Articles | Volume 17, issue 22
https://doi.org/10.5194/bg-17-5763-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5763-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing past variations in environmental conditions and paleoproductivity over the last ∼ 8000 years off north-central Chile (30° S)
Departamento de Biología Marina, Universidad Católica del
Norte, Larrondo 1281, Coquimbo, Chile
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Lorena Rebolledo
Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
Laurent Dezileau
Normandy University, UNICAEN, UNIROUEN, CNRS, M2C, 14000 Caen,
France
Antonio Maldonado
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Instituto de Investigación Multidisciplinario en Ciencia y
Tecnología, Universidad de La Serena, La Serena, Chile
Christoph Mayr
Institut für Geographie, FAU Erlangen-Nürnberg, 91058
Erlangen, Germany
Department of Earth and Environmental Sciences and GeoBio-Center, LMU Munich, 80333 Munich, Germany
Paola Cárdenas
Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
Carina B. Lange
Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160C, Concepción, Chile
Centro de Investigación Oceanográfica COPAS Sur-Austral,
Universidad de Concepción, Casilla 160C, Concepción, Chile
Katherine Lalangui
Planta de Alimentos Pargua, AquaChile, Puerto Montt, Chile
Gloria Sanchez
Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
Marco Salamanca
Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160C, Concepción, Chile
Karen Araya
Departamento de Biología Marina, Universidad Católica del
Norte, Larrondo 1281, Coquimbo, Chile
Laboratoire Géosciences Montpellier (GM), Université de
Montpellier, 34095 Montpellier CEDEX 05, France
Ignacio Jara
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Gabriel Easton
Departamento de Geología, Universidad de Chile, Santiago, Chile
Marcel Ramos
Departamento de Biología Marina, Universidad Católica del
Norte, Larrondo 1281, Coquimbo, Chile
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Related authors
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Ignacio A. Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodriguez, Nicolás Lampe, and Antonio Maldonado
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-97, https://doi.org/10.5194/cp-2023-97, 2024
Manuscript not accepted for further review
Short summary
Short summary
We conducted a regional model experiment that simulates a century of December-January-February (DJF) precipitation change in the South American Altiplano. Despite that we forced our modelling runs with conditions that produced humid DJF seasons today, our simulations show continuous reductions in precipitation over the Altiplano, suggesting that the climate drivers of modern-time humid seasons might not be the same that caused the extended humid periods observed in Holocene records.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Lilian Reiss, Christian Stüwe, Thomas Einwögerer, Marc Händel, Andreas Maier, Stefan Meng, Kerstin Pasda, Ulrich Simon, Bernd Zolitschka, and Christoph Mayr
E&G Quaternary Sci. J., 71, 23–43, https://doi.org/10.5194/egqsj-71-23-2022, https://doi.org/10.5194/egqsj-71-23-2022, 2022
Short summary
Short summary
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for their reliability and consistency at the Palaeolithic site Kammern-Grubgraben (Lower Austria). While carbonate and organic carbon contents are interpreted in terms of palaeoclimate variability, pedogenic carbonates turned out to be of Holocene age. As a consequence, the proxy data assessed here are differentially suitable for environmental reconstructions.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021, https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Kerstin Pasda, Matthias López Correa, Philipp Stojakowits, Bernhard Häck, Jérôme Prieto, Najat al-Fudhaili, and Christoph Mayr
E&G Quaternary Sci. J., 69, 187–200, https://doi.org/10.5194/egqsj-69-187-2020, https://doi.org/10.5194/egqsj-69-187-2020, 2020
Short summary
Short summary
The radiocarbon dating of Late Iron Age origin and anthropogenic traces such as cut marks on bones of a male elk skeleton found by a local resident in a pit cave prove an archaeological origin. So far known archaeological settlements are several tens of kilometres apart from the finds. The location and the dating are unique in that they are the first evidence of elk hunting during the Late Iron Age in the Bavarian Alps.
Ignacio A. Jara, Antonio Maldonado, Leticia González, Armand Hernández, Alberto Sáez, Santiago Giralt, Roberto Bao, and Blas Valero-Garcés
Clim. Past, 15, 1845–1859, https://doi.org/10.5194/cp-15-1845-2019, https://doi.org/10.5194/cp-15-1845-2019, 2019
Short summary
Short summary
The South American summer monsoon (SASM) is the most important climate system of South America. However, little is known about its long-term variability. Here we present a new SASM reconstruction from Lago Chungará in the southern Altiplano (18°S). We show important changes in SASM precipitation at timescales of centuries. Our results suggest that SASM variability was controlled not only by tropical climates but was also influenced by precipitation outside the tropics.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Christoph Mayr, Lukas Langhamer, Holger Wissel, Wolfgang Meier, Tobias Sauter, Cecilia Laprida, Julieta Massaferro, Günter Försterra, and Andreas Lücke
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-431, https://doi.org/10.5194/hess-2018-431, 2018
Manuscript not accepted for further review
Short summary
Short summary
Patagonia is a key area to understand wind dynamics and orographic isotope effects on precipitation in the southern hemisphere. Stable isotope composition of precipitation, lake and river waters were investigated. Sources of Patagonian moisture were mainly in the south-eastern Pacific. A strong heavy-isotope depletion occurs due to orographic rainout in the Andes. Isotope data allow the determination of the drying ratio (DR). The obtained DR value of 0.45 is one of the highest measured on earth.
Mónica Bello, Marcel Ramos, René Garreaud, Luis Bravo, and Martin Thiel
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-32, https://doi.org/10.5194/os-2018-32, 2018
Preprint withdrawn
Short summary
Short summary
Here we present results of an intensive physical oceanography study near 30° S focused on the description of the seasonal and the synoptic variability of diurnal currents. The study, highlights the greatest variability of the diurnal currents which are highly influenced by the diurnal wind forcing, also modulated by a synoptic-scale circulation pattern. Our results show that the highest diurnal current variability suggesting a strong coupling between diurnal wind forcing and inertial oscillations.
Thouraya Benmoussa, Oula Amrouni, Laurent Dezileau, Gil Mahé, and Saâdi Abdeljaouad
Proc. IAHS, 377, 77–81, https://doi.org/10.5194/piahs-377-77-2018, https://doi.org/10.5194/piahs-377-77-2018, 2018
Christoph Mayr, Renate Matzke-Karasz, Philipp Stojakowits, Sally E. Lowick, Bernd Zolitschka, Tanja Heigl, Richard Mollath, Marian Theuerkauf, Marc-Oliver Weckend, Rupert Bäumler, and Hans-Joachim Gregor
E&G Quaternary Sci. J., 66, 73–89, https://doi.org/10.5194/egqsj-66-73-2017, https://doi.org/10.5194/egqsj-66-73-2017, 2017
Aida Affouri, Laurent Dezileau, and Nejib Kallel
Clim. Past, 13, 711–727, https://doi.org/10.5194/cp-13-711-2017, https://doi.org/10.5194/cp-13-711-2017, 2017
Short summary
Short summary
The past flood activity was investigated using a sedimentological and geochemical analysis of surfaces sediments from a southeastern Tunisian catchment in order to trace the origin of sediments deposit in the El Bibane Lagoon. Aeolian, fluvial and marine source. This multi-proxy analysis on the BL12-10 core shows that finer material, a high content of clay and silt, and a high content of the elemental ratios Fe / Ca and Ti / Ca characterise the sedimentological signature of palaeo-flood levels.
Luis Bravo, Marcel Ramos, Orlando Astudillo, Boris Dewitte, and Katerina Goubanova
Ocean Sci., 12, 1049–1065, https://doi.org/10.5194/os-12-1049-2016, https://doi.org/10.5194/os-12-1049-2016, 2016
Short summary
Short summary
We evaluated the seasonal variability in Ekman transport, pumping and their relative contribution to total upwelling along the central-northern Chile region (~30ºS) from a high-resolution atmospheric model simulation. The results showed that the relative contribution of Ekman transport and pumping to the vertical transport along the coast, considering the estimated wind drop-off length, indicated meridional alternation between both mechanisms, modulated by orography and the intricate coastline.
Laurent Dezileau, Angel Pérez-Ruzafa, Philippe Blanchemanche, Jean-Philippe Degeai, Otmane Raji, Philippe Martinez, Concepcion Marcos, and Ulrich Von Grafenstein
Clim. Past, 12, 1389–1400, https://doi.org/10.5194/cp-12-1389-2016, https://doi.org/10.5194/cp-12-1389-2016, 2016
Short summary
Short summary
Amongst the most devastating marine catastrophes that can occur in coastal areas are storms and tsunamis, which may seriously endanger human society. In a sediment core from the Mar Menor (SE Spain), we discovered eight coarse-grained layers which document marine incursions during periods of intense storm activity or tsunami events. These periods of surge events seem to coincide with the coldest periods in Europe during the late Holocene, suggesting a control by a climatic mechanism.
Sahbi Jaouadi, Vincent Lebreton, Viviane Bout-Roumazeilles, Giuseppe Siani, Rached Lakhdar, Ridha Boussoffara, Laurent Dezileau, Nejib Kallel, Beya Mannai-Tayech, and Nathalie Combourieu-Nebout
Clim. Past, 12, 1339–1359, https://doi.org/10.5194/cp-12-1339-2016, https://doi.org/10.5194/cp-12-1339-2016, 2016
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
J. Azuara, N. Combourieu-Nebout, V. Lebreton, F. Mazier, S. D. Müller, and L. Dezileau
Clim. Past, 11, 1769–1784, https://doi.org/10.5194/cp-11-1769-2015, https://doi.org/10.5194/cp-11-1769-2015, 2015
Short summary
Short summary
High-resolution pollen analyses undertaken on two cores from southern France allow us to separate anthropogenic effects from climatic impacts on environments over the last 4500 years. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded around 4400, 2600 and 1200cal BP coinciding in time with Bond events. Human influence on vegetation is attested since the Bronze Age and became dominant at the beginning of the High Middle Ages.
B. Srain, S. Pantoja, J. Sepúlveda, C. B. Lange, P. Muñoz, R. E. Summons, J. McKay, and M. Salamanca
Biogeosciences, 12, 6045–6058, https://doi.org/10.5194/bg-12-6045-2015, https://doi.org/10.5194/bg-12-6045-2015, 2015
O. Raji, L. Dezileau, U. Von Grafenstein, S. Niazi, M. Snoussi, and P. Martinez
Nat. Hazards Earth Syst. Sci., 15, 203–211, https://doi.org/10.5194/nhess-15-203-2015, https://doi.org/10.5194/nhess-15-203-2015, 2015
Related subject area
Paleobiogeoscience: Marine Record
Coupled otolith and foraminifera oxygen and carbon stable isotopes evidence paleoceanographic changes and fish metabolic responses
Ideas and perspectives: Human impacts alter the marine fossil record
Were early Archean carbonate factories major carbon sinks on the juvenile Earth?
Origin and role of non-skeletal carbonate in coralligenous build-ups: new geobiological perspectives in biomineralization processes
Serpulid microbialitic bioherms from the upper Sarmatian (Middle Miocene) of the central Paratethys Sea (NW Hungary) – witnesses of a microbial sea
Massive corals record deforestation in Malaysian Borneo through sediments in river discharge
Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era
Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927)
Variation in calcification of Reticulofenestra coccoliths over the Oligocene–Early Miocene
The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting
Testing the effect of bioturbation and species abundance upon discrete-depth individual foraminifera analysis
Test-size evolution of the planktonic foraminifer Globorotalia menardii in the eastern tropical Atlantic since the Late Miocene
Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes
Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations
A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster
Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone
Baseline for ostracod-based northwestern Pacific and Indo-Pacific shallow-marine paleoenvironmental reconstructions: ecological modeling of species distributions
Neogene Caribbean elasmobranchs: diversity, paleoecology and paleoenvironmental significance of the Cocinetas Basin assemblage (Guajira Peninsula, Colombia)
Coastal primary productivity changes over the last millennium: a case study from the Skagerrak (North Sea)
A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century
Technical note: An empirical method for absolute calibration of coccolith thickness
Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels
Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia
Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous–Paleogene boundary
Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles
Anthropogenically induced environmental changes in the northeastern Adriatic Sea in the last 500 years (Panzano Bay, Gulf of Trieste)
Palaeohydrological changes over the last 50 ky in the central Gulf of Cadiz: complex forcing mechanisms mixing multi-scale processes
Dinocyst assemblage constraints on oceanographic and atmospheric processes in the eastern equatorial Atlantic over the last 44 kyr
Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica
Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse
Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)
Millennial changes in North Atlantic oxygen concentrations
Vanishing coccolith vital effects with alleviated carbon limitation
Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as a function of local hydrography
Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs
Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones
Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
Icehouse–greenhouse variations in marine denitrification
Changes in calcification of coccoliths under stable atmospheric CO2
Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records
The calcareous nannofossil Prinsiosphaera achieved rock-forming abundances in the latest Triassic of western Tethys: consequences for the δ13C of bulk carbonate
The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast
Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records
Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns
Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar
Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation
Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Wanli Xiang, Jan-Peter Duda, Andreas Pack, Mark van Zuilen, and Joachim Reitner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1007, https://doi.org/10.5194/egusphere-2024-1007, 2024
Short summary
Short summary
We investigated the formation of early Archean (~3.5–3.4 Ga) carbonates in the Pilbara Craton, Western Australia, demonstrating the presence of an oceanic crust-, an organo-carbonate-, and a microbial carbonate factory. Notably, (a)biotic organic matter as well as hydrothermal fluids were centrally involved in carbonate precipitation. Since carbonates are widespread in the Archean, they may have constituted major carbon sinks that modulated early Earth’s carbon cycle and, hence, climate system.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Jeremy N. Bentley, Gregory T. Ventura, Clifford C. Walters, Stefan M. Sievert, and Jeffrey S. Seewald
Biogeosciences, 19, 4459–4477, https://doi.org/10.5194/bg-19-4459-2022, https://doi.org/10.5194/bg-19-4459-2022, 2022
Short summary
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Thore Friesenhagen
Biogeosciences, 19, 777–805, https://doi.org/10.5194/bg-19-777-2022, https://doi.org/10.5194/bg-19-777-2022, 2022
Short summary
Short summary
Size measurements of the planktonic foraminifer Globorotalia menardii and related forms are used to investigate the shell-size evolution for the last 8 million years in the eastern tropical Atlantic Ocean. Long-term changes in the shell size coincide with major climatic, palaeogeographic and palaeoceanographic changes and suggest the occurrence of a new G. menardii type in the Atlantic Ocean ca. 2 million years ago.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Catherine V. Davis, Karen Wishner, Willem Renema, and Pincelli M. Hull
Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021, https://doi.org/10.5194/bg-18-977-2021, 2021
Luka Šupraha and Jorijntje Henderiks
Biogeosciences, 17, 2955–2969, https://doi.org/10.5194/bg-17-2955-2020, https://doi.org/10.5194/bg-17-2955-2020, 2020
Short summary
Short summary
The cell size, degree of calcification and growth rates of coccolithophores impact their role in the carbon cycle and may also influence their adaptation to environmental change. Combining insights from culture experiments and the fossil record, we show that the selection for smaller cells over the past 15 Myr has been a common adaptive trait among different lineages. However, heavily calcified species maintained a more stable biogeochemical output than the ancestral lineage of E. huxleyi.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Hannah M. Palmer, Tessa M. Hill, Peter D. Roopnarine, Sarah E. Myhre, Katherine R. Reyes, and Jonas T. Donnenfield
Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, https://doi.org/10.5194/bg-17-2923-2020, 2020
Short summary
Short summary
Modern climate change is causing expansions of low-oxygen zones, with detrimental impacts to marine life. To better predict future ocean oxygen change, we study past expansions and contractions of low-oxygen zones using microfossils of seafloor organisms. We find that, along the San Diego margin, the low-oxygen zone expanded into more shallow water in the last 400 years, but the conditions within and below the low-oxygen zone did not change significantly in the last 1500 years.
Yuanyuan Hong, Moriaki Yasuhara, Hokuto Iwatani, and Briony Mamo
Biogeosciences, 16, 585–604, https://doi.org/10.5194/bg-16-585-2019, https://doi.org/10.5194/bg-16-585-2019, 2019
Short summary
Short summary
This study analyzed microfaunal assemblages in surface sediments from 52 sites in Hong Kong marine waters. We selected 18 species for linear regression modeling to statistically reveal the relationship between species distribution and environmental factors. These results show environmental preferences of commonly distributed species on Asian coasts, providing a robust baseline for past environmental reconstruction of the broad Asian region using microfossils in sediment cores.
Jorge Domingo Carrillo-Briceño, Zoneibe Luz, Austin Hendy, László Kocsis, Orangel Aguilera, and Torsten Vennemann
Biogeosciences, 16, 33–56, https://doi.org/10.5194/bg-16-33-2019, https://doi.org/10.5194/bg-16-33-2019, 2019
Short summary
Short summary
By combining taxonomy and geochemistry, we corroborated the described paleoenvironments from a Neogene fossiliferous deposit of South America. Shark teeth specimens were used for taxonomic identification and as proxies for geochemical analyses. With a multidisciplinary approach we refined the understanding about the paleoenvironmental setting and the paleoecological characteristics of the studied groups, in our case, for the bull shark and its incursions into brackish waters.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Shuichang Zhang, Xiaomei Wang, Huajian Wang, Emma U. Hammarlund, Jin Su, Yu Wang, and Donald E. Canfield
Biogeosciences, 14, 2133–2149, https://doi.org/10.5194/bg-14-2133-2017, https://doi.org/10.5194/bg-14-2133-2017, 2017
Liza M. Roger, Annette D. George, Jeremy Shaw, Robert D. Hart, Malcolm Roberts, Thomas Becker, Bradley J. McDonald, and Noreen J. Evans
Biogeosciences, 14, 1721–1737, https://doi.org/10.5194/bg-14-1721-2017, https://doi.org/10.5194/bg-14-1721-2017, 2017
Short summary
Short summary
The shell compositions of bivalve species from south Western Australia are described here to better understand the factors involved in their formation. The shell composition can be used to reconstruct past environmental conditions, but certain species manifest an offset compared to the environmental parameters measured. As shown here, shells that experience the same conditions can present different compositions in relation to structure, organic composition and environmental conditions.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965–5981, https://doi.org/10.5194/bg-13-5965-2016, https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
William Hardy, Aurélie Penaud, Fabienne Marret, Germain Bayon, Tania Marsset, and Laurence Droz
Biogeosciences, 13, 4823–4841, https://doi.org/10.5194/bg-13-4823-2016, https://doi.org/10.5194/bg-13-4823-2016, 2016
Short summary
Short summary
Our approach is based on a multi-proxy study from a core collected off the Congo River and discusses surface oceanic conditions (upwelling cells, river-induced upwelling), land–sea interactions and terrestrial erosion and in particular enables us to spatially constrain the migration of atmospheric systems. This paper thus presents new data highlighting, with the highest resolution ever reached in this region, the great correlation between phytoplanktonic organisms and monsoonal mechanisms.
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Short summary
Diatoms and biomarkers have been recently used for palaeoclimate reconstructions in the Southern Ocean. Few sediment-based ecological studies have investigated their relationships with environmental conditions. Here, we compare high-resolution sedimentary records with meteorological data to study relationships between our proxies and recent atmospheric and sea surface changes. Our results indicate that coupled wind pattern and sea surface variability act as the proximal forcing at that scale.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, Julia Kirkerowicz, and James S. Klaus
Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, https://doi.org/10.5194/bg-13-1469-2016, 2016
Short summary
Short summary
We present stable isotope proxy data and calcification records from fossil reef corals. The corals investigated derive from the Florida carbonate platform and are of middle Pliocene to early Pleistocene age. From the data we infer an environment subject to intermittent upwelling on annual to decadal timescales. Calcification rates were enhanced during periods of upwelling. This is likely an effect of dampened SSTs during the upwelling.
B. A. A. Hoogakker, D. J. R. Thornalley, and S. Barker
Biogeosciences, 13, 211–221, https://doi.org/10.5194/bg-13-211-2016, https://doi.org/10.5194/bg-13-211-2016, 2016
Short summary
Short summary
Models predict a decrease in future ocean O2, driven by surface water warming and freshening in the polar regions, causing a reduction in ocean circulation. Here we assess this effect in the past, focussing on the response of deep and intermediate waters from the North Atlantic during large-scale ice rafting and millennial-scale cooling events of the last glacial.
Our assessment agrees with the models but also highlights the importance of biological processes driving ocean O2 change.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. P. D'Olivo, M. T. McCulloch, S. M. Eggins, and J. Trotter
Biogeosciences, 12, 1223–1236, https://doi.org/10.5194/bg-12-1223-2015, https://doi.org/10.5194/bg-12-1223-2015, 2015
Short summary
Short summary
The boron isotope composition in the skeleton of massive Porites corals from the central Great Barrier Reef is used to reconstruct the seawater pH over the 1940-2009 period. The long-term decline in the coral-reconstructed seawater pH is in close agreement with estimates based on the CO2 uptake by surface waters due to rising atmospheric levels. We also observed a significant relationship between terrestrial runoff data and the inshore coral boron isotopes records.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
S. C. Löhr and M. J. Kennedy
Biogeosciences, 11, 4971–4983, https://doi.org/10.5194/bg-11-4971-2014, https://doi.org/10.5194/bg-11-4971-2014, 2014
R. Hoffmann, J. A. Schultz, R. Schellhorn, E. Rybacki, H. Keupp, S. R. Gerden, R. Lemanis, and S. Zachow
Biogeosciences, 11, 2721–2739, https://doi.org/10.5194/bg-11-2721-2014, https://doi.org/10.5194/bg-11-2721-2014, 2014
T. J. Algeo, P. A. Meyers, R. S. Robinson, H. Rowe, and G. Q. Jiang
Biogeosciences, 11, 1273–1295, https://doi.org/10.5194/bg-11-1273-2014, https://doi.org/10.5194/bg-11-1273-2014, 2014
C. Berger, K. J. S. Meier, H. Kinkel, and K.-H. Baumann
Biogeosciences, 11, 929–944, https://doi.org/10.5194/bg-11-929-2014, https://doi.org/10.5194/bg-11-929-2014, 2014
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, https://doi.org/10.5194/bg-10-7347-2013, 2013
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
I. Polovodova Asteman, K. Nordberg, and H. L. Filipsson
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, https://doi.org/10.5194/bg-10-1275-2013, 2013
J.-E. Tesdal, E. D. Galbraith, and M. Kienast
Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, https://doi.org/10.5194/bg-10-101-2013, 2013
L. Durantou, A. Rochon, D. Ledu, G. Massé, S. Schmidt, and M. Babin
Biogeosciences, 9, 5391–5406, https://doi.org/10.5194/bg-9-5391-2012, https://doi.org/10.5194/bg-9-5391-2012, 2012
C. A. Grove, J. Zinke, T. Scheufen, J. Maina, E. Epping, W. Boer, B. Randriamanantsoa, and G.-J. A. Brummer
Biogeosciences, 9, 3063–3081, https://doi.org/10.5194/bg-9-3063-2012, https://doi.org/10.5194/bg-9-3063-2012, 2012
D. Wall-Palmer, M. B. Hart, C. W. Smart, R. S. J. Sparks, A. Le Friant, G. Boudon, C. Deplus, and J. C. Komorowski
Biogeosciences, 9, 309–315, https://doi.org/10.5194/bg-9-309-2012, https://doi.org/10.5194/bg-9-309-2012, 2012
S. F. Rella and M. Uchida
Biogeosciences, 8, 3545–3553, https://doi.org/10.5194/bg-8-3545-2011, https://doi.org/10.5194/bg-8-3545-2011, 2011
Cited articles
Abrantes, F.: Diatom assemblages as upwelling indicators in surface
sediments off Portugal, Mar. Geol., 85, 15–39,
https://doi.org/10.1016/0025-3227(88)90082-5, 1988.
Algeo, T. J. and Tribovillard, N.: Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation, Chem. Geol., 268, 211–225, 2009.
Ancapichún, S. and Garcés-Vargas, J.: Variability of the Southeast
Pacific Subtropical Anticyclone and its impact on sea surface temperature
off north-central Chile Variabilidad del Anticiclón Subtropical del
Pacífico Sudeste y su impacto sobre la temperatura superficial del mar frente a la costa centro-norte de Chile, Cienc. Mar., 41, 1–20, https://doi.org/10.7773/cm.v41i1.2338, 2015.
Appleby, P. G. and Oldfield, F.: The calculation of lead-210 dates assuming
a constant rate of supply of unsupported 210Pb to the sediment, Catena,
5, 1–8, https://doi.org/10.1016/S0341-8162(78)80002-2, 1978.
Bevington, P. and Robinson, K. (Eds.): Error analysis, in: Data Reduction
and Error Analysis for the Physical Sciences, WCB/McGraw-Hill, USA, 38–52,
1992.
Blaauw, M. and Christen, J.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
Blanco, J. L., Carr, M.-E., Thomas, A. C. and Strub, T.: Hydrographic
conditions off northern Chile during the 1996–1998 La Niña and El
Niño events, J. Geophys. Res., 107, 3017, https://doi.org/10.1029/2001JC001002,
2002.
Blott, S. J. and Pye, K.: Gradistat: A Grain Size Distribution and
Statistics Package for the Analysis of Unconsolidated Sediments, Earth Surf.
Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Böning, P., Brumsack, H.-J., Schnetger, B., and Grunwald, M.: Trace
element signatures of Chilean upwelling sediments at 36∘ S, Mar. Geol., 259, 112–121, 2009.
Böning, P., Shaw, T., Pahnke, K., and Brumsack, H.-J.: Nickel as indicator of
fresh organic matter in upwelling sediments, Geochim. Cosmochim. Ac., 162,
99–108, 2015.
Braconnot, P., Luan, Y., Brewer, S., and Zheng, W.: Impact of Earth's orbit
and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO
characteristics, Clim. Dyn., 38, 1081–1092, https://doi.org/10.1007/s00382-011-1029-x,
2012.
Calvert, S. E. and Pedersen, T. F.: Chapter Fourteen Elemental Proxies for
Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments:
Interpretation and Application, Dev. Mar. Geol., 1, 567–644,
https://doi.org/10.1016/S1572-5480(07)01019-6, 2007.
Cardich, J., Sifeddine, A., Salvatteci, R., Romero, D., Briceño-Zuluaga,
F., Graco, M., Anculle, T., Almeida, C., and Gutiérrez, D.: Multidecadal
Changes in Marine Subsurface Oxygenation Off Central Peru During the Last
ca. 170 Years, Front. Mar. Sci., 6, 1–16, https://doi.org/10.3389/fmars.2019.00270, 2019.
Carré, M., Azzoug, M., Bentaleb, I., Chase, B. M., Fontugne, M., Jackson, D., Ledru, M.-P., Maldonado, A., Sachs, J., Schauer, A.: Mid-Holocene mean climate in the south eastern Pacific and its influence on South America, Quat. Int., 253, 55–66, 2012.
Carré, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P.,
Falcón, R. A., Julien, M., and Lavallée, D.: Holocene history of ENSO
variance and asymmetry in the eastern tropical Pacific, Science, 345, 1045–1048, https://doi.org/10.1126/science.1255768, 2014.
Carré, M., Jackson, D., Maldonado, A., Chase, B. M., and Sachs, J. P.:
Variability of 14C reservoir age and air–sea flux of CO2 in the Peru–Chile
upwelling region during the past 12 000 years, Quat. Res., 85, 87–93, 2016.
Chaillou, G., Anschutz, P., Lavaux, G., Schäfer, J., and Blanc, G.: The
distribution of Mo, U, and Cd in relation to major redox species in muddy
sediments of the Bay of Biscay, Mar. Chem., 80, 41–59, https://doi.org/10.1016/S0304-4203(02)00097-X, 2002.
Daneri, G., Dellarossa, V., Quiñones, R., Jacob, B., Montero, P., and
Ulloa, O.: Primary production and community respiration in the Humboldt
Current System off Chile and associated oceanic areas, Mar. Ecol. Prog.
Ser., 197, 41–49, https://doi.org/10.3354/meps197041, 2000.
De Pol-Holz, R., Ulloa, O., Dezileau, L., Kiser, J., Lamy, F., and Hebbeln, D.:
Melting of the Patagonian Ice Sheet and deglacial perturbations of the
nitrogen cycle in the eastern South Pacific, Geophys. Res. Lett., 33,
L04704, https://doi.org/10.1029/2005GL024477, 2006.
De Pol-Holz, R., Ulloa, O., Lamy, F., Dezileau, L., Sabatier, P., and
Hebbeln, D.: Late Quaternary variability of sedimentary nitrogen isotopes in
the eastern South Pacific Ocean, Paleoceanography, 22, PA2207, https://doi.org/10.1029/2006PA001308, 2007.
De Pol-Holz, R., Robinson, R. S., Hebbeln, D., Sigman, D. M., and Ulloa, O.:
Controls on sedimentary nitrogen isotopes along the Chile margin, Deep-Sea
Res. Pt. II, 56, 1042–1054,
https://doi.org/10.1016/j.dsr2.2008.09.014, 2009.
Dezileau, L., Ulloa, O., Hebbeln, D., Lamy, F., Reyss, J. L., and Fontugne,
M.: Iron control of past productivity in the coastal upwelling system off
the Atacama Desert, Chile, Paleoceanography, 19, PA3012,
https://doi.org/10.1029/2004PA001006, 2004.
Díaz-Ochoa, J. A., Pantoja, S., De Lange, G. J., Lange, C. B., Sánchez, G. E., Acuña, V. R., Muñoz, P., and Vargas, G.: Oxygenation variability in Mejillones Bay, off northern Chile, during the last two centuries, Biogeosciences, 8, 137–146, https://doi.org/10.5194/bg-8-137-2011, 2011.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A
geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181,
1992.
Escribano, R., Daneri, G., Farías, L., Gallardo, V. A., González,
H. E., Gutiérrez, D., Lange, C. B., Morales, C. E., Pizarro, O., Ulloa,
O., and Braun, M.: Biological and chemical consequences of the 1997–1998 El
Niño in the Chilean coastal upwelling system: A synthesis, Deep-Sea Res.
Pt. II, 51, 2389–2411, https://doi.org/10.1016/j.dsr2.2004.08.011, 2004.
Espinoza-Morriberón, D., Echevin, V., Colas, F., Tam, J., Gutierrez, D.,
Graco, M., Ledesma, J., and Quispe-Ccalluari, C.: Oxygen variability during
ENSO in the Tropical South Eastern Pacific, Front. Mar. Sci., 5, 1–20,
https://doi.org/10.3389/fmars.2018.00526, 2019.
Faegri, K. and Iversen, J.: Textbook of pollen analysis, IV, The Blackburn
Press, New Jersey, 328 pp., 1989.
Figueroa, D. and Moffat, D.: On the influence of topography in the induction
of coastal upwelling along the Chilean coast, Geophys. Res. Lett., 27,
3905–3908, 2000.
Flynn, W. W.: The determination of low levels of polonium-210 in
environmental materials, Anal. Chim. Acta, 43, 221–227, 1968.
Frenger, I., Bianchi, D., Sührenberg, C., Oschlies, A., Dunne, J.,
Deutsch, C., Galbralth, E., and Schütte, F.: Biogeochemical role of
subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms,
and microbial stewpots?, Global Biogeochem. Cy., 32, 226–249,
https://doi.org/10.1002/2017GB005743, 2018.
Gallardo, M. A., González, A., Ramos, M., Mujica, A., Muñoz, P.,
Sellanes, J., and Yannicelli, B.: Reproductive patterns in demersal
crustaceans from the upper boundary of the OMZ off north-central Chile,
Cont. Shelf. Res., 141, 26–37, 2017.
Ganeshram, R. S., Pedersen, T. F., Calvert, S. G., McNeill, G., and Fontugne,
M.: Glacial-interglacial variability in denitrification in the world's
oceans: Causes and consequences, Paleoceanography, 15, 361–376, 2000.
Garreaud, R., Barichivich, J., Christie, D., and Maldonado, A.: Interanual
variability of the coastal fog at Fray Jorge relict forest in semiarid
Chile, J. Geophys. Res., 113, G04011, https://doi.org/10.1029/2008JG000709, 2008.
Garreaud, R., Vuille, M., Compagnuccic, R., and Marengo, J.: Present-day
South American climate, Palaeogeogr. Palaeocl., 281, 180–195,
https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza,
S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in
Atlantic surface sediments (36∘ N–49∘ S): Imprint of
terrigenous input and continental weathering, Geochem. Geophy.
Geosy., 13, 1–23, https://doi.org/10.1029/2011GC003785, 2012.
Grimm, E.: CONISS: a fortran 77 program for stratigraphically constrained
cluster analysis by the method of incremental sum of squares, Comput.
Geosci., 13–35, 1987.
Gutiérrez, D., Sifeddine, A., Reyss, J. L., Vargas, G., Velazco, F., Salvatteci, R., Ferreira, V., Ortlieb, L., Field, D., Baumgartner, T., Boussafir, M., Boucher, H., Valdés, J., Marinovic, L., Soler, P., and Tapia, P.: Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystem during the last two centuries, Adv. Geosci., 6, 119–125, https://doi.org/10.5194/adgeo-6-119-2006, 2006.
Gutiérrez, D., Enríquez, E., Purca, S., Quipuzcoa, L., Marquina,
R., Flores, G., and Graco, M.: Oxygenation episodes on the continental shelf
of central Peru: Remote forcing and benthic ecosystem response, Prog.
Oceanogr., 79, 177–189, 2008.
Gutiérrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chávez, F. P., Velazco, F., Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdés, J., Reyss, J.-L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., García, M., and Baumgartner, T.: Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age, Biogeosciences, 6, 835–848, https://doi.org/10.5194/bg-6-835-2009, 2009.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, In: Methods of
Seawater Analysis, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M.,
Wiley-VCH Verlag GmbH, Weinheim, Germany, 159–228, 1999.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl, U.:
Southward Migration of the Intertropical Convergence Zone through the
Holocene, Science, 293, 1304–1307, 2001.
Hebbeln, D., Marchant, M., Freudenthal, T., and Wefer, G.: Surface
distribution along the Chilean continental slope related to upwelling and
productivity, Mar. Geol., 164, 119–137, 2000.
Hebbeln, D., Marchant, M., and Wefer, G.: Paleoproductivity in the southern
Peru–Chile Current through the last 33 000 yr, Mar. Geol.,
186, 487–504, https://doi.org/10.1016/S0025-3227(02)00331-6, 2002.
Helly, J. and Levin, L.: Global distribution of naturally occurring marine
hypoxia on continental margin, Deep-Sea Res. Pt. I, 51, 1159–1168, 2004.
Heusser, C. J. and Moar, N. T.: Pollen and spores of chile: Modern types of
the pteridophyta, gymnospermae, and angiospermae, New Zeal. J. Bot., 11,
389–391, https://doi.org/10.1080/0028825X.1973.10430287, 1973.
Huerta-Diaz, M. A. and Morse, J. W.: Pyritization of trace metals in anoxic marine sediments, Geochim. Cosmochim. Acta, 56, 2681–2702, https://doi.org/10.1016/0016-7037(92)90353-K, 1992.
Jenny, B., Valero-Garcés, B. L., Urrutia, R., Kelts, K., Veit, H.,
Appleby, P. G., and Geyh, M.: Moisture changes and fluctuations of the Westerlies
in Mediterranean Central Chile during the last 2000 years: The Laguna Aculeo record (33∘50′ S), Quatern. Int., 87, 3–18, 2002.
Jenny, B., Wilhelm, D., and Valero-Garcés, B. L.: The Southern Westerlies
in Central Chile: Holocene precipitation estimates based on a water balance
model for Laguna Aculeo (33∘50′ S), Clim. Dynam., 20, 269–280,
https://doi.org/10.1007/s00382-002-0267-3, 2003.
Kaiser, J., Schefuß, E., Lamy, F., Mohtadi, M., and Hebbeln, D.: Glacial
to Holocene changes in sea surface temperature and coastal vegetation in
north central Chile: high versus low latitude forcing, Quat. Sci. Rev., 27,
2064–2075, 2008.
Koutavas, A. and Joanides, S.: El Niño–Southern Oscillation extrema in
the Holocene and Last Glacial Maximum, Paleoceanography, 27, PA4208,
https://doi.org/10.1029/2012PA002378, 2012.
Koutavas, A. and Lynch-Stieglitz, J.: Variability of the marine ITCZ over
the Eastern Pacific during the past 30 000 years. Regional Perspective and
Global Context, in: The Hadley Circulation, Chapter 12, Advances in Global Change Research book series (Aglo, Volume 21), edited by: Diaz, H. F. and Bradley, R. S., Kluwer Academic Publishers, Dordrecht, the Netherlands, 347–369, 2004.
Koutavas, A., de Menocal, P. B., Olive, G. C., and Lynch-Stieglitz, J.:
Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed
by individual foraminifera in eastern tropical Pacific sediments, Geology, 34, 993–996, https://doi.org/10.1130/G22810A.1, 2006.
Lamy F., Hebbeln, D., and Wefer, G.: High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28 000 Years Based on
Terrigenous Sediment Parameters, Quat. Res., 51, 83–93, 1999.
Lamy F., Hebbeln, D., RÖhl, U., and Wefer, G: Holocene rainfall
variability in southern Chile: a marine record of latitudinal shifts of the
Southern Westerlies, Earth Planet Sc. Lett., 185, 369–382, 2001.
Lamy, F., Kilian, R., Arz, H. W., Francois J.-P., Kaiser, J., Prange, M., and
Steinke, T.: Holocene changes in the position and intensity of the southern
westerly wind belt, Nat. Geosci., 3, 695–699, 2010.
Little, S. H., Vance, D., Walker-Brown, C., and Landing, W. M.: The oceanic
mass balance of copper and zinc isotopes, investigated by analysis of their
inputs, and outputs to ferromanganese oxide sediments, Geochim. Cosmochim.
Ac., 125, 673–693, https://doi.org/10.1016/j.gca.2013.07.046, 2014.
Maldonado, A. and Rozas, E.: Clima y Paleoambientes durante el Cuaternario
Tardío en la Región de Atacama, in: Libro Rojo de la Flora Nativa y
de los Sitios Prioritarios para su Conservación: Región de Atacama, edited by: Squeo, F. A., Arancio, G., and Gutiérrez, J. R., Ediciones Universidad de La Serena, La Serena, Chile, 293–304, 2008.
Maldonado, A. and Villagrán, C.,: Paleoenvironmental changes in the
semiarid coast of Chile (∼32∘ S) during the last 6200 cal
years inferred from a swamp-forest pollen record, Quat. Res., 58, 130–138,
2002.
Maldonado, A. and Villagrán, C.: Climate variability over the last 9900 cal yr BP from a swamp forest pollen record along the semiarid coast of
Chile, Quat. Res., 66, 246–258, https://doi.org/10.1016/j.yqres.2006.04.003, 2006.
Mazzullo, J. M. and Graham, A. G. (Eds.): Handbook for Shipboard Sedimentologists, ODP Tech. Note, 8, 67, 1988.
McCaffrey, R. and Thompson, J. A.: Record of the accumulation of sediment and trace metals in the Connecticut salt marsh, Adv. Geophys., 22, 165–236, 1980.
McManus, J., Berelson, W. M., Severmann, S., Poulson, R. L., Hammond, D. E.,
Klinkhammer, G. P., and Holm, C.: Molybdenum and uranium geochemistry in
continental margin sediments: Paleoproxy potential, Geochim. Cosmochim. Ac.,
70, 4643–4662, 2006.
Melo, T., Silva, N., Muñoz, P., Díaz-Naveas, J., Sellanes, J., Bravo, A., Lamilla, J., Sepúlveda, J., Vögler, R., Guerrero, Y., Bustamante, C., Alarcón, M. A., Queirolo, D.,
Hurtado, F., Gaete, E., Rojas, P., Montenegro, I., Escobar, R., and Zamora, V.: Caracterización del fondo marino entre la III y X Regiones, Informe Final Proyecto FIP Nº2005-61, Estud. Doc. Nº 22/2007, 287 pp., available at: http://www.subpesca.cl/fipa/613/articles-89123_informe_final.pdf (last access: 5 November 2020), 2007.
Merino-Campos, V., De Pol-Holz, R. Southon, J., Latorre, C., and Collado-Fabbri,
S.: Marine radiocarbon reservoir age along the Chilean continental margin,
Radiocarbon, 81, 1–16, https://doi.org/10.1017/RDC.2018.81, 2018.
Mollier-Vogel, E., Martinez, P., Blanz, T., Robinson, R., Desprat, S.,
Etourneau, J., Charlier, K., and Schneider, R. R.: Mid-Holocene deepening of the
Southeast Pacific oxycline, Global Planet. Change, 172, 365–373, 2019.
Montecinos, A. and Aceituno, P.: Seasonality of the ENSO-Related Rainfall
Variability in Central Chile and Associated Circulation Anomalies, J.
Climate, 16, 281–296, 2003.
Montecinos, S., Gutiérrez, J. R., López-Cortés, F., and
López, D.: Climatic characteristics of the semi-arid Coquimbo Region in
Chile, J. Arid Environ., 126, 7–11, https://doi.org/10.1016/j.jaridenv.2015.09.018,
2016.
Moraga-Opazo, J., Valle-Levinson, A., Ramos, M., and Pizarro-Koch, M.:
Upwelling-Triggered near-geostrophic recirculation in an equatorward facing
embayment, Cont. Shelf Res., 31, 1991–1999, 2011.
Morford, J. and Emerson, S.: The geochemistry of redox sensitive trace
metals in sediments, Geochim. Cosmochim. Ac., 63, 1735–1750, 1999.
Morford, J. L., Martin, W. R., Francois, R., and Carney, C. M.: A model for uranium, rhenium and molybdenum diagenesis in marine sediments based on results from coastal locations, Geochim. Cosmochim. Ac., 73, 2938–2960, 2009.
Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid
determination of biogenic opal in pelagic marine sediments, Deep-Sea Res.
Pt. I, 36, 1415–1426, https://doi.org/10.1016/0198-0149(89)90092-7, 1989.
Muñoz, P.: Homepage, National Hydrographic and Oceanographic Data Center of Chile – CENDHOC, available at: http://www.shoa.cl/n_cendhoc/, last access: 5 November 2020.
Muñoz, P., Dezileau, L., Lange, C., Cárdenas, L., Sellanes, J.,
Salamanca, M., and Maldonado A.: Evaluation of sediment trace metal records as
paleoproductivity and paleoxygenation proxies in the upwelling center off
Concepción, Chile (36∘ S), Prog. Oceanogr., 92–95, 66–80, https://doi.org/10.1016/j.pocean.2011.07.010, 2012.
Nameroff, T., Balistrieri, L., and Murray, W.: Suboxic trace metals
geochemistry in the eastern tropical North Pacific, Geochim Cosmochim Ac.,
66, 1139–1158, 2002.
Niemeyer, H. F.: Hoyas Hidrográficas de Chile, Cuarta Región, Centro de Información de Recursos Hídricos, Dirección General de Aguas, available at: https://snia.mop.gob.cl/sad/CUH2886v4.pdf (last access: 5 November 2020), 4, 258–297, 2018.
Ohnemus, D. C. and Lam, P. J.: Cycling of lithogenic marine particles in the
US GEOTRACES North Atlantic transect, Deep-Sea Research Part II: Topical Studies in Oceanography, 116, 283–302, https://doi.org/10.1016/j.dsr2.2014.11.019, 2015.
Ortega, C., Vargas, G., Rutllant, J. A., Jackson, D., and Méndez, C.:
Major hydrological regime change along the semiarid western coast of South
America during the early Holocene, Quat. Res., 78, 513–527, 2012.
Ortega, C., Vargas, G., Rojas, M., Rutllant, J. A., Muñoz, P., Lange,
C. B., Pantoja, S., Dezileau, L., and Ortlieb, L.: Extreme ENSO-driven
torrential rainfalls at the southern edge of the Atacama Desert during the
late Holocene and their projection into the 21th century, Global Planet. Change, 175, 226–237, https://doi.org/10.1016/j.gloplacha.2019.02.011, 2019.
Paytan, A.: Ocean paleoproductivity, Encyclopedia of Paleoclimatology and
Ancient Environments, in: Encyclopedia of Earth Science Series, edited by: Gornitz, V., Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-1-4020-4411-3_158, 2009.
Peacock, C. L. and Sherman, D. M.: Copper(II) sorption onto goethite, hematite
and lepidocrocite: a surface complexation model based on ab initio molecular
geometries and EXAFS spectroscopy, Geochim. Cosmochim. Ac., 68, 2623–2637,
2004.
Pizarro, O., Hormazabal, S., Gonzalez, A., and Yañez, E.: Variabilidad
del viento, nivel del mar y temperatura en la costa norte de Chile, Invest.
Mar., 22, 85–101, 1994.
Pizarro, O., Shaffer, G., Dewitte, B., and Ramos, M.: Dynamics of seasonal
and interannual variability of the Peru-Chile Undercurrent, Geophys. Res.
Lett., 29, 28–31, https://doi.org/10.1029/2002GL014790, 2002.
Pizarro-Koch, M., Pizarro, O., Dewitte, B., Montes, I., Ramos, M., Paulmier,
A., and Garçon, V.: Seasonal variability of the southern tip of the
Oxygen Minimum Zone in the eastern South Pacific (30∘–38∘ S): A modeling study, J. Geophys. Res.-Oceans, 124, 8574–8604, https://doi.org/10.1029/2019JC015201, 2019.
Quintana, J. M. and Aceituno, P.: Changes in the rainfall regime along the
extratropical west coast of South America (Chile): 30–43∘ S,
Atmosfera, 25, 1–22, 2012.
Rahn, D. A. and Garreaud, R. A.: A synoptic climatology of the near-surface
wind along the west coast of South America, Int. J. Climatol., 34, 780–792, https://doi.org/10.1002/joc.3724, 2013.
Ramos, M., Pizarro, O., Bravo, L., and Dewitte, B.: Seasonal variability of
the permanent thermocline off northern Chile, Geophys. Res. Lett., 33,
L09608, https://doi.org/10.1029/2006GL025882, 2006.
Ramos, M., Dewitte, B., Pizarro, O., and Garric, G.: Vertical propagation of
extratropical Rossby waves during the 1997–1998 El Niño off the west
coast of South America in a medium-resolution OGCM simulation, J. Geophys.
Res., 113, C08041, https://doi.org/10.1029/2007JC004681, 2008.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.
J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., and Dullo,
W.-C.: El Niño variability off Peru during the last 20 000 years,
Paleoceanography, 20, PA4003, https://doi.org/10.1029/2004PA001099, 2005
Rutllant, J. and Fuenzalida, H.: Synoptic aspects of the central Chile
Rainfall variability associated with the southern oscillation, Int. J.
Climatol., 11, 63–76, 1991.
Sabatier, P., Dezileau, L., Blanchemanche, P., Siani, G., Condomines, M.,
Bentaleb, I., and Piquès, G.: Holocene variations of radiocarbon
reservoir ages in a mediterranean lagoonal system, Radiocarbon, 52,
91–102, https://doi.org/10.1017/S0033822200045057, 2010.
Sadler, P. M.: The Influence of Hiatuses on Sediment Accumulation Rates,
GeoResearch Forum, 5, 15–40, 1999.
Saito, C., Noriki, S., and Tsunogai, S.: Particulate flux of Ai, a component
of land origin, in the western North Pacific, Deep-Sea Res., 39, 1315–1327,
1992.
Salvatteci, R., Gutiérrez, D., Sifedine, A., Ortlieb, L., Druffel, E.,
Boussafir, M., and Schneider, R.: Centennial to millennial-scale changes in
oxygenation and productivity in the Eastern Tropical South Pacific during
the last 25 000 years, Quat. Sci. Rev., 131, 102–117, 2016.
Salvatteci, R., Schneider, R. R., Blanz, T., and Mollier-Vogel, E.: Deglacial
to Holocene ocean temperatures in the Humboldt Current System as indicated by alkenone paleothermometry, Geophys. Res. Lett., 46, 281–292, https://doi.org/10.1029/2018GL080634, 2019.
Sandweiss, D. H., Maasch, K. A., Andrus, C., Fred, T., Reitz, E. J., Richardson III, J. B., Riedinger-Whitmore, M., and Rollins, H. B.: Mid-Holocene climate
and culture change in coastal Peru, Chapter 2, in: Climate Change and
Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions, edited by: Anderson, D. G., Maasch, K. A., and Sandweiss, D. H., Elsevier Academic Press, Burlington, MA, USA, https://doi.org/10.1016/B978-012088390-5.50007-8, 25–50, 2007.
Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann, K.: Early diagenesis of redox-sensitive trace metals in the Peru upwelling area – response to ENSO-related oxygen fluctuations in the water column,
Geochim. Cosmochim. Ac., 75, 7257–7276, 2011.
Schrader, H. J. and Gersonde, R.: Diatoms and silicoflagellates, Utrecht
Micropaleontol. Bull., 17, 129–176, 1978.
Sellanes, J., Quiroga, E., Neira, C., and Gutiérrez, D.: Changes of
macrobenthos composition under different ENSO cycle conditions on the
continental shelf off central Chile, Cont. Shelf. Res., 27, 1002–1016,
2007.
Shaffer, G., Pizarro, O. Djurfeldt, L., Salinas, S., and Rutllant, J.:
Circulation and low-frequency variability near the Chilean coast: Remotely
forced fluctuations during the 1991–92 El Niño, J. Phys. Oceanogr.,
27, 217–235, 1997.
Shaffer, G., Hormazabal, S., Pizarro, O., and Salinas, S.: Seasonal and
interannual variability of currents and temperature over the slope of
central Chile, J. Geophys. Res., 104, 29951–29961, 1999.
Siebert, C., Nägler, T. F., von Blackenburg, F., and Kramers, J. D.:
Molybdenum isotope records as a potential new proxy for paleoceanography, Earth Planet. Sc. Lett., 6643, 1–13, 2003.
Sigman, D. M., Karsh, K. L., and Casciotti, K. L.: Ocean process tracers:
nitrogen isotopes in the ocean, Encyclopedia of ocean science, 2nd edn.,
Elsevier, Amsterdam, 2009.
Sundby, B., Martinez, P., and Gobeil, C.: Comparative geochemistry of
cadmium, rhenium, uranium, and molybdenum in continental margin sediments,
Geochim. Cosmochim. Ac., 68, 2485–2493, 2004.
Sweeney, R. E. and Kaplan I. R.: Natural abundances of 15N as a source
indicator of nearshore marine sedimentary and dissolved nitrogen, Mar.
Chem., 9, 81–94, 1980.
Torres, M. E., Brumsack, H. J., Bohrman, G., and Emeis, K. C.: Barite front
in continental margin sediments: a new look at barium remobilization in the
zone of sulfate reduction and formation of heavy barites in diagenetic
fronts, Chem. Geol., 127, 125–139, 1996.
Torres, R. and Ampuero, P.: Strong CO2 outgassing from high nutrient low
chlorophyll coastal waters off central Chile (30∘ S): The role of
dissolved iron, Estuar. Coast. Shelf Sci., 83, 126–132, https://doi.org/10.1016/j.ecss.2009.02.030, 2009.
Toth, L. T., Aronson, R. B., Vollmer, S. V., Hobbs, J. W., Urrego, D. H., Cheng, H., Enochs, I. C., Combosch, D. J., van Woesik, R., and Macintyre, J. G.: ENSO Drove 2500-Year Collapse of Eastern Pacific Coral Reefs, Science, 337, 81–84, https://doi.org/10.1126/science.1221168, 2012.
Tribovillard, N., Riboulleau, A., Lyons, T., and Baudin, F.: Enhanced trapping of molybdenumby sulfurized organicmatter ofmarine origin as recorded by various Mesozoic formations, Chem. Geol., 213, 385–401, 2004.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232,
12–32, 2006.
Ulloa, O., Escribano, R., Hormazabal, S., Quiñones, R. A., Gonzalez, R., and Ramos, M.,: Evolution and biological effects of the 1997–98 E1 Niño in the upwelling ecosystem off northern Chile, Geophys. Res. Lett., 28, 1591–1594, 2001.
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. L., and Stewart, F. J.: Microbial oceanography of anoxic oxygen minimum zones, P. Natl. Acad. Sci. USA, 109,
15996–16003, https://doi.org/10.1073/pnas.1205009109, 2012.
Valle-Levinson, A. and Moraga-Opazo, J.: Observations of bipolar residual
circulation in two equatorward-facing semiarid bays, Cont. Shelf Res.,
26, 179–193, https://doi.org/10.1016/j.csr.2005.10.002, 2006.
Valle-Levinson, A., Moraga, J., Olivares, J., and Blanco, J. L.: Tidal and
residual circulation in a semi-arid bay: Coquimbo Bay, Chile, Cont. Shelf.
Res., 20, 2009–2018, 2000.
Van der Weijden, C.: Pitfalls of normalization of marine geochemical data
using a common divisor, Mar. Geol., 184, 167–187, 2002.
Vance, D., Archer, C., Bermin, J., Perkins, J., Statham, P. J., Lohan, M.
C., Ellwood, M. J., and Mills, R. A.: The copper isotope geochemistry of
rivers and the oceans, Earth Planet. Sc. Lett., 274, 204–213, 2008.
Vargas, G., Ortlieb, L., Pichon, J. J., Bertaux, J., and Pujos, M.:
Sedimentary facies and high resolution primary production inferences from
laminated diatomacous sediments off northern Chile (23∘ S), Mar.
Geol., 211, 79–99, https://doi.org/10.1016/j.margeo.2004.05.032, 2004.
Vargas, G., Rutllant, J., and Ortlieb, L.: ENSO tropical–extratropical climate
teleconnections and mechanisms for Holocene debris flows along the hyperarid
coast of western South America (17∘–24∘ S), Earth
Planet. Sc. Lett., 249, 467–483, 2006.
Veit, H.: Southern Westerlies during the Holocene deduced from
geomorphological and pedological studies in the Norte Chico, Northern Chile
(27–33∘ S), Palaeogeogr. Palaeocl., 123,
107–119, 1996.
Vergara, O., Dewitte, B., Montes, I., Garçon, V., Ramos, M., Paulmier, A., and Pizarro, O.: Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model, Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016, 2016.
Xu, G., Liu, J., Pei, S., Kong, X., Hu, G., and Gao, M.: Source
identification of aluminum in surface sediments of the Yellow Sea off the
Shandong Peninsula, Acta Oceanol. Sin., 34, 147–153, https://doi.org/10.1007/s13131-015-0766-9, 2015.
Yang, S. and Oh, J.-H.: Effects of modes of climate variability on wave
power during boreal summer in the western North Pacific, Sci. Rep., 10, 5187, 1–10, https://doi.org/10.1038/s41598-020-62138-0, 2020.
Zheng, Y., Anderson, R. F., van Geen, A., and Fleisheir, M. Q.: Preservation
of non-lithogenic particulate uranium in marine sediments, Geochim.
Cosmochim. Ac., 66, 3085–3092, 2002.
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in...
Altmetrics
Final-revised paper
Preprint