Articles | Volume 17, issue 22
https://doi.org/10.5194/bg-17-5763-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5763-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing past variations in environmental conditions and paleoproductivity over the last ∼ 8000 years off north-central Chile (30° S)
Departamento de Biología Marina, Universidad Católica del
Norte, Larrondo 1281, Coquimbo, Chile
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Lorena Rebolledo
Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
Laurent Dezileau
Normandy University, UNICAEN, UNIROUEN, CNRS, M2C, 14000 Caen,
France
Antonio Maldonado
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Instituto de Investigación Multidisciplinario en Ciencia y
Tecnología, Universidad de La Serena, La Serena, Chile
Christoph Mayr
Institut für Geographie, FAU Erlangen-Nürnberg, 91058
Erlangen, Germany
Department of Earth and Environmental Sciences and GeoBio-Center, LMU Munich, 80333 Munich, Germany
Paola Cárdenas
Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
Carina B. Lange
Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160C, Concepción, Chile
Centro de Investigación Oceanográfica COPAS Sur-Austral,
Universidad de Concepción, Casilla 160C, Concepción, Chile
Katherine Lalangui
Planta de Alimentos Pargua, AquaChile, Puerto Montt, Chile
Gloria Sanchez
Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
Marco Salamanca
Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160C, Concepción, Chile
Karen Araya
Departamento de Biología Marina, Universidad Católica del
Norte, Larrondo 1281, Coquimbo, Chile
Laboratoire Géosciences Montpellier (GM), Université de
Montpellier, 34095 Montpellier CEDEX 05, France
Ignacio Jara
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Gabriel Easton
Departamento de Geología, Universidad de Chile, Santiago, Chile
Marcel Ramos
Departamento de Biología Marina, Universidad Católica del
Norte, Larrondo 1281, Coquimbo, Chile
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Coquimbo, Chile
Related authors
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Ignacio A. Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodriguez, Nicolás Lampe, and Antonio Maldonado
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-97, https://doi.org/10.5194/cp-2023-97, 2024
Manuscript not accepted for further review
Short summary
Short summary
We conducted a regional model experiment that simulates a century of December-January-February (DJF) precipitation change in the South American Altiplano. Despite that we forced our modelling runs with conditions that produced humid DJF seasons today, our simulations show continuous reductions in precipitation over the Altiplano, suggesting that the climate drivers of modern-time humid seasons might not be the same that caused the extended humid periods observed in Holocene records.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Lilian Reiss, Christian Stüwe, Thomas Einwögerer, Marc Händel, Andreas Maier, Stefan Meng, Kerstin Pasda, Ulrich Simon, Bernd Zolitschka, and Christoph Mayr
E&G Quaternary Sci. J., 71, 23–43, https://doi.org/10.5194/egqsj-71-23-2022, https://doi.org/10.5194/egqsj-71-23-2022, 2022
Short summary
Short summary
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for their reliability and consistency at the Palaeolithic site Kammern-Grubgraben (Lower Austria). While carbonate and organic carbon contents are interpreted in terms of palaeoclimate variability, pedogenic carbonates turned out to be of Holocene age. As a consequence, the proxy data assessed here are differentially suitable for environmental reconstructions.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021, https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Kerstin Pasda, Matthias López Correa, Philipp Stojakowits, Bernhard Häck, Jérôme Prieto, Najat al-Fudhaili, and Christoph Mayr
E&G Quaternary Sci. J., 69, 187–200, https://doi.org/10.5194/egqsj-69-187-2020, https://doi.org/10.5194/egqsj-69-187-2020, 2020
Short summary
Short summary
The radiocarbon dating of Late Iron Age origin and anthropogenic traces such as cut marks on bones of a male elk skeleton found by a local resident in a pit cave prove an archaeological origin. So far known archaeological settlements are several tens of kilometres apart from the finds. The location and the dating are unique in that they are the first evidence of elk hunting during the Late Iron Age in the Bavarian Alps.
Cited articles
Abrantes, F.: Diatom assemblages as upwelling indicators in surface
sediments off Portugal, Mar. Geol., 85, 15–39,
https://doi.org/10.1016/0025-3227(88)90082-5, 1988.
Algeo, T. J. and Tribovillard, N.: Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation, Chem. Geol., 268, 211–225, 2009.
Ancapichún, S. and Garcés-Vargas, J.: Variability of the Southeast
Pacific Subtropical Anticyclone and its impact on sea surface temperature
off north-central Chile Variabilidad del Anticiclón Subtropical del
Pacífico Sudeste y su impacto sobre la temperatura superficial del mar frente a la costa centro-norte de Chile, Cienc. Mar., 41, 1–20, https://doi.org/10.7773/cm.v41i1.2338, 2015.
Appleby, P. G. and Oldfield, F.: The calculation of lead-210 dates assuming
a constant rate of supply of unsupported 210Pb to the sediment, Catena,
5, 1–8, https://doi.org/10.1016/S0341-8162(78)80002-2, 1978.
Bevington, P. and Robinson, K. (Eds.): Error analysis, in: Data Reduction
and Error Analysis for the Physical Sciences, WCB/McGraw-Hill, USA, 38–52,
1992.
Blaauw, M. and Christen, J.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
Blanco, J. L., Carr, M.-E., Thomas, A. C. and Strub, T.: Hydrographic
conditions off northern Chile during the 1996–1998 La Niña and El
Niño events, J. Geophys. Res., 107, 3017, https://doi.org/10.1029/2001JC001002,
2002.
Blott, S. J. and Pye, K.: Gradistat: A Grain Size Distribution and
Statistics Package for the Analysis of Unconsolidated Sediments, Earth Surf.
Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Böning, P., Brumsack, H.-J., Schnetger, B., and Grunwald, M.: Trace
element signatures of Chilean upwelling sediments at 36∘ S, Mar. Geol., 259, 112–121, 2009.
Böning, P., Shaw, T., Pahnke, K., and Brumsack, H.-J.: Nickel as indicator of
fresh organic matter in upwelling sediments, Geochim. Cosmochim. Ac., 162,
99–108, 2015.
Braconnot, P., Luan, Y., Brewer, S., and Zheng, W.: Impact of Earth's orbit
and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO
characteristics, Clim. Dyn., 38, 1081–1092, https://doi.org/10.1007/s00382-011-1029-x,
2012.
Calvert, S. E. and Pedersen, T. F.: Chapter Fourteen Elemental Proxies for
Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments:
Interpretation and Application, Dev. Mar. Geol., 1, 567–644,
https://doi.org/10.1016/S1572-5480(07)01019-6, 2007.
Cardich, J., Sifeddine, A., Salvatteci, R., Romero, D., Briceño-Zuluaga,
F., Graco, M., Anculle, T., Almeida, C., and Gutiérrez, D.: Multidecadal
Changes in Marine Subsurface Oxygenation Off Central Peru During the Last
ca. 170 Years, Front. Mar. Sci., 6, 1–16, https://doi.org/10.3389/fmars.2019.00270, 2019.
Carré, M., Azzoug, M., Bentaleb, I., Chase, B. M., Fontugne, M., Jackson, D., Ledru, M.-P., Maldonado, A., Sachs, J., Schauer, A.: Mid-Holocene mean climate in the south eastern Pacific and its influence on South America, Quat. Int., 253, 55–66, 2012.
Carré, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P.,
Falcón, R. A., Julien, M., and Lavallée, D.: Holocene history of ENSO
variance and asymmetry in the eastern tropical Pacific, Science, 345, 1045–1048, https://doi.org/10.1126/science.1255768, 2014.
Carré, M., Jackson, D., Maldonado, A., Chase, B. M., and Sachs, J. P.:
Variability of 14C reservoir age and air–sea flux of CO2 in the Peru–Chile
upwelling region during the past 12 000 years, Quat. Res., 85, 87–93, 2016.
Chaillou, G., Anschutz, P., Lavaux, G., Schäfer, J., and Blanc, G.: The
distribution of Mo, U, and Cd in relation to major redox species in muddy
sediments of the Bay of Biscay, Mar. Chem., 80, 41–59, https://doi.org/10.1016/S0304-4203(02)00097-X, 2002.
Daneri, G., Dellarossa, V., Quiñones, R., Jacob, B., Montero, P., and
Ulloa, O.: Primary production and community respiration in the Humboldt
Current System off Chile and associated oceanic areas, Mar. Ecol. Prog.
Ser., 197, 41–49, https://doi.org/10.3354/meps197041, 2000.
De Pol-Holz, R., Ulloa, O., Dezileau, L., Kiser, J., Lamy, F., and Hebbeln, D.:
Melting of the Patagonian Ice Sheet and deglacial perturbations of the
nitrogen cycle in the eastern South Pacific, Geophys. Res. Lett., 33,
L04704, https://doi.org/10.1029/2005GL024477, 2006.
De Pol-Holz, R., Ulloa, O., Lamy, F., Dezileau, L., Sabatier, P., and
Hebbeln, D.: Late Quaternary variability of sedimentary nitrogen isotopes in
the eastern South Pacific Ocean, Paleoceanography, 22, PA2207, https://doi.org/10.1029/2006PA001308, 2007.
De Pol-Holz, R., Robinson, R. S., Hebbeln, D., Sigman, D. M., and Ulloa, O.:
Controls on sedimentary nitrogen isotopes along the Chile margin, Deep-Sea
Res. Pt. II, 56, 1042–1054,
https://doi.org/10.1016/j.dsr2.2008.09.014, 2009.
Dezileau, L., Ulloa, O., Hebbeln, D., Lamy, F., Reyss, J. L., and Fontugne,
M.: Iron control of past productivity in the coastal upwelling system off
the Atacama Desert, Chile, Paleoceanography, 19, PA3012,
https://doi.org/10.1029/2004PA001006, 2004.
Díaz-Ochoa, J. A., Pantoja, S., De Lange, G. J., Lange, C. B., Sánchez, G. E., Acuña, V. R., Muñoz, P., and Vargas, G.: Oxygenation variability in Mejillones Bay, off northern Chile, during the last two centuries, Biogeosciences, 8, 137–146, https://doi.org/10.5194/bg-8-137-2011, 2011.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A
geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181,
1992.
Escribano, R., Daneri, G., Farías, L., Gallardo, V. A., González,
H. E., Gutiérrez, D., Lange, C. B., Morales, C. E., Pizarro, O., Ulloa,
O., and Braun, M.: Biological and chemical consequences of the 1997–1998 El
Niño in the Chilean coastal upwelling system: A synthesis, Deep-Sea Res.
Pt. II, 51, 2389–2411, https://doi.org/10.1016/j.dsr2.2004.08.011, 2004.
Espinoza-Morriberón, D., Echevin, V., Colas, F., Tam, J., Gutierrez, D.,
Graco, M., Ledesma, J., and Quispe-Ccalluari, C.: Oxygen variability during
ENSO in the Tropical South Eastern Pacific, Front. Mar. Sci., 5, 1–20,
https://doi.org/10.3389/fmars.2018.00526, 2019.
Faegri, K. and Iversen, J.: Textbook of pollen analysis, IV, The Blackburn
Press, New Jersey, 328 pp., 1989.
Figueroa, D. and Moffat, D.: On the influence of topography in the induction
of coastal upwelling along the Chilean coast, Geophys. Res. Lett., 27,
3905–3908, 2000.
Flynn, W. W.: The determination of low levels of polonium-210 in
environmental materials, Anal. Chim. Acta, 43, 221–227, 1968.
Frenger, I., Bianchi, D., Sührenberg, C., Oschlies, A., Dunne, J.,
Deutsch, C., Galbralth, E., and Schütte, F.: Biogeochemical role of
subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms,
and microbial stewpots?, Global Biogeochem. Cy., 32, 226–249,
https://doi.org/10.1002/2017GB005743, 2018.
Gallardo, M. A., González, A., Ramos, M., Mujica, A., Muñoz, P.,
Sellanes, J., and Yannicelli, B.: Reproductive patterns in demersal
crustaceans from the upper boundary of the OMZ off north-central Chile,
Cont. Shelf. Res., 141, 26–37, 2017.
Ganeshram, R. S., Pedersen, T. F., Calvert, S. G., McNeill, G., and Fontugne,
M.: Glacial-interglacial variability in denitrification in the world's
oceans: Causes and consequences, Paleoceanography, 15, 361–376, 2000.
Garreaud, R., Barichivich, J., Christie, D., and Maldonado, A.: Interanual
variability of the coastal fog at Fray Jorge relict forest in semiarid
Chile, J. Geophys. Res., 113, G04011, https://doi.org/10.1029/2008JG000709, 2008.
Garreaud, R., Vuille, M., Compagnuccic, R., and Marengo, J.: Present-day
South American climate, Palaeogeogr. Palaeocl., 281, 180–195,
https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza,
S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in
Atlantic surface sediments (36∘ N–49∘ S): Imprint of
terrigenous input and continental weathering, Geochem. Geophy.
Geosy., 13, 1–23, https://doi.org/10.1029/2011GC003785, 2012.
Grimm, E.: CONISS: a fortran 77 program for stratigraphically constrained
cluster analysis by the method of incremental sum of squares, Comput.
Geosci., 13–35, 1987.
Gutiérrez, D., Sifeddine, A., Reyss, J. L., Vargas, G., Velazco, F., Salvatteci, R., Ferreira, V., Ortlieb, L., Field, D., Baumgartner, T., Boussafir, M., Boucher, H., Valdés, J., Marinovic, L., Soler, P., and Tapia, P.: Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystem during the last two centuries, Adv. Geosci., 6, 119–125, https://doi.org/10.5194/adgeo-6-119-2006, 2006.
Gutiérrez, D., Enríquez, E., Purca, S., Quipuzcoa, L., Marquina,
R., Flores, G., and Graco, M.: Oxygenation episodes on the continental shelf
of central Peru: Remote forcing and benthic ecosystem response, Prog.
Oceanogr., 79, 177–189, 2008.
Gutiérrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chávez, F. P., Velazco, F., Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdés, J., Reyss, J.-L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., García, M., and Baumgartner, T.: Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age, Biogeosciences, 6, 835–848, https://doi.org/10.5194/bg-6-835-2009, 2009.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, In: Methods of
Seawater Analysis, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M.,
Wiley-VCH Verlag GmbH, Weinheim, Germany, 159–228, 1999.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl, U.:
Southward Migration of the Intertropical Convergence Zone through the
Holocene, Science, 293, 1304–1307, 2001.
Hebbeln, D., Marchant, M., Freudenthal, T., and Wefer, G.: Surface
distribution along the Chilean continental slope related to upwelling and
productivity, Mar. Geol., 164, 119–137, 2000.
Hebbeln, D., Marchant, M., and Wefer, G.: Paleoproductivity in the southern
Peru–Chile Current through the last 33 000 yr, Mar. Geol.,
186, 487–504, https://doi.org/10.1016/S0025-3227(02)00331-6, 2002.
Helly, J. and Levin, L.: Global distribution of naturally occurring marine
hypoxia on continental margin, Deep-Sea Res. Pt. I, 51, 1159–1168, 2004.
Heusser, C. J. and Moar, N. T.: Pollen and spores of chile: Modern types of
the pteridophyta, gymnospermae, and angiospermae, New Zeal. J. Bot., 11,
389–391, https://doi.org/10.1080/0028825X.1973.10430287, 1973.
Huerta-Diaz, M. A. and Morse, J. W.: Pyritization of trace metals in anoxic marine sediments, Geochim. Cosmochim. Acta, 56, 2681–2702, https://doi.org/10.1016/0016-7037(92)90353-K, 1992.
Jenny, B., Valero-Garcés, B. L., Urrutia, R., Kelts, K., Veit, H.,
Appleby, P. G., and Geyh, M.: Moisture changes and fluctuations of the Westerlies
in Mediterranean Central Chile during the last 2000 years: The Laguna Aculeo record (33∘50′ S), Quatern. Int., 87, 3–18, 2002.
Jenny, B., Wilhelm, D., and Valero-Garcés, B. L.: The Southern Westerlies
in Central Chile: Holocene precipitation estimates based on a water balance
model for Laguna Aculeo (33∘50′ S), Clim. Dynam., 20, 269–280,
https://doi.org/10.1007/s00382-002-0267-3, 2003.
Kaiser, J., Schefuß, E., Lamy, F., Mohtadi, M., and Hebbeln, D.: Glacial
to Holocene changes in sea surface temperature and coastal vegetation in
north central Chile: high versus low latitude forcing, Quat. Sci. Rev., 27,
2064–2075, 2008.
Koutavas, A. and Joanides, S.: El Niño–Southern Oscillation extrema in
the Holocene and Last Glacial Maximum, Paleoceanography, 27, PA4208,
https://doi.org/10.1029/2012PA002378, 2012.
Koutavas, A. and Lynch-Stieglitz, J.: Variability of the marine ITCZ over
the Eastern Pacific during the past 30 000 years. Regional Perspective and
Global Context, in: The Hadley Circulation, Chapter 12, Advances in Global Change Research book series (Aglo, Volume 21), edited by: Diaz, H. F. and Bradley, R. S., Kluwer Academic Publishers, Dordrecht, the Netherlands, 347–369, 2004.
Koutavas, A., de Menocal, P. B., Olive, G. C., and Lynch-Stieglitz, J.:
Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed
by individual foraminifera in eastern tropical Pacific sediments, Geology, 34, 993–996, https://doi.org/10.1130/G22810A.1, 2006.
Lamy F., Hebbeln, D., and Wefer, G.: High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28 000 Years Based on
Terrigenous Sediment Parameters, Quat. Res., 51, 83–93, 1999.
Lamy F., Hebbeln, D., RÖhl, U., and Wefer, G: Holocene rainfall
variability in southern Chile: a marine record of latitudinal shifts of the
Southern Westerlies, Earth Planet Sc. Lett., 185, 369–382, 2001.
Lamy, F., Kilian, R., Arz, H. W., Francois J.-P., Kaiser, J., Prange, M., and
Steinke, T.: Holocene changes in the position and intensity of the southern
westerly wind belt, Nat. Geosci., 3, 695–699, 2010.
Little, S. H., Vance, D., Walker-Brown, C., and Landing, W. M.: The oceanic
mass balance of copper and zinc isotopes, investigated by analysis of their
inputs, and outputs to ferromanganese oxide sediments, Geochim. Cosmochim.
Ac., 125, 673–693, https://doi.org/10.1016/j.gca.2013.07.046, 2014.
Maldonado, A. and Rozas, E.: Clima y Paleoambientes durante el Cuaternario
Tardío en la Región de Atacama, in: Libro Rojo de la Flora Nativa y
de los Sitios Prioritarios para su Conservación: Región de Atacama, edited by: Squeo, F. A., Arancio, G., and Gutiérrez, J. R., Ediciones Universidad de La Serena, La Serena, Chile, 293–304, 2008.
Maldonado, A. and Villagrán, C.,: Paleoenvironmental changes in the
semiarid coast of Chile (∼32∘ S) during the last 6200 cal
years inferred from a swamp-forest pollen record, Quat. Res., 58, 130–138,
2002.
Maldonado, A. and Villagrán, C.: Climate variability over the last 9900 cal yr BP from a swamp forest pollen record along the semiarid coast of
Chile, Quat. Res., 66, 246–258, https://doi.org/10.1016/j.yqres.2006.04.003, 2006.
Mazzullo, J. M. and Graham, A. G. (Eds.): Handbook for Shipboard Sedimentologists, ODP Tech. Note, 8, 67, 1988.
McCaffrey, R. and Thompson, J. A.: Record of the accumulation of sediment and trace metals in the Connecticut salt marsh, Adv. Geophys., 22, 165–236, 1980.
McManus, J., Berelson, W. M., Severmann, S., Poulson, R. L., Hammond, D. E.,
Klinkhammer, G. P., and Holm, C.: Molybdenum and uranium geochemistry in
continental margin sediments: Paleoproxy potential, Geochim. Cosmochim. Ac.,
70, 4643–4662, 2006.
Melo, T., Silva, N., Muñoz, P., Díaz-Naveas, J., Sellanes, J., Bravo, A., Lamilla, J., Sepúlveda, J., Vögler, R., Guerrero, Y., Bustamante, C., Alarcón, M. A., Queirolo, D.,
Hurtado, F., Gaete, E., Rojas, P., Montenegro, I., Escobar, R., and Zamora, V.: Caracterización del fondo marino entre la III y X Regiones, Informe Final Proyecto FIP Nº2005-61, Estud. Doc. Nº 22/2007, 287 pp., available at: http://www.subpesca.cl/fipa/613/articles-89123_informe_final.pdf (last access: 5 November 2020), 2007.
Merino-Campos, V., De Pol-Holz, R. Southon, J., Latorre, C., and Collado-Fabbri,
S.: Marine radiocarbon reservoir age along the Chilean continental margin,
Radiocarbon, 81, 1–16, https://doi.org/10.1017/RDC.2018.81, 2018.
Mollier-Vogel, E., Martinez, P., Blanz, T., Robinson, R., Desprat, S.,
Etourneau, J., Charlier, K., and Schneider, R. R.: Mid-Holocene deepening of the
Southeast Pacific oxycline, Global Planet. Change, 172, 365–373, 2019.
Montecinos, A. and Aceituno, P.: Seasonality of the ENSO-Related Rainfall
Variability in Central Chile and Associated Circulation Anomalies, J.
Climate, 16, 281–296, 2003.
Montecinos, S., Gutiérrez, J. R., López-Cortés, F., and
López, D.: Climatic characteristics of the semi-arid Coquimbo Region in
Chile, J. Arid Environ., 126, 7–11, https://doi.org/10.1016/j.jaridenv.2015.09.018,
2016.
Moraga-Opazo, J., Valle-Levinson, A., Ramos, M., and Pizarro-Koch, M.:
Upwelling-Triggered near-geostrophic recirculation in an equatorward facing
embayment, Cont. Shelf Res., 31, 1991–1999, 2011.
Morford, J. and Emerson, S.: The geochemistry of redox sensitive trace
metals in sediments, Geochim. Cosmochim. Ac., 63, 1735–1750, 1999.
Morford, J. L., Martin, W. R., Francois, R., and Carney, C. M.: A model for uranium, rhenium and molybdenum diagenesis in marine sediments based on results from coastal locations, Geochim. Cosmochim. Ac., 73, 2938–2960, 2009.
Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid
determination of biogenic opal in pelagic marine sediments, Deep-Sea Res.
Pt. I, 36, 1415–1426, https://doi.org/10.1016/0198-0149(89)90092-7, 1989.
Muñoz, P.: Homepage, National Hydrographic and Oceanographic Data Center of Chile – CENDHOC, available at: http://www.shoa.cl/n_cendhoc/, last access: 5 November 2020.
Muñoz, P., Dezileau, L., Lange, C., Cárdenas, L., Sellanes, J.,
Salamanca, M., and Maldonado A.: Evaluation of sediment trace metal records as
paleoproductivity and paleoxygenation proxies in the upwelling center off
Concepción, Chile (36∘ S), Prog. Oceanogr., 92–95, 66–80, https://doi.org/10.1016/j.pocean.2011.07.010, 2012.
Nameroff, T., Balistrieri, L., and Murray, W.: Suboxic trace metals
geochemistry in the eastern tropical North Pacific, Geochim Cosmochim Ac.,
66, 1139–1158, 2002.
Niemeyer, H. F.: Hoyas Hidrográficas de Chile, Cuarta Región, Centro de Información de Recursos Hídricos, Dirección General de Aguas, available at: https://snia.mop.gob.cl/sad/CUH2886v4.pdf (last access: 5 November 2020), 4, 258–297, 2018.
Ohnemus, D. C. and Lam, P. J.: Cycling of lithogenic marine particles in the
US GEOTRACES North Atlantic transect, Deep-Sea Research Part II: Topical Studies in Oceanography, 116, 283–302, https://doi.org/10.1016/j.dsr2.2014.11.019, 2015.
Ortega, C., Vargas, G., Rutllant, J. A., Jackson, D., and Méndez, C.:
Major hydrological regime change along the semiarid western coast of South
America during the early Holocene, Quat. Res., 78, 513–527, 2012.
Ortega, C., Vargas, G., Rojas, M., Rutllant, J. A., Muñoz, P., Lange,
C. B., Pantoja, S., Dezileau, L., and Ortlieb, L.: Extreme ENSO-driven
torrential rainfalls at the southern edge of the Atacama Desert during the
late Holocene and their projection into the 21th century, Global Planet. Change, 175, 226–237, https://doi.org/10.1016/j.gloplacha.2019.02.011, 2019.
Paytan, A.: Ocean paleoproductivity, Encyclopedia of Paleoclimatology and
Ancient Environments, in: Encyclopedia of Earth Science Series, edited by: Gornitz, V., Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-1-4020-4411-3_158, 2009.
Peacock, C. L. and Sherman, D. M.: Copper(II) sorption onto goethite, hematite
and lepidocrocite: a surface complexation model based on ab initio molecular
geometries and EXAFS spectroscopy, Geochim. Cosmochim. Ac., 68, 2623–2637,
2004.
Pizarro, O., Hormazabal, S., Gonzalez, A., and Yañez, E.: Variabilidad
del viento, nivel del mar y temperatura en la costa norte de Chile, Invest.
Mar., 22, 85–101, 1994.
Pizarro, O., Shaffer, G., Dewitte, B., and Ramos, M.: Dynamics of seasonal
and interannual variability of the Peru-Chile Undercurrent, Geophys. Res.
Lett., 29, 28–31, https://doi.org/10.1029/2002GL014790, 2002.
Pizarro-Koch, M., Pizarro, O., Dewitte, B., Montes, I., Ramos, M., Paulmier,
A., and Garçon, V.: Seasonal variability of the southern tip of the
Oxygen Minimum Zone in the eastern South Pacific (30∘–38∘ S): A modeling study, J. Geophys. Res.-Oceans, 124, 8574–8604, https://doi.org/10.1029/2019JC015201, 2019.
Quintana, J. M. and Aceituno, P.: Changes in the rainfall regime along the
extratropical west coast of South America (Chile): 30–43∘ S,
Atmosfera, 25, 1–22, 2012.
Rahn, D. A. and Garreaud, R. A.: A synoptic climatology of the near-surface
wind along the west coast of South America, Int. J. Climatol., 34, 780–792, https://doi.org/10.1002/joc.3724, 2013.
Ramos, M., Pizarro, O., Bravo, L., and Dewitte, B.: Seasonal variability of
the permanent thermocline off northern Chile, Geophys. Res. Lett., 33,
L09608, https://doi.org/10.1029/2006GL025882, 2006.
Ramos, M., Dewitte, B., Pizarro, O., and Garric, G.: Vertical propagation of
extratropical Rossby waves during the 1997–1998 El Niño off the west
coast of South America in a medium-resolution OGCM simulation, J. Geophys.
Res., 113, C08041, https://doi.org/10.1029/2007JC004681, 2008.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.
J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., and Dullo,
W.-C.: El Niño variability off Peru during the last 20 000 years,
Paleoceanography, 20, PA4003, https://doi.org/10.1029/2004PA001099, 2005
Rutllant, J. and Fuenzalida, H.: Synoptic aspects of the central Chile
Rainfall variability associated with the southern oscillation, Int. J.
Climatol., 11, 63–76, 1991.
Sabatier, P., Dezileau, L., Blanchemanche, P., Siani, G., Condomines, M.,
Bentaleb, I., and Piquès, G.: Holocene variations of radiocarbon
reservoir ages in a mediterranean lagoonal system, Radiocarbon, 52,
91–102, https://doi.org/10.1017/S0033822200045057, 2010.
Sadler, P. M.: The Influence of Hiatuses on Sediment Accumulation Rates,
GeoResearch Forum, 5, 15–40, 1999.
Saito, C., Noriki, S., and Tsunogai, S.: Particulate flux of Ai, a component
of land origin, in the western North Pacific, Deep-Sea Res., 39, 1315–1327,
1992.
Salvatteci, R., Gutiérrez, D., Sifedine, A., Ortlieb, L., Druffel, E.,
Boussafir, M., and Schneider, R.: Centennial to millennial-scale changes in
oxygenation and productivity in the Eastern Tropical South Pacific during
the last 25 000 years, Quat. Sci. Rev., 131, 102–117, 2016.
Salvatteci, R., Schneider, R. R., Blanz, T., and Mollier-Vogel, E.: Deglacial
to Holocene ocean temperatures in the Humboldt Current System as indicated by alkenone paleothermometry, Geophys. Res. Lett., 46, 281–292, https://doi.org/10.1029/2018GL080634, 2019.
Sandweiss, D. H., Maasch, K. A., Andrus, C., Fred, T., Reitz, E. J., Richardson III, J. B., Riedinger-Whitmore, M., and Rollins, H. B.: Mid-Holocene climate
and culture change in coastal Peru, Chapter 2, in: Climate Change and
Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions, edited by: Anderson, D. G., Maasch, K. A., and Sandweiss, D. H., Elsevier Academic Press, Burlington, MA, USA, https://doi.org/10.1016/B978-012088390-5.50007-8, 25–50, 2007.
Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann, K.: Early diagenesis of redox-sensitive trace metals in the Peru upwelling area – response to ENSO-related oxygen fluctuations in the water column,
Geochim. Cosmochim. Ac., 75, 7257–7276, 2011.
Schrader, H. J. and Gersonde, R.: Diatoms and silicoflagellates, Utrecht
Micropaleontol. Bull., 17, 129–176, 1978.
Sellanes, J., Quiroga, E., Neira, C., and Gutiérrez, D.: Changes of
macrobenthos composition under different ENSO cycle conditions on the
continental shelf off central Chile, Cont. Shelf. Res., 27, 1002–1016,
2007.
Shaffer, G., Pizarro, O. Djurfeldt, L., Salinas, S., and Rutllant, J.:
Circulation and low-frequency variability near the Chilean coast: Remotely
forced fluctuations during the 1991–92 El Niño, J. Phys. Oceanogr.,
27, 217–235, 1997.
Shaffer, G., Hormazabal, S., Pizarro, O., and Salinas, S.: Seasonal and
interannual variability of currents and temperature over the slope of
central Chile, J. Geophys. Res., 104, 29951–29961, 1999.
Siebert, C., Nägler, T. F., von Blackenburg, F., and Kramers, J. D.:
Molybdenum isotope records as a potential new proxy for paleoceanography, Earth Planet. Sc. Lett., 6643, 1–13, 2003.
Sigman, D. M., Karsh, K. L., and Casciotti, K. L.: Ocean process tracers:
nitrogen isotopes in the ocean, Encyclopedia of ocean science, 2nd edn.,
Elsevier, Amsterdam, 2009.
Sundby, B., Martinez, P., and Gobeil, C.: Comparative geochemistry of
cadmium, rhenium, uranium, and molybdenum in continental margin sediments,
Geochim. Cosmochim. Ac., 68, 2485–2493, 2004.
Sweeney, R. E. and Kaplan I. R.: Natural abundances of 15N as a source
indicator of nearshore marine sedimentary and dissolved nitrogen, Mar.
Chem., 9, 81–94, 1980.
Torres, M. E., Brumsack, H. J., Bohrman, G., and Emeis, K. C.: Barite front
in continental margin sediments: a new look at barium remobilization in the
zone of sulfate reduction and formation of heavy barites in diagenetic
fronts, Chem. Geol., 127, 125–139, 1996.
Torres, R. and Ampuero, P.: Strong CO2 outgassing from high nutrient low
chlorophyll coastal waters off central Chile (30∘ S): The role of
dissolved iron, Estuar. Coast. Shelf Sci., 83, 126–132, https://doi.org/10.1016/j.ecss.2009.02.030, 2009.
Toth, L. T., Aronson, R. B., Vollmer, S. V., Hobbs, J. W., Urrego, D. H., Cheng, H., Enochs, I. C., Combosch, D. J., van Woesik, R., and Macintyre, J. G.: ENSO Drove 2500-Year Collapse of Eastern Pacific Coral Reefs, Science, 337, 81–84, https://doi.org/10.1126/science.1221168, 2012.
Tribovillard, N., Riboulleau, A., Lyons, T., and Baudin, F.: Enhanced trapping of molybdenumby sulfurized organicmatter ofmarine origin as recorded by various Mesozoic formations, Chem. Geol., 213, 385–401, 2004.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232,
12–32, 2006.
Ulloa, O., Escribano, R., Hormazabal, S., Quiñones, R. A., Gonzalez, R., and Ramos, M.,: Evolution and biological effects of the 1997–98 E1 Niño in the upwelling ecosystem off northern Chile, Geophys. Res. Lett., 28, 1591–1594, 2001.
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. L., and Stewart, F. J.: Microbial oceanography of anoxic oxygen minimum zones, P. Natl. Acad. Sci. USA, 109,
15996–16003, https://doi.org/10.1073/pnas.1205009109, 2012.
Valle-Levinson, A. and Moraga-Opazo, J.: Observations of bipolar residual
circulation in two equatorward-facing semiarid bays, Cont. Shelf Res.,
26, 179–193, https://doi.org/10.1016/j.csr.2005.10.002, 2006.
Valle-Levinson, A., Moraga, J., Olivares, J., and Blanco, J. L.: Tidal and
residual circulation in a semi-arid bay: Coquimbo Bay, Chile, Cont. Shelf.
Res., 20, 2009–2018, 2000.
Van der Weijden, C.: Pitfalls of normalization of marine geochemical data
using a common divisor, Mar. Geol., 184, 167–187, 2002.
Vance, D., Archer, C., Bermin, J., Perkins, J., Statham, P. J., Lohan, M.
C., Ellwood, M. J., and Mills, R. A.: The copper isotope geochemistry of
rivers and the oceans, Earth Planet. Sc. Lett., 274, 204–213, 2008.
Vargas, G., Ortlieb, L., Pichon, J. J., Bertaux, J., and Pujos, M.:
Sedimentary facies and high resolution primary production inferences from
laminated diatomacous sediments off northern Chile (23∘ S), Mar.
Geol., 211, 79–99, https://doi.org/10.1016/j.margeo.2004.05.032, 2004.
Vargas, G., Rutllant, J., and Ortlieb, L.: ENSO tropical–extratropical climate
teleconnections and mechanisms for Holocene debris flows along the hyperarid
coast of western South America (17∘–24∘ S), Earth
Planet. Sc. Lett., 249, 467–483, 2006.
Veit, H.: Southern Westerlies during the Holocene deduced from
geomorphological and pedological studies in the Norte Chico, Northern Chile
(27–33∘ S), Palaeogeogr. Palaeocl., 123,
107–119, 1996.
Vergara, O., Dewitte, B., Montes, I., Garçon, V., Ramos, M., Paulmier, A., and Pizarro, O.: Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model, Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016, 2016.
Xu, G., Liu, J., Pei, S., Kong, X., Hu, G., and Gao, M.: Source
identification of aluminum in surface sediments of the Yellow Sea off the
Shandong Peninsula, Acta Oceanol. Sin., 34, 147–153, https://doi.org/10.1007/s13131-015-0766-9, 2015.
Yang, S. and Oh, J.-H.: Effects of modes of climate variability on wave
power during boreal summer in the western North Pacific, Sci. Rep., 10, 5187, 1–10, https://doi.org/10.1038/s41598-020-62138-0, 2020.
Zheng, Y., Anderson, R. F., van Geen, A., and Fleisheir, M. Q.: Preservation
of non-lithogenic particulate uranium in marine sediments, Geochim.
Cosmochim. Ac., 66, 3085–3092, 2002.
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in...
Altmetrics
Final-revised paper
Preprint