised combinations of reflectance were strong predictors of the savanna ecosystem properties.
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas
Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, https://doi.org/10.5194/bg-12-4051-2015, 2015
Short summary
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
L. Peperzak, H. J. van der Woerd, and K. R. Timmermans
Biogeosciences, 12, 1659–1670, https://doi.org/10.5194/bg-12-1659-2015, https://doi.org/10.5194/bg-12-1659-2015, 2015
T. Hakala, O. Nevalainen, S. Kaasalainen, and R. Mäkipää
Biogeosciences, 12, 1629–1634, https://doi.org/10.5194/bg-12-1629-2015, https://doi.org/10.5194/bg-12-1629-2015, 2015
Short summary
Short summary
A hyperspectral lidar produces point clouds with multiple spectral channels (colours) for each point. We measured a pine and used the spectral content to estimate chlorophyll content. We validated these results using chemical laboratory analysis of needles taken from the pine. Our prototype has limitations, but still shows the great potential of coloured point clouds. Potential applications include forestry, security, archaeology and city modelling.
C. Lin, S. C. Popescu, S. C. Huang, P. T. Chang, and H. L. Wen
Biogeosciences, 12, 49–66, https://doi.org/10.5194/bg-12-49-2015, https://doi.org/10.5194/bg-12-49-2015, 2015
N. K. Ganju, J. L. Miselis, and A. L. Aretxabaleta
Biogeosciences, 11, 7193–7205, https://doi.org/10.5194/bg-11-7193-2014, https://doi.org/10.5194/bg-11-7193-2014, 2014
Short summary
Short summary
Light availability to seagrass is an important factor in their success. We deployed instrumentation to measure light in Barnegat Bay, New Jersey, and found lower availability in the southern bay due to high turbidity (suspended sediment), while the northern bay has higher availability. In the northern bay, dissolved organic material and chlorophyll are most responsible for blocking light to the seagrass canopy. We also found that boat wakes do not have a large effect on sediment resuspension.
M. W. Matthews and S. Bernard
Biogeosciences, 10, 8139–8157, https://doi.org/10.5194/bg-10-8139-2013, https://doi.org/10.5194/bg-10-8139-2013, 2013
P. Chatzimpiros and S. Barles
Biogeosciences, 10, 471–481, https://doi.org/10.5194/bg-10-471-2013, https://doi.org/10.5194/bg-10-471-2013, 2013
M. Rossini, S. Cogliati, M. Meroni, M. Migliavacca, M. Galvagno, L. Busetto, E. Cremonese, T. Julitta, C. Siniscalco, U. Morra di Cella, and R. Colombo
Biogeosciences, 9, 2565–2584, https://doi.org/10.5194/bg-9-2565-2012, https://doi.org/10.5194/bg-9-2565-2012, 2012
A. Fujiwara, T. Hirawake, K. Suzuki, and S.-I. Saitoh
Biogeosciences, 8, 3567–3580, https://doi.org/10.5194/bg-8-3567-2011, https://doi.org/10.5194/bg-8-3567-2011, 2011
C. Höpfner and D. Scherer
Biogeosciences, 8, 3359–3373, https://doi.org/10.5194/bg-8-3359-2011, https://doi.org/10.5194/bg-8-3359-2011, 2011
F. Gao, S. Stanič, K. Bergant, T. Bolte, F. Coren, T.-Y. He, A. Hrabar, J. Jerman, A. Mladenovič, J. Turšič, D. Veberič, and M. Iršič Žibert
Biogeosciences, 8, 2351–2363, https://doi.org/10.5194/bg-8-2351-2011, https://doi.org/10.5194/bg-8-2351-2011, 2011
Cited articles
Aires, L. M., Pio, C. A., and Pereira, J. S.: The effect of drought on energy
and water vapour exchange above a mediterranean C3 ∕ C4
grassland in Southern Portugal, Agr. Forest Meteorol., 148, 565–579,
https://doi.org/10.1016/j.agrformet.2007.11.001, 2008a.
Aires, L. M., Pio, C. A., and Pereira, J. S.: Carbon dioxide exchange above a
Mediterranean C3 ∕ C4 grassland during two
climatologically contrasting years, Glob. Change Biol., 14, 539–555,
https://doi.org/10.1111/j.1365-2486.2007.01507.x, 2008b.
Ansquer, P., Duru, M., Theau, J. P., and Cruz, P.: Convergence in plant
traits between species within grassland communities simplifies their
monitoring, Ecol. Indic., 9, 1020–1029, https://doi.org/10.1016/J.ECOLIND.2008.12.002,
2009.
Asner, G. P., Nepstad, D., Cardinot, G., and Ray, D.: Drought stress and
carbon uptake in an Amazon forest measured with spaceborne imaging
spectroscopy, P. Natl. Acad. Sci. USA, 101, 6039–6044,
https://doi.org/10.1073/pnas.0400168101, 2004.
Balzarolo, M., Vescovo, L., Hammerle, A., Gianelle, D., Papale, D.,
Tomelleri, E., and Wohlfahrt, G.: On the relationship between ecosystem-scale
hyperspectral reflectance and CO2 exchange in European mountain
grasslands, Biogeosciences, 12, 3089–3108,
https://doi.org/10.5194/bg-12-3089-2015, 2015.
Barsi, J., Lee, K., Kvaran, G., Markham, B., and Pedelty, J.: The Spectral
Response of the Landsat-8 Operational Land Imager, Remote Sens., 6,
10232–10251, https://doi.org/10.3390/rs61010232, 2014.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models using lme4, J. Stat. Softw., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2014.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N.,
Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A.,
Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis,
H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C.,
Woodward, F. I., and Papale, D.: Terrestrial gross carbon dioxide uptake:
global distribution and covariation with climate, Science, 329, 834–838,
https://doi.org/10.1126/science.1184984, 2010.
Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S., and Seabloom,
E. W.: A decade of insights into grassland ecosystem responses to global
environmental change, Nat. Ecol. Evol., 1, 0118, https://doi.org/10.1038/s41559-017-0118,
2017.
Bugalho, M. N. and Abreu, J. M.: The multifunctional role of grasslands, in:
Sustainable Mediterranean Grasslands and their Multifunctions, Vol. 79,
Option Méditerraneénes, edited by: Porqueddu, C. and Tavares de
Sousa, M. M., CIHEAM/FAO/ENMP/SPPF, Zaragoza, 25–30, 2008.
Cadima, J., Cerdeira, J., and Minhoto, M.: Computational aspects of algorithms for variable selection in the context
of principal components, Comput. Stat. Data An., 47, 225–236, https://doi.org/10.1016/j.csda.2003.11.001, 2004.
Casas, A., Riaño, D., Ustin, S. L., Dennison, P., and Salas, J.:
Estimation of water-related biochemical and biophysical vegetation properties
using multitemporal airborne hyperspectral data and its comparison to MODIS
spectral response, Remote Sens. Environ., 148, 28–41,
https://doi.org/10.1016/j.rse.2014.03.011, 2014.
Cerasoli, S., Campagnolo, M., Faria, J., Nogueira, C., and Caldeira, M. C.:
Hyperspectral reflectance, gas exchange and meteorological conditions in grassland
plots undergoing different fertilization regimes in Central Portugal from March to June 2016, PANGAEA,
https://doi.org/10.1594/PANGAEA.892837, 2018.
Ceulemans, T., Stevens, C. J., Duchateau, L., Jacquemyn, H., Gowing, D. J.
G., Merckx, R., Wallace, H., van Rooijen, N., Goethem, T., Bobbink, R.,
Dorland, E., Gaudnik, C., Alard, D., Corcket, E., Muller, S., Dise, N. B.,
Dupré, C., Diekmann, M., and Honnay, O.: Soil phosphorus constrains
biodiversity across European grasslands, Glob. Change Biol., 20, 3814–3822,
https://doi.org/10.1111/gcb.12650, 2014.
Cheng, Y.-B., Zhang, Q., Lyapustin, A. I., Wang, Y., and Middleton, E. M.:
Impacts of light use efficiency and fPAR parameterization on gross primary
production modeling, Agr. Forest Meteorol., 189–190, 187–197,
https://doi.org/10.1016/j.agrformet.2014.01.006, 2014.
Costa, A. C., Santos, J. A., and Pinto, J. G.: Climate change scenarios for
precipitation extremes in Portugal, Theor. Appl. Climatol., 108, 217–234,
https://doi.org/10.1007/s00704-011-0528-3, 2012.
Craine, J. M., Froehle, J., Tilman, D. G., Wedin, D. A., and Chapin, III, F.
S.: The relationships among root and leaf traits of 76 grassland species and
relative abundance along fertility and disturbance gradients, Oikos, 93,
274–285, https://doi.org/10.1034/j.1600-0706.2001.930210.x, 2001.
Cristiano, P. M., Posse, G., Di Bella, C. M., and Jaimes, F. R.:
Uncertainties in fPAR estimation of grass canopies under different stress
situations and differences in architecture, Int. J. Remote Sens., 31,
4095–4109, https://doi.org/10.1080/01431160903229192, 2010.
Dash, J. and Curran, P. J.: The MERIS terrestrial chlorophyll index, Int. J.
Remote Sens., 25, 5403–5413, https://doi.org/10.1080/0143116042000274015, 2004.
Díaz-Villa, M. D., Marañón, T., Arroyo, J., and Garrido, B.:
Soil seed bank and floristic diversity in a forest-grassland mosaic in
southern Spain, J. Veg. Sci., 14, 701–709,
https://doi.org/10.1111/j.1654-1103.2003.tb02202.x, 2003.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical
High-Resolution Mission for GMES Operational Services, Remote Sens. Environ.,
120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
ESA: Sentinel-2 Data Quality Report Issue 24 (February 2018) – Sentinel-2
MSI Document Library – User Guides – Sentinel Online, available at:
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/
(last access: 25 January 2018), 2018.
Fensholt, R., Sandholt, I., and Rasmussen, M. S.: Evaluation of MODIS LAI,
fAPAR and the relation between fAPAR and NDVI in a semi-arid environment
using in situ measurements, Remote Sens. Environ., 91, 490–507,
https://doi.org/10.1016/j.rse.2004.04.009, 2004.
Filella, I., Peñuelas, J., Llorens, L., and Estiarte, M.: Reflectance
assessment of seasonal and annual changes in biomass and CO2 uptake
of a Mediterranean shrubland submitted to experimental warming and drought,
Remote Sens. Environ., 90, 308–318, https://doi.org/10.1016/J.RSE.2004.01.010, 2004.
Filella, I., Porcar-Castell, A., Munné-Bosch, S., Bäck, J.,
Garbulsky, M. F., and Peñuelas, J.: PRI assessment of long-term changes
in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation
state of the xanthophyll cycle, Int. J. Remote Sens., 30, 4443–4455,
https://doi.org/10.1080/01431160802575661, 2009.
Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M.,
Wingate, L., Tomelleri, E., Morra di Cella, U., and Richardson, A. D.:
Phenopix: A R package for image-based vegetation phenology, Agr. Forest
Meteorol., 220, 141–150, https://doi.org/10.1016/j.agrformet.2016.01.006, 2016.
Furnival, G. M. and Wilson, R. W.: Regressions by Leaps and Bounds,
Technometrics, 16, 499–511, https://doi.org/10.1080/00401706.1974.10489231, 1974.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland,
E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and
Vosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future, Biogeochemistry,
70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Gamon, J. A.: Reviews and Syntheses: optical sampling of the flux tower
footprint, Biogeosciences, 12, 4509–4523,
https://doi.org/10.5194/bg-12-4509-2015, 2015.
Gamon, J. A., Penuelas, J., and Field, C. B.: A narrow-wave band spectral
index that tracks diurnal changes in photosynthetic efficiency, Remote Sens.
Environ., 41, 35–44, 1992.
Gamon, J. A., Serrano, L., and Surfus, J. S.: The photochemical reflectance
index: an optical indicator of photosynthetic radiation use efficiency across
species, functional types, and nutrient levels, Oecologia, 112, 492–501,
https://doi.org/10.1007/s004420050337, 1997.
Gao, B.: NDWI – A normalized difference water index for remote sensing of
vegetation liquid water from space, Remote Sens. Environ., 58, 257–266,
https://doi.org/10.1016/S0034-4257(96)00067-3, 1996.
Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y., and Filella, I.:
The photochemical reflectance index (PRI) and the remote sensing of leaf,
canopy and ecosystem radiation use efficienciesA review and meta-analysis,
Remote Sens. Environ., 115, 281–297, https://doi.org/10.1016/j.rse.2010.08.023, 2011.
Gianelle, D., Vescovo, L., Marcolla, B., Manca, G., and Cescatti, A.:
Ecosystem carbon fluxes and canopy spectral reflectance of a mountain meadow,
Int. J. Remote Sens., 30, 435–449, https://doi.org/10.1080/01431160802314855, 2009.
Gitelson, A. and Merzlyak, M. N.: Spectral reflectance changes associated
with autumn senescence of Aesculus-Hippocastanum L. and
Acer-Platanoides L leaves – spectral features and relation to
chlorophyll estimation, J. Plant Physiol., 143, 286–292, 1994.
Gitelson, A. A. and Merzlyak, M. N.: Remote sensing of chlorophyll
concentration in higher plant leaves, Adv. Space Res., 22, 689–692,
https://doi.org/10.1016/S0273-1177(97)01133-2, 1998.
Gitelson, A. A., Kaufman, Y. J., and Merzlyak, M. N.: Use of a green channel
in remote sensing of global vegetation from EOS-MODIS, Remote Sens. Environ.,
58, 289–298, https://doi.org/10.1016/S0034-4257(96)00072-7, 1996.
Gitelson, A. A., Gamon, J. A., and Solovchenko, A.: Multiple drivers of
seasonal change in PRI: Implications for photosynthesis 1. Leaf level, Remote
Sens. Environ., 191, 110–116, https://doi.org/10.1016/j.rse.2016.12.014, 2017a.
Gitelson, A. A., Gamon, J. A., and Solovchenko, A.: Multiple drivers of
seasonal change in PRI: Implications for photosynthesis 2. Stand level,
Remote Sens. Environ., 190, 198–206, https://doi.org/10.1016/J.RSE.2016.12.015, 2017b.
Glenn, E., Huete, A., Nagler, P., and Nelson, S.: Relationship Between
Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological
Processes: What Vegetation Indices Can and Cannot Tell Us About the
Landscape, Sensors, 8, 2136–2160, https://doi.org/10.3390/s8042136, 2008.
Gower, S. T., Kucharik, C. J., and Norman, J. M.: Direct and Indirect
Estimation of Leaf Area Index, fAPAR, and Net Primary Production of
Terrestrial Ecosystems, Remote Sens. Environ., 70, 29–51,
https://doi.org/10.1016/S0034-4257(99)00056-5, 1999.
Harpole, W. S., Potts, D. L., and Suding, K. N.: Ecosystem responses to water
and nitrogen amendment in a California grassland, Glob. Change Biol., 13,
2341–2348, https://doi.org/10.1111/j.1365-2486.2007.01447.x, 2007.
Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General
Parametric Models, Biometrical J., 50, 346–363, https://doi.org/10.1002/bimj.200810425,
2008.
INMG: O clima de Portugal. Normais climatológicas da região Ribatejo
e Oeste correspondentes a 1951–1980, Instituto Nacional de Meteorologia e Geofisica, Lisboa, Portugal, 1991.
Jarvis, P., Rey, A., Petsikos, C., Wingate, L., Rayment, M., Pereira, J.,
Banza, J., David, J., Miglietta, F., Borghetti, M., Manca, G., and Valentini,
R.: Drying and wetting of Mediterranean soils stimulates decomposition and
carbon dioxide emission: the “Birch effect”, Tree Physiol., 27, 929–940,
https://doi.org/10.1093/treephys/27.7.929, 2007.
Joel, G., Gamon, J. A., and Field, C. B.: Production efficiency in sunflower:
The role of water and nitrogen stress, Remote Sens. Environ., 62, 176–188,
https://doi.org/10.1016/s0034-4257(97)00093-x, 1997.
Jones, H. G.: Plants amd microclimate: A quantitative approach to
Environmental Plant Physiology, 2nd Edn., Cambridge University Press,
Cambridge, 1992.
Jongen, M., Pereira, J. S., Aires, L. M., and Pio, C. A.: The effects of
drought and timing of precipitation on the inter-annual variation in
ecosystem-atmosphere exchange in a Mediterranean grassland, Agr. Forest
Meteorol., 151, 595–606, https://doi.org/10.1016/j.agrformet.2011.01.008, 2011.
Jongen, M., Lecomte, X., Unger, S., Fangueiro, D., and Pereira, J. S.:
Precipitation variability does not affect soil respiration and nitrogen
dynamics in the understorey of a Mediterranean oak woodland, Plant Soil, 372,
235–251, https://doi.org/10.1007/s11104-013-1728-7, 2013a.
Jongen, M., Unger, S., Fangueiro, D., Cerasoli, S., Silva, J. M. N., and
Pereira, J. S.: Resilience of montado understorey to experimental
precipitation variability fails under severe natural drought, Agr. Ecosyst.
Environ., 178, 18–30, 2013b.
Kira, O., Nguy-Robertson, A. L., Arkebauer, T. J., Linker, R., and Gitelson,
A. A.: Toward generic models for green LAI estimation in maize and soybean:
Satellite observations, Remote Sens., 9, 318, https://doi.org/10.3390/rs9040318, 2017.
Korhonen, L., Hadi, Packalen, P., and Rautiainen, M.: Comparison of
Sentinel-2 and Landsat-8 in the estimation of boreal forest canopy cover and
leaf area index, Remote Sens. Environ., 195, 259–274,
https://doi.org/10.1016/j.rse.2017.03.021, 2017.
Kovats, R. S., Valentini, R., Bouwer, L. M., Georgopoulou, E., Jacob, D.,
Martin, E., Rounsevell, M., and Soussana, J. F.: Europe, in: Climate Change
2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects.
Contribution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 1267–1326, Cambridge University
Press, Cambridge, UK and New York, NY, USA, 2014.
Loveland, T. R. and Irons, J. R.: Landsat-8: The plans, the reality, and the
legacy, Remote Sens. Environ., 185, 1–6, https://doi.org/10.1016/j.rse.2016.07.033,
2016.
Lumley, T.: Thomas Lumley using Fortran code by Alan Miller (2009). Leaps:
regression subset selection, R package version 2.9, 2009.
Matthes, J. H., Knox, S. H., Sturtevant, C., Sonnentag, O., Verfaillie, J.,
and Baldocchi, D.: Predicting landscape-scale CO2 flux at a pasture
and rice paddy with long-term hyperspectral canopy reflectance measurements,
Biogeosciences, 12, 4577–4594, https://doi.org/10.5194/bg-12-4577-2015,
2015.
Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., and Rakitin, V. Y.:
Non-destructive optical detection of pigment changes during leaf senescence
and fruit ripening, Physiol. Plant., 106, 135–141,
https://doi.org/10.1034/j.1399-3054.1999.106119.x, 1999.
Monteith, J. L.: Solar Radiation and Productivity in Tropical Ecosystems, J.
Appl. Ecol., 9, 747–766, https://doi.org/10.2307/2401901, 1972.
Monteith, J. L.: Climate and efficiency of crop production in Britain,
Philos. T. Roy. Soc. B, 281, 277–294, 1977.
Moreno, A., Maselli, F., Gilabert, M. A., Chiesi, M., Martinez, B., and
Seufert, G.: Assessment of MODIS imagery to track light-use efficiency in a
water-limited Mediterranean pine forest, Remote Sens. Environ., 123,
359–367, https://doi.org/10.1016/j.rse.2012.04.003, 2012.
Myneni, R. B. and Williams, D. L.: On the relationship between FAPAR and
NDVI, Remote Sens. Environ., 49, 200–211, 1994.
Nestola, E., Calfapietra, C., Emmerton, C. A., Wong, C. Y. S., Thayer, D. R.,
and Gamon, J. A.: Monitoring grassland seasonal carbon dynamics, by
integrating MODIS NDVI, proximal optical sampling, and eddy covariance
measurements, Remote Sens., 8, 260, https://doi.org/10.3390/rs8030260, 2016.
Ohtani, K.: Bootstrapping R2 and adjusted R2 in regression
analysis, Econ. Model., 17, 473–483, https://doi.org/10.1016/S0264-9993(99)00034-6,
2000.
Ollinger, S. V.: Sources of variability in canopy reflectance and the
convergent properties of plants, New Phytol., 189, 375–394,
https://doi.org/10.1111/j.1469-8137.2010.03536.x, 2011.
Peñuelas, J., Filella, I., Biel, C., Serrano, L., and Savé, R.: The
reflectance at the 950–970 nm region as an indicator of plant water status,
Int. J. Remote Sens., 14, 1887–1905, https://doi.org/10.1080/01431169308954010, 1993.
Peñuelas, J., Filella, I., and Gamon, J. A.: Assessment of photosynthetic
radiation-use efficiency with spectral reflectance, New Phytol., 131,
291–296, https://doi.org/10.1111/j.1469-8137.1995.tb03064.x, 1995.
Peñuelas, J., Pinol, J., Ogaya, R., and Filella, I.: Estimation of plant
water concentration by the reflectance Water Index WI (R900/R970), Int. J.
Remote Sens., 18, 2869–2875, https://doi.org/10.1080/014311697217396, 1997.
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M.,
Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E.,
Vicca, S., Obersteiner, M., and Janssens, I. A.: Human-induced
nitrogen–phosphorus imbalances alter natural and managed ecosystems across
the globe, Nat. Commun., 4, 2934, https://doi.org/10.1038/ncomms3934, 2013.
Pérez-Priego, O., Guan, J., Rossini, M., Fava, F., Wutzler, T., Moreno,
G., Carvalhais, N., Carrara, A., Kolle, O., Julitta, T., Schrumpf, M.,
Reichstein, M., and Migliavacca, M.: Sun-induced chlorophyll fluorescence and
photochemical reflectance index improve remote-sensing gross primary
production estimates under varying nutrient availability in a typical
Mediterranean savanna ecosystem, Biogeosciences, 12, 6351–6367,
https://doi.org/10.5194/bg-12-6351-2015, 2015a.
Pérez-Priego, O., López-Ballesteros, A., Sánchez-Cañete, E.,
Serrano-Ortiz, P., Kutzbach, L., Domingo, F., Eugster, W., and Kowalski, A.:
Analysing uncertainties in the calculation of fluxes using whole-plant
chambers: random and systematic errors, Plant Soil, 393, 229–244,
https://doi.org/10.1007/s11104-015-2481-x, 2015b.
Porcar-Castell, A., Garcia-Plazaola, J. I., Nichol, C. J., Kolari, P.,
Olascoaga, B., Kuusinen, N., Fernandez-Marin, B., Pulkkinen, M., Juurola, E.,
and Nikinmaa, E.: Physiology of the seasonal relationship between the
photochemical reflectance index and photosynthetic light use efficiency,
Oecologia, 170, 313–323, https://doi.org/10.1007/s00442-012-2317-9, 2012.
Porcar-Castell, A., Mac Arthur, A., Rossini, M., Eklundh, L.,
Pacheco-Labrador, J., Anderson, K., Balzarolo, M., Martín, M. P., Jin,
H., Tomelleri, E., Cerasoli, S., Sakowska, K., Hueni, A., Julitta, T.,
Nichol, C. J., and Vescovo, L.: EUROSPEC: at the interface between
remote-sensing and ecosystem CO2 flux measurements in Europe,
Biogeosciences, 12, 6103–6124, https://doi.org/10.5194/bg-12-6103-2015,
2015.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical
Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 7 August 2018), 2017.
Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza,
J., Casals, P., Cheng, Y., Grünzweig, J. M., Irvine, J., Joffre, R., Law,
B. E., Loustau, D., Miglietta, F., Oechel, W., Ourcival, J.-M., Pereira, J.
S., Peressotti, A., Ponti, F., Qi, Y., Rambal, S., Rayment, M., Romanya, J.,
Rossi, F., Tedeschi, V., Tirone, G., Xu, M., and Yakir, D.: Modeling temporal
and large-scale spatial variability of soil respiration from soil water
availability, temperature and vegetation productivity indices, Global
Biogeochem. Cy., 17, 1104, https://doi.org/10.1029/2003GB002035, 2003.
Rossini, M., Cogliati, S., Meroni, M., Migliavacca, M., Galvagno, M.,
Busetto, L., Cremonese, E., Julitta, T., Siniscalco, C., Morra di Cella, U.,
and Colombo, R.: Remote sensing-based estimation of gross primary production
in a subalpine grassland, Biogeosciences, 9, 2565–2584,
https://doi.org/10.5194/bg-9-2565-2012, 2012.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Monitoring
vegetation systems in the great plains with ERTS, in: Third ERTS Symposium,
Vol. 1, SP-351, 309–317, NASA, Washington, DC, USA, 1974.
Sakowska, K., Vescovo, L., Marcolla, B., Juszczak, R., Olejnik, J., and
Gianelle, D.: Monitoring of carbon dioxide fluxes in a subalpine grassland
ecosystem of the Italian Alps using a multispectral sensor, Biogeosciences,
11, 4695–4712, https://doi.org/10.5194/bg-11-4695-2014, 2014.
Sakowska, K., Juszczak, R., and Gianelle, D.: Remote Sensing of Grassland
Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission, J.
Sensors, 2016, 1–16, https://doi.org/10.1155/2016/4612809, 2016.
Sala, O. E.: Global Biodiversity Scenarios for the Year 2100, Science, 287,
1770–1774, https://doi.org/10.1126/science.287.5459.1770
2000.
Schenk, H. J. and Jackson, R. B.: Rooting depths, lateral root spreads and
below-ground/above-ground allometries of plants in water-limited ecosystems,
J. Ecol., 90, 480–494, https://doi.org/10.1046/j.1365-2745.2002.00682.x, 2002.
Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend,
P., Miller, C., Frankenberg, C., Hibbard, K., and Cox, P.: Observing
terrestrial ecosystems and the carbon cycle from space, Glob. Change Biol.,
21, 1762–1776, https://doi.org/10.1111/gcb.12822, 2015.
Seabloom, E. W., Borer, E. T., Buckley, Y., Cleland, E. E., Davies, K., Firn,
J., Harpole, W. S., Hautier, Y., Lind, E., MacDougall, A., Orrock, J. L.,
Prober, S. M., Adler, P., Alberti, J., Michael Anderson, T., Bakker, J. D.,
Biederman, L. A., Blumenthal, D., Brown, C. S., Brudvig, L. A., Caldeira, M.,
Chu, C., Crawley, M. J., Daleo, P., Damschen, E. I., D'Antonio, C. M.,
DeCrappeo, N. M., Dickman, C. R., Du, G., Fay, P. A., Frater, P., Gruner, D.
S., Hagenah, N., Hector, A., Helm, A., Hillebrand, H., Hofmockel, K. S.,
Humphries, H. C., Iribarne, O., Jin, V. L., Kay, A., Kirkman, K. P., Klein,
J. A., Knops, J. M. H., La Pierre, K. J., Ladwig, L. M., Lambrinos, J. G.,
Leakey, A. D. B., Li, Q., Li, W., McCulley, R., Melbourne, B., Mitchell, C.
E., Moore, J. L., Morgan, J., Mortensen, B., O'Halloran, L. R., Pärtel,
M., Pascual, J., Pyke, D. A., Risch, A. C., Salguero-Gómez, R., Sankaran,
M., Schuetz, M., Simonsen, A., Smith, M., Stevens, C., Sullivan, L., Wardle,
G. M., Wolkovich, E. M., Wragg, P. D., Wright, J., and Yang, L.: Predicting
invasion in grassland ecosystems: is exotic dominance the real embarrassment
of richness?, Glob. Change Biol., 19, 3677–3687, https://doi.org/10.1111/gcb.12370,
2013.
Tagesson, T., Fensholt, R., Huber, S., Horion, S., Guiro, I., Ehammer, A.,
and Ardö, J.: Deriving seasonal dynamics in ecosystem properties of
semi-arid savanna grasslands from in situ-based hyperspectral reflectance,
Biogeosciences, 12, 4621–4635, https://doi.org/10.5194/bg-12-4621-2015,
2015.
Thomas, H.: Senescence, ageing and death of the whole plant, New Phytol.,
197, 696–711, https://doi.org/10.1111/nph.12047, 2013.
Vescovo, L., Wohlfahrt, G., Balzarolo, M., Pilloni, S., Sottocornola, M.,
Rodeghiero, M., and Gianelle, D.: New spectral vegetation indices based on
the near-infrared shoulder wavelengths for remote detection of grassland
phytomass, Int. J. Remote Sens., 33, 2178–2195,
https://doi.org/10.1080/01431161.2011.607195, 2012.
Vicca, S., Balzarolo, M., Filella, I., Granier, A., Herbst, M., Knohl, A.,
Longdoz, B., Mund, M., Nagy, Z., Pintér, K., Rambal, S., Verbesselt, J.,
Verger, A., Zeileis, A., Zhang, C., and Peñuelas, J.: Remotely-sensed
detection of effects of extreme droughts on gross primary production, Sci.
Rep.-UK, 6, 28269, https://doi.org/10.1038/srep28269, 2016.
Viña, A. and Gitelson, A. A.: New developments in the remote estimation
of the fraction of absorbed photosynthetically active radiation in crops,
Geophys. Res. Lett., 32, L17403, https://doi.org/10.1029/2005GL023647, 2005.
Weisser, W. W., Roscher, C., Meyer, S. T., Ebeling, A., Luo, G., Allan, E.,
Beßler, H., Barnard, R. L., Buchmann, N., Buscot, F., Engels, C.,
Fischer, C., Fischer, M., Gessler, A., Gleixner, G., Halle, S., Hildebrandt,
A., Hillebrand, H., de Kroon, H., Lange, M., Leimer, S., Le Roux, X., Milcu,
A., Mommer, L., Niklaus, P. A., Oelmann, Y., Proulx, R., Roy, J., Scherber,
C., Scherer-Lorenzen, M., Scheu, S., Tscharntke, T., Wachendorf, M., Wagg,
C., Weigelt, A., Wilcke, W., Wirth, C., Schulze, E.-D., Schmid, B., and
Eisenhauer, N.: Biodiversity effects on ecosystem functioning in a 15-year
grassland experiment: Patterns, mechanisms, and open questions, Basic Appl.
Ecol., 23, 1–73, https://doi.org/10.1016/j.baae.2017.06.002, 2017.
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., and Wright, I. J.:
Plant Ecological Strategies: Some Leading Dimensions of Variation Between
Species, Annu. Rev. Ecol. Syst., 33, 125–159,
https://doi.org/10.1146/annurev.ecolsys.33.010802.150452, 2002.
WRB: IUSS Working Group: World reference base for soil resources 2006, 2nd
Edn., World Soil Resources Reports No. 103, FAO, Rome, Italy, 2006.
Xu, L. and Baldocchi, D. D.: Seasonal variation in carbon dioxide exchange
over a Mediterranean annual grassland in California, Agr. Forest Meteorol.,
123, 79–96, https://doi.org/10.1016/j.agrformet.2003.10.004, 2004.
Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold, L., Law,
B., Arain, A., Beringer, J., Bernhofer, C., Black, A., Blanken, P. D.,
Cescatti, A., Chen, Y., Francois, L., Gianelle, D., Janssens, I. A., Jung,
M., Kato, T., Kiely, G., Liu, D., Marcolla, B., Montagnani, L., Raschi, A.,
Roupsard, O., Varlagin, A., and Wohlfahrt, G.: Global comparison of light use
efficiency models for simulating terrestrial vegetation gross primary
production based on the LaThuile database, Agr. Forest Meteorol., 192–193,
108–120, https://doi.org/10.1016/j.agrformet.2014.03.007, 2014.
Zhang, F. and Zhou, G.: Deriving a light use efficiency estimation algorithm
using in situ hyperspectral and eddy covariance measurements for a maize
canopy in Northeast China, Ecol. Evol., 7, 4735–4744, https://doi.org/10.1002/ece3.3051,
2017.
Short summary
We compared the ability of in situ spectral and satellite sensors to estimate the productivity of Mediterranean grasslands undergoing different fertilization treatments. The objective of the study was to identify the best set of spectral predictors. In situ CO gas exchange and vegetation reflectance measurements were used for this purpose. Our results show the potential of Sentinel 2 and Landsat 8 satellites to monitor grasslands in support of a sustainable agriculture management.
We compared the ability of in situ spectral and satellite sensors to estimate the productivity...
Altmetrics
Final-revised paper
Preprint