Articles | Volume 17, issue 7
https://doi.org/10.5194/bg-17-1821-2020
https://doi.org/10.5194/bg-17-1821-2020
Research article
 | 
03 Apr 2020
Research article |  | 03 Apr 2020

Spatio-temporal variations and uncertainty in land surface modelling for high latitudes: univariate response analysis

Didier G. Leibovici, Shaun Quegan, Edward Comyn-Platt, Garry Hayman, Maria Val Martin, Mathieu Guimberteau, Arsène Druel, Dan Zhu, and Philippe Ciais

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (31 Jan 2020) by Alexey V. Eliseev
AR by Didier Leibovici on behalf of the Authors (03 Feb 2020)  Author's response   Manuscript 
ED: Publish subject to technical corrections (06 Feb 2020) by Alexey V. Eliseev
AR by Didier Leibovici on behalf of the Authors (06 Feb 2020)  Manuscript 
Download
Short summary
Analysing the impact of environmental changes due to climate change, e.g. geographical spread of climate-sensitive infections (CSIs) and agriculture crop modelling, may require land surface modelling (LSM) to predict future land surface conditions. There are multiple LSMs to choose from. The paper proposes a multivariate spatio-temporal data science method to understand the inherent uncertainties in four LSMs and the variations between them in Nordic areas for the net primary production.
Altmetrics
Final-revised paper
Preprint