Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-6207-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6207-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonality, drivers, and isotopic composition of soil CO2 fluxes from tropical forests of the Congo Basin
Simon Baumgartner
CORRESPONDING AUTHOR
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Matti Barthel
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Travis William Drake
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Marijn Bauters
Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
Department of Environment, Ghent University, Ghent, Belgium
Isaac Ahanamungu Makelele
Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo
John Kalume Mugula
Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo
Laura Summerauer
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Nora Gallarotti
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Landry Cizungu Ntaboba
Département d'Agronomie, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
Kristof Van Oost
Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Pascal Boeckx
Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
Sebastian Doetterl
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Roland Anton Werner
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Johan Six
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
Related authors
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Antoine de Clippele, Astrid C. H. Jaeger, Simon Baumgartner, Marijn Bauters, Pascal Boeckx, Clement Botefa, Glenn Bush, Jessica Carilli, Travis W. Drake, Christian Ekamba, Gode Lompoko, Nivens Bey Mukwiele, Kristof Van Oost, Roland A. Werner, Joseph Zambo, Johan Six, and Matti Barthel
Biogeosciences, 22, 3011–3027, https://doi.org/10.5194/bg-22-3011-2025, https://doi.org/10.5194/bg-22-3011-2025, 2025
Short summary
Short summary
Tropical forest soils as a large terrestrial source of carbon dioxide (CO2) contribute to the global greenhouse gas budget. Despite this, carbon flux data from forested wetlands are scarce in tropical Africa. The study presents 3 years of semi-continuous measurements of surface CO2 fluxes within the Congo Basin. Although no seasonal patterns were evident, our results show a positive effect of soil temperature and moisture, while a quadratic relationship was observed with the water table.
Johanne Lebrun Thauront, Philippa Ascough, Sebastian Doetterl, Negar Haghipour, Pierre Barré, Christian Walter, and Samuel Abiven
EGUsphere, https://doi.org/10.5194/egusphere-2025-2693, https://doi.org/10.5194/egusphere-2025-2693, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Fire-derived carbon is a form of organic carbon that has a long persistence in soils. However, its persistence at the landscape scale may be underestimated due to lateral and vertical redistribution. We measured fire-derived carbon in soils of a hilly agricultural watershed to identify the result of transport processes on the centennial time-scale. We show that the subsoil stores a large amount of fire-derived carbon and that erosion can redistribute it to localized accumulation zones.
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
Biogeosciences, 22, 2733–2747, https://doi.org/10.5194/bg-22-2733-2025, https://doi.org/10.5194/bg-22-2733-2025, 2025
Short summary
Short summary
We studied how different organic and inorganic nutrient inputs affect soil organic carbon (SOC) down to 70 cm in Kenya. After 19 years, all organic treatments increased SOC stocks compared with the control, but mineral nitrogen had no significant effect. Manure was the organic treatment that significantly increased SOC at the deepest soil depths, as its effect could be observed down to 60 cm. Manure was the best strategy to limit SOC loss in croplands and maintain soil quality after deforestation.
Lei Zhang, Lin Yang, Thomas W. Crowther, Constantin M. Zohner, Sebastian Doetterl, Gerard B. M. Heuvelink, Alexandre M. J.-C. Wadoux, A.-Xing Zhu, Yue Pu, Feixue Shen, Haozhi Ma, Yibiao Zou, and Chenghu Zhou
Earth Syst. Sci. Data, 17, 2605–2623, https://doi.org/10.5194/essd-17-2605-2025, https://doi.org/10.5194/essd-17-2605-2025, 2025
Short summary
Short summary
Current understandings of depth-dependent variations and controls of soil organic carbon turnover time (τ) at global, biome, and local scales remain incomplete. We used the state-of-the-art soil and root profile databases and satellite observations to generate new spatially explicit global maps of topsoil and subsoil τ, with quantified uncertainties for better user applications. The new insights from the resulting maps will facilitate efforts to model the carbon cycle and will support effective carbon management.
Derrick Muheki, Bas Vercruysse, Krishna Kumar Thirukokaranam Chandrasekar, Christophe Verbruggen, Julie M. Birkholz, Koen Hufkens, Hans Verbeeck, Pascal Boeckx, Seppe Lampe, Ed Hawkins, Peter Thorne, Dominique Kankonde Ntumba, Olivier Kapalay Moulasa, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-3779, https://doi.org/10.5194/egusphere-2024-3779, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Archives worldwide host vast records of observed weather data crucial for understanding climate variability. However, most of these records are still in paper form, limiting their use. To address this, we developed MeteoSaver, an open-source tool, to transcribe these records to machine-readable format. Applied to ten handwritten temperature sheets, it achieved a median accuracy of 74%. This tool offers a promising solution to preserve records from archives and unlock historical weather insights.
Marijn Van de Broek, Fiona Stewart-Smith, Moritz Laub, Marc Corbeels, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
EGUsphere, https://doi.org/10.5194/egusphere-2025-2287, https://doi.org/10.5194/egusphere-2025-2287, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
To improve soil health and increase crop yields, organic matter is commenly added to arable soils. Studying the effect of different organic amenmends on soil organic carbon sequestration in four long-term field trials in Kenya, we found that only a small portion (< 7 %) of added carbon was stabilised. Moreover, this was only observed in the top 15 cm of the soil. These results underline the challenges associated with increasing the organic carbon content of tropical arable soils.
Aurora Patchett, Louise Rütting, Tobias Rütting, Samuel Bodé, Sara Hallin, Jaanis Juhanson, C. Florian Stange, Mats P. Björkman, Pascal Boeckx, Gunhild Rosqvist, and Robert G. Björk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2179, https://doi.org/10.5194/egusphere-2025-2179, 2025
Short summary
Short summary
This study explores how different types of fungi and plant species affect nitrogen cycling in Arctic soils. By removing certain plants, we found that fungi associated with shrubs speed up nitrogen processes more than those with grasses. Dominant plant species enhance nitrogen recycling, while rare species increase nitrogen loss. These findings help predict how Arctic ecosystems respond to climate change, highlighting the importance of fungi and plant diversity in regulating ecosystem processes.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Annina Maier, Maria E. Macfarlane, Marco Griepentrog, and Sebastian Doetterl
EGUsphere, https://doi.org/10.5194/egusphere-2025-2006, https://doi.org/10.5194/egusphere-2025-2006, 2025
Short summary
Short summary
A systematic analysis of the interaction between pedo- and biosphere in shaping alpine soil organic carbon (SOC) stocks remains missing. Our regional-scale study of alpine SOC stocks across five parent materials shows that plant biomass is not a strong control of SOC stocks. Rather, the greatest SOC stocks are linked to more weathered soil profiles with higher Fe and Al pedogenic oxide content, showing the importance of parent material weatherability and geochemistry for SOC stabilization.
Inês Vieira, Félicien Meunier, Maria Carolina Duran Rojas, Stephen Sitch, Flossie Brown, Giacomo Gerosa, Silvano Fares, Pascal Boeckx, Marijn Bauters, and Hans Verbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1375, https://doi.org/10.5194/egusphere-2025-1375, 2025
Short summary
Short summary
We used a computer model to study how ozone pollution reduces plant growth in six European forests, from Finland to Italy. Combining field data and simulations, we found that ozone can lower carbon uptake by up to 6 % each year, especially in Mediterranean areas. Our study shows that local climate and forest type influence ozone damage and highlights the need to include ozone effects in forest and climate models.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025, https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gases (GHGs) since 1750 is attributed to human activity. However, natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo Basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source of CO2 and N2O and a minor sink of CH4.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
Biogeosciences, 22, 1427–1446, https://doi.org/10.5194/bg-22-1427-2025, https://doi.org/10.5194/bg-22-1427-2025, 2025
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions as long as more data to constrain model parameters are not available.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci., 29, 863–886, https://doi.org/10.5194/hess-29-863-2025, https://doi.org/10.5194/hess-29-863-2025, 2025
Short summary
Short summary
In this study, we implement a climate, water, and crop interaction model to evaluate current conditions and project future changes in rainwater availability and its yield potential, with the goal of informing adaptation policies and strategies in Ethiopia. Although climate change is likely to increase rainfall in Ethiopia, our findings suggest that water-scarce croplands in Ethiopia are expected to face reduced crop yields during the main growing season due to increases in temperature.
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
SOIL, 11, 121–140, https://doi.org/10.5194/soil-11-121-2025, https://doi.org/10.5194/soil-11-121-2025, 2025
Short summary
Short summary
To assess the impact of the groundwater table (GWT) depth on soil moisture and C mineralization, we designed a laboratory setup using 200 cm undisturbed soil columns. Surprisingly, the moisture increase induced by a shallower GWT did not result in enhanced C mineralization. We presume this upward capillary moisture effect was offset by increased C mineralization upon rewetting, particularly noticeable in drier soils when capillary rise affected the topsoil to a lesser extent due to a deeper GWT.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Vira Leng, Rémi Cardinael, Florent Tivet, Vang Seng, Phearum Mark, Pascal Lienhard, Titouan Filloux, Johan Six, Lyda Hok, Stéphane Boulakia, Clever Briedis, João Carlos de Moraes Sá, and Laurent Thuriès
SOIL, 10, 699–725, https://doi.org/10.5194/soil-10-699-2024, https://doi.org/10.5194/soil-10-699-2024, 2024
Short summary
Short summary
We assessed the long-term impacts of no-till cropping systems on soil organic carbon and nitrogen dynamics down to 1 m depth under the annual upland crop productions (cassava, maize, and soybean) in the tropical climate of Cambodia. We showed that no-till systems combined with rotations and cover crops could store large amounts of carbon in the top and subsoil in both the mineral organic matter and particulate organic matter fractions. We also question nitrogen management in these systems.
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024, https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Simon Oberholzer, Laura Summerauer, Markus Steffens, and Chinwe Ifejika Speranza
SOIL, 10, 231–249, https://doi.org/10.5194/soil-10-231-2024, https://doi.org/10.5194/soil-10-231-2024, 2024
Short summary
Short summary
This study investigated the performance of visual and near-infrared spectroscopy in six fields in Switzerland. Spectral models showed a good performance for soil properties related to organic matter at the field scale. However, spectral models performed best in fields with low mean carbonate content because high carbonate content masks spectral features for organic carbon. These findings help facilitate the establishment and implementation of new local soil spectroscopy projects.
Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, and Rémi Cardinael
SOIL, 10, 151–165, https://doi.org/10.5194/soil-10-151-2024, https://doi.org/10.5194/soil-10-151-2024, 2024
Short summary
Short summary
Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our knowledge of the impact of CA on top- and subsoil soil organic carbon (SOC) stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. Using two long-term experimental sites with different soil types, we found that mulch could increase top SOC stocks, but no tillage alone had a slightly negative impact.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, https://doi.org/10.5194/soil-9-301-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Charlotte Decock, Juhwan Lee, Matti Barthel, Elizabeth Verhoeven, Franz Conen, and Johan Six
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-221, https://doi.org/10.5194/bg-2022-221, 2022
Preprint withdrawn
Short summary
Short summary
One of the least well understood processes in the nitrogen (N) cycle is the loss of nitrogen gas (N2), referred to as total denitrification. This is mainly due to the difficulty of quantifying total denitrification in situ. In this study, we developed and tested a novel modeling approach to estimate total denitrification over the depth profile, based on concentrations and isotope values of N2O. Our method will help close N budgets and identify management strategies that reduce N pollution.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Tegawende Léa Jeanne Ilboudo, Lucien NGuessan Diby, Delwendé Innocent Kiba, Tor Gunnar Vågen, Leigh Ann Winowiecki, Hassan Bismarck Nacro, Johan Six, and Emmanuel Frossard
EGUsphere, https://doi.org/10.5194/egusphere-2022-209, https://doi.org/10.5194/egusphere-2022-209, 2022
Preprint withdrawn
Short summary
Short summary
Our results showed that at landscape level SOC stock variability was mainly explained by clay content. We found significant linear positive relationships between VC and SOC stocks for the land uses annual croplands, perennial croplands, grasslands and bushlands without soil depth restrictions until 110 cm. We concluded that in the forest-savanna transition zone, soil properties and topography determine land use, which in turn affects the stocks of SOC and TN and to some extent the VC stocks.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021, https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary
Short summary
This work delivers openly accessible and validated calibrations for diagnosing 26 soil properties based on mid-infrared spectroscopy. These were developed for four regions in Burkina Faso and Côte d'Ivoire, including 80 fields of smallholder farmers. The models can help to site-specifically and cost-efficiently monitor soil quality and fertility constraints to ameliorate soils and yields of yam or other staple crops in the four regions between the humid forest and the northern Guinean savanna.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021, https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Short summary
We developed the Swiss mid-infrared spectral library and a statistical model collection across 4374 soil samples with reference measurements of 16 properties. Our library incorporates soil from 1094 grid locations and 71 long-term monitoring sites. This work confirms once again that nationwide spectral libraries with diverse soils can reliably feed information to a fast chemical diagnosis. Our data-driven reduction of the library has the potential to accurately monitor carbon at the plot scale.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021, https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Short summary
In this study, we show that a soil spectral library (SSL) can be used to predict soil carbon at new and very different locations. The importance of this finding is that it requires less time-consuming lab work than calibrating a new model for every local application, while still remaining similar to or more accurate than local models. Furthermore, we show that this method even works for predicting (drained) peat soils, using a SSL with mostly mineral soils containing much less soil carbon.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Paula Alejandra Lamprea Pineda, Marijn Bauters, Hans Verbeeck, Selene Baez, Matti Barthel, Samuel Bodé, and Pascal Boeckx
Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, https://doi.org/10.5194/bg-18-413-2021, 2021
Short summary
Short summary
Tropical forest soils are an important source and sink of greenhouse gases (GHGs) with tropical montane forests having been poorly studied. In this pilot study, we explored soil fluxes of CO2, CH4, and N2O in an Ecuadorian neotropical montane forest, where a net consumption of N2O at higher altitudes was observed. Our results highlight the importance of short-term variations in N2O and provide arguments and insights for future, more detailed studies on GHG fluxes from montane forest soils.
Laurent K. Kidinda, Folasade K. Olagoke, Cordula Vogel, Karsten Kalbitz, and Sebastian Doetterl
SOIL Discuss., https://doi.org/10.5194/soil-2020-80, https://doi.org/10.5194/soil-2020-80, 2020
Preprint withdrawn
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of microbial processes differ between soils developed from geochemically contrasting parent materials due to differences in resource availability. Across investigated geochemical regions and soil depths, soil microbes were P-limited rather than N-limited. Topsoil microbes were more C-limited than their subsoil counterparts but inversely P-limited.
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020, https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary
Short summary
This study developed a spatially distributed carbon cycling model applicable in an eroding landscape. It includes all three carbon isotopes so that it is able to represent the carbon isotopic compositions. The model is able to represent the observations that eroding area is enriched in 13C and depleted of 14C compared to depositional area. Our simulations show that the spatial variability of carbon isotopic properties in an eroding landscape is mainly caused by the soil redistribution.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Cited articles
Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O'Loughlin, F.,
Mahé, G., Dinga, B., Moukandi, G., and Spencer, R. G. M.: Opportunities for
hydrologic research in the Congo Basin, Rev. Geophys., 54, 378–409,
https://doi.org/10.1002/2016RG000517, 2016. a
Andrews, J. A., Matamala, R., Westover, K. M., and Schlesinger, W. H.:
Temperature effects on the diversity of soil heterotrophs and the
δ13C of soil-respired CO2, Soil Biol. Biochem., 32,
699–706, https://doi.org/10.1016/S0038-0717(99)00206-0, 2000. a
Arias‐Navarro, C., Díaz‐Pinés, E., Klatt, S., Brandt, P., Rufino, M. C.,
Butterbach‐Bahl, K., and Verchot, L. V.: Spatial variability of soil N2O
and CO2 fluxes in different topographic positions in a tropical montane
forest in Kenya, J. Geophys. Res.-Biogeo., 122,
514–527, https://doi.org/10.1002/2016JG003667, 2017. a
Barthel, M., Hammerle, A., Sturm, P., Baur, T., Gentsch, L., and Knohl, A.: The
diel imprint of leaf metabolism on the δ13C signal of soil
respiration under control and drought conditions, New Phytol., 192,
925–938, https://doi.org/10.1111/j.1469-8137.2011.03848.x, 2011. a
Barton, K.: MuMin: Multi-Model Inference, r package version
1.43.6, available at:
https://CRAN.R-project.org/package=MuMIn (last access: 14 April 2020), 2019. a
Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C.: Fates of
methane from different lake habitats: Connecting whole-lake budgets and
CH4 emissions, J. Geophys. Res.-Biogeo., 113, G02024,
https://doi.org/10.1029/2007JG000608, 2008. a
Baumgartner, S., Barthel, M., Drake, T. W., Makelele, I. A., Mugula, J. K., Summerauer, L., Gallarotti, N., Ntaboba, L. C., Van Oost, K., Boeckx, P., Doetterl, S., Werner, R. A., and Six, J.: Dataset: Seasonality, drivers, and isotopic composition of soil CO2 fluxes from tropical forests of the Congo Basin, Zenodo, https://doi.org/10.5281/zenodo.3757768, 2020. a
Bauters, M., Verbeeck, H., Demol, M., Bruneel, S., Taveirne, C., Van der Heyden, D., Cizungu, L., and Boeckx, P.: Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation, Biogeosciences, 14, 5313–5321, https://doi.org/10.5194/bg-14-5313-2017, 2017. a
Bauters, M., Verbeeck, H., Rütting, T., Barthel, M., Bazirake Mujinya, B.,
Bamba, F., Bodé, S., Boyemba, F., Bulonza, E., Carlsson, E., Eriksson, L.,
Makelele, I., Six, J., Cizungu Ntaboba, L., and Boeckx, P.: Contrasting
nitrogen fluxes in African tropical forests of the Congo Basin, Ecol.
Monogr., 89, e01342, https://doi.org/10.1002/ecm.1342, 2019. a, b, c, d
Blessing, C., Barthel, M., and Buchmann, N.: Strong Coupling of Shoot
Assimilation and Soil Respiration during Drought and Recovery Periods in
Beech As Indicated by Natural Abundance δ13C Measurements,
Front. Plant Sci., 7, 1710, https://doi.org/10.3389/fpls.2016.01710, 2016. a
Bond-Lamperty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.:
Globally rising soil heterotrophic respiration over recent decades, Nature,
560, 80–83, https://doi.org/10.1038/s41586-018-0358-x, 2018. a, b
Borken, W. and Matzner, E.: Reappraisal of drying and wetting effects on C and
N mineralization and fluxes in soils, Glob. Change Biol., 15, 808–824,
https://doi.org/10.1111/j.1365-2486.2008.01681.x, 2009. a
Bowling, D. R., McDowell, N. G., Bond, B. J., Law, B. E., and Ehleringer,
J. R.: 13C content of ecosystem respiration is linked to precipitation
and vapor pressure deficit, Oecologia, 131, 113–124,
https://doi.org/10.1007/s00442-001-0851-y, 2002. a
Bréchet, L., Ponton, S., Alméras, T., Bonal, D., and Epron, D.: Does
spatial distribution of tree size account for spatial variation in soil
respiration in a tropical forest?, Plant Soil, 347, 293–303,
https://doi.org/10.1007/s11104-011-0848-1, 2011. a
Brüggemann, N., Gessler, A., Kayler, Z., Keel, S. G., Badeck, F., Barthel, M., Boeckx, P., Buchmann, N., Brugnoli, E., Esperschütz, J., Gavrichkova, O., Ghashghaie, J., Gomez-Casanovas, N., Keitel, C., Knohl, A., Kuptz, D., Palacio, S., Salmon, Y., Uchida, Y., and Bahn, M.: Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review, Biogeosciences, 8, 3457–3489, https://doi.org/10.5194/bg-8-3457-2011, 2011. a
Buchmann, N., Guehl, J.-M., Barigah, T. S., and Ehleringer, J. R.:
Interseasonal comparison of CO2 concentrations, isotopic composition, and
carbon dynamics in an Amazonian rainforest (French Guiana), Oecologia, 110,
120–131, https://doi.org/10.1007/s004420050140, 1997. a
Chen, L., Flynn, D. F. B., Zhang, X., Gao, X., Lin, L., Luo, J., and Zhao, C.:
Divergent patterns of foliar δ13C and δ15N in Quercus aquifolioides with
an altitudinal transect on the Tibetan Plateau: an integrated study based on
multiple key leaf functional traits, J. Plant Ecol., 8, 303–312,
https://doi.org/10.1093/jpe/rtu020, 2014. a
Courtois, E. A., Stahl, C., Van den Berge, J., Bréchet, L.,
Van Langenhove, L., Richter, A., Urbina, I., Soong, J. L., Peñuelas,
J., and Janssens, I. A.: Spatial Variation of Soil CO2, CH4 and N2O
Fluxes Across Topographical Positions in Tropical Forests of the Guiana
Shield, Ecosystems, 22, 228–228, https://doi.org/10.1007/s10021-018-0281-x, 2018. a, b, c, d
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006. a
Davidson, E. A., Ishida, F. Y., and Nepstad, D. C.: Effects of an experimental
drought on soil emissions of carbon dioxide, methane, nitrous oxide, and
nitric oxide in a moist tropical forest, Glob. Change Biol., 10, 718–730,
https://doi.org/10.1111/j.1365-2486.2004.00762.x, 2004. a
de Araújo, A. C., Ometto, J. P. H. B., Dolman, A. J., Kruijt, B., Waterloo, M. J., and Ehleringer, J. R.: Implications of CO2 pooling on δ13C of ecosystem respiration and leaves in Amazonian forest, Biogeosciences, 5, 779–795, https://doi.org/10.5194/bg-5-779-2008, 2008. a, b
Doetterl, S., Kearsley, E., Bauters, M., Hufkens, K., Lisingo, J., Baert, G.,
Verbeeck, H., and Boeckx, P.: Aboveground vs. Belowground Carbon Stocks in
African Tropical Lowland Rainforest: Drivers and Implications, PLOS ONE, 10,
1–14, https://doi.org/10.1371/journal.pone.0143209, 2015. a
Doetterl, S., Berhe, A. A., Arnold, C., Bodé, S., Fiener, P., Finke, P.,
Fuchslueger, L., Griepentrog, M., Harden, J. W., Nadeu, E., Schnecker, J.,
Six, J., Trumbore, S., Van Oost, K., Vogel, C., and Boeckx, P.: Links among
warming, carbon and microbial dynamics mediated by soil mineral weathering,
Nat. Geosci., 11, 589–593, https://doi.org/10.1038/s41561-018-0168-7, 2018. a, b, c
Doff Sotta, E., Meir, P., Malhi, Y., Donato nobre, A., Hodnett, M., and Grace,
J.: Soil CO2 efflux in a tropical forest in the central Amazon, Glob.
Change Biol., 10, 601–617, https://doi.org/10.1111/j.1529-8817.2003.00761.x, 2004. a, b, c
Ekblad, A. and Högberg, P.: Natural abundance of 13C in CO2 respired
from forest soils reveals speed of link between tree photosynthesis and root
respiration, Oecologia, 127, 305–308, https://doi.org/10.1007/s004420100667, 2001. a, b, c
Epron, D., Nouvellon, Y., Mareschal, L., e Moreira, R. M., Koutika, L.-S.,
Geneste, B., Delgado-Rojas, J. S., Laclau, J.-P., Sola, G.,
de Moraes Gonçalves, J. L., and Bouillet, J.-P.: Partitioning of net primary
production in Eucalyptus and Acacia stands and in mixed-species plantations:
Two case-studies in contrasting tropical environments, Forest Ecol.
Manage., 301, 102–111,
https://doi.org/10.1016/j.foreco.2012.10.034, 2013. a
Farquhar, G. D. and Richards, R. A.: Isotopic Composition of Plant Carbon
Correlates With Water-Use Efficiency of Wheat Genotypes, Funct. Plant
Biol., 11, 539–552, https://doi.org/10.1071/PP9840539, 1984. a
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, 2019. a
Garcia-Montiel, D. C., Melillo, J. M., Steudler, P. A., Tian, H., Neill, C.,
Kicklighter, D. W., Feigl, B., Piccolo, M., and Cerri, C. C.: Emissions of
N2O and CO2 from terra firme forests in Rondonia, Brazil, Ecol.
Appl., 14, 214–220, https://doi.org/10.1890/01-6023, 2004. a
Hashimoto, S., Tanaka, N., Suzuki, M., Inoue, A., Takizawa, H., Kosaka, I.,
Tanaka, K., Tantasirin, C., and Tangtham, N.: Soil respiration and soil
CO2 concentration in a tropical forest, Thailand, J. Forest
Res., 9, 75–79, https://doi.org/10.1007/s10310-003-0046-y, 2004. a
Hopkins, A. and Del Prado, A.: Implications of climate change for grassland in
Europe: impacts, adaptations and mitigation options: a review, Grass
Forage Sci., 62, 118–126, https://doi.org/10.1111/j.1365-2494.2007.00575.x, 2007. a
Hultine, K. R. and Marshall, J. D.: Altitude trends in conifer leaf morphology
and stable carbon isotope composition, Oecologia, 123, 32–40,
https://doi.org/10.1007/s004420050986, 2000. a
Hutchinson, G. L. and Mosier, A. R.: Improved Soil Cover Method for Field
Measurement of Nitrous Oxide Fluxes, Soil. Sci. Soc. Am. J., 45, 311–316,
https://doi.org/10.2136/sssaj1981.03615995004500020017x, 1981. a, b
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A., Ekblad, A., Högberg, M.,
Nyberg, G., Ottosson-Löfvenius, M., and Read, D.: Large-scale forest
girdling shows that current photosynthesis drives soil respiration, Nature,
411, 789–92, https://doi.org/10.1038/35081058, 2001. a
Imani, G., Zapfack, L., Kalume, J., Riera, B., Cirimwami, L., and Boyemba, F.:
Woody vegetation groups and diversity along the altitudinal gradient in
mountain forest: case study of Kahuzi-Biega National Park and its
surroundings, RD Congo, Journal of Biodiversity and Environmental Sciences,
8, 134–150, 2016. a
Janssens, I. A., Barigah, S. T., and Ceulemans, R.: Soil CO2 efflux rates in
different tropical vegetation types in French Guiana, Ann. Sci.
Forest., 55, 671–680, https://doi.org/10.1051/forest:19980603, 1998. a, b, c
Jiang, Y., Zhou, L., Tucker, C. J., Raghavendra, A., Hua, W., Liu, Y. Y., and
Joiner, J.: Widespread increase of boreal summer dry season length over the
Congo rainforest, Nat. Clim. Change, 9, 617–622,
https://doi.org/10.1038/s41558-019-0512-y, 2019. a, b
Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte,
O., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli,
E., Montanarella, L., Spaargaren, O., Thiobiano, L., Van Ranst, E., Yemefack,
M., and Zougmoré, R.: Soil Atlas of Africa, European Commission, Publication
Office of the European Union, Luxembourg, 2013. a, b
Kearsley, E., Verbeeck, H., Hufkens, K., Van de Perre, F., Doetterl, S., Baert,
G., Beeckman, H., Boeckx, P., and Huygens, D.: Functional community structure
of African monodominant Gilbertiodendron dewevrei forest influenced by local
environmental filtering, Ecol. Evol., 7, 295–304,
https://doi.org/10.1002/ece3.2589, 2017. a
Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon
dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334,
https://doi.org/10.1016/0016-7037(58)90033-4, 1958. a
Knohl, A., Werner, R., Geilmann, H., and Brand, W.: Kel-F (TM) discs improve
storage time of canopy air samples in 10-mL vials for CO2-delta C-13
analysis, Rapid Commun. Mass Sp., 18, 1663–1665,
https://doi.org/10.1002/rcm.1528, 2004. a
Körner, C., Farquhar, G. D., and Roksandic, Z.: A global survey of carbon
isotope discrimination in plants from high altitude, Oecologia, 74, 623–632,
https://doi.org/10.1007/BF00380063, 1988. a
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest
Package: Tests in Linear Mixed Effects Models, J. Stat.
Softw., 82, 1–26, https://doi.org/10.18637/jss.v082.i13, 2017. a
Maldague, M. E. and Hilger, F.: Observations Faunastiques et Microbiologiques
Dans Quelques Biotopes Forestiers Equatoriaux, in: Soil Organisms: Proceedings of the colloquium on soil fauna, soil microflora and their relationships,
Oosterbeek, the Netherlands, 10–16 September 1962,
368–374, 1962. a, b
Manzoni, S., Moyano, F., Kätterer, T., and Schimel, J.: Modeling coupled
enzymatic and solute transport controls on decomposition in drying soils,
Soil Biol. Biochem., 95, 275–287,
https://doi.org/10.1016/j.soilbio.2016.01.006, 2016. a
McDowell, N. G., Bowling, D. R., Bond, B. J., Irvine, J. R., Law, B. E.,
Anthoni, P., and Ehleringer, J. R.: Response of the carbon isotopic content
of ecosystem, leaf, and soil respiration to meteorological and physiological
driving factors in a Pinus ponderosa ecosystem, Global Biogeochem. Cy.,
18, GB1013, https://doi.org/10.1029/2003GB002049, 2004. a
Melillo, J. M., McGuire, D. A., Kicklighter, D. W., Moore, Berrien, M. I.,
Vorosmarty, C. J., and Schloss, A. L.: Global Climate-Change and Terrestrial
Net Primary Production, Nature, 363, 234–240, https://doi.org/10.1038/363234a0, 1993. a
Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Bonnefond, J. M., Boulain, N., Brueggemann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-Khidir, H. A. M., El-Tahir, B. A., Falk, U., Lloyd, J., Kergoat, L., Le Dantec, V., Mougin, E., Muchinda, M., Mukelabai, M. M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M., and Kutsch, W. L.: Precipitation as driver of carbon fluxes in 11 African ecosystems, Biogeosciences, 6, 1027–1041, https://doi.org/10.5194/bg-6-1027-2009, 2009. a
Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel Yuste, J., Don, A., Epron, D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, T., Orchard, V., Reichstein, M., Rey, A., Ruamps, L., Subke, J.-A., Thomsen, I. K., and Chenu, C.: The moisture response of soil heterotrophic respiration: interaction with soil properties, Biogeosciences, 9, 1173–1182, https://doi.org/10.5194/bg-9-1173-2012, 2012. a
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic
respiration to moisture availability: An exploration of processes and models,
Soil Biol. Biochem., 59, 72–85,
https://doi.org/10.1016/j.soilbio.2013.01.002, 2013. a
Nakagawa, S. and Schielzeth, H.: A general and simple method for obtaining R2
from generalized linear mixed-effects models, Methods Ecol.
Evol., 4, 133–142, https://doi.org/10.1111/j.2041-210x.2012.00261.x, 2013. a, b
Ogle, K.: Microbes weaken soil carbon sink, Nature, 560, 32–33,
https://doi.org/10.1038/d41586-018-05842-2, 2018. a
Ometto, J. P. H. B., Flanagan, L. B., Martinelli, L. A., Moreira, M. Z.,
Higuchi, N., and Ehleringer, J. R.: Carbon isotope discrimination in forest
and pasture ecosystems of the Amazon Basin, Brazil, Global Biogeochem.
Cy., 16, 56-1–56-10, https://doi.org/10.1029/2001GB001462, 2002. a
Palmer, P. I., Feng, L., Baker, D., Chevallier, F., Bösch, H., and Somkut, P.:
Net carbon emissions from African biosphere dominate pan-tropical atmospheric
CO2 signal, Nat. Commun., 10, 3344, https://doi.org/10.1038/s41467-019-11097-w,
2019. a
Pan, Y., Birdsey, R., Fang, J., Houghton, R., Kauppi, P., Kurz, W., Phillips,
O., Shvidenko, A., Lewis, S., Canadell, J., Ciais, P., Jackson, R., Pacala,
S., McGuire, A., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large
and Persistent Carbon Sink in the World's Forests, Science, 333, 988–993,
https://doi.org/10.1126/science.1201609, 2011. a
Pendall, E., Schwendemann, L., Rahn, T., Miller, J. B., Tans, P. P., and White,
J. W. C.: Land use and season affect fluxes of CO2, CH4, CO, N2O,
H2 and isotopic source signatures in Panama: evidence from nocturnal
boundary layer profiles, Glob. Change Biol., 16, 2721–2736,
https://doi.org/10.1111/j.1365-2486.2010.02199.x, 2010. a
Quay, P., King, S., Wilbur, D., Wofsy, S., and Rickey, J.: 13C ∕ 12C of
atmospheric CO2 in the Amazon Basin: Forest and river sources, J.
Geophys. Res.-Atmos., 94, 18327–18336,
https://doi.org/10.1029/JD094iD15p18327, 1989. a
Raich, J. W. and Schlesinger, W. H.: The global carbon dioxide flux in soil
respiration and its relationship to vegetation and climate, Tellus B, 44, 81–99,
https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x, 1992. a
Raich, J. W., Potter, C. S., and Bhagawati, D.: Interannual variability in
global soil respiration, 1980–94, Glob. Change Biol., 8, 800–812,
https://doi.org/10.1046/j.1365-2486.2002.00511.x, 2002. a, b
R Development Core Team: R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
available at: http://www.R-project.org (last access: 14 April 2020), 2019. a
Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P. G., and
Valentini, R.: Annual variation in soil respiration and its components in a
coppice oak forest in Central Italy, Glob. Change Biol., 8, 851–866,
https://doi.org/10.1046/j.1365-2486.2002.00521.x, 2002. a
Roderick, M. L. and Berry, S. L.: Linking wood density with tree growth and
environment: a theoretical analysis based on the motion of water, New
Phytol., 149, 473–485, https://doi.org/10.1046/j.1469-8137.2001.00054.x, 2001. a, b
Ruehr, N. K., Offermann, C. A., Gessler, A., Winkler, J. B., Ferrio, J. P.,
Buchmann, N., and Barnard, R. L.: Drought effects on allocation of recent
carbon: from beech leaves to soil CO2 efflux, New Phytol., 184,
950–961, https://doi.org/10.1111/j.1469-8137.2009.03044.x, 2009. a
Ruehr, N. K., Knohl, A., and Buchmann, N.: Environmental variables controlling
soil respiration on diurnal, seasonal and annual time-scales in a mixed
mountain forest in Switzerland, Biogeochemistry, 98, 153–170,
https://doi.org/10.1007/s10533-009-9383-z, 2010. a, b
Rustad, L. E., Huntington, T. G., and Boone, R. D.: Controls on Soil
Respiration: Implications for Climate Change, Biogeochemistry, 48, 1–6,
2000. a
Salmon, Y., Dietrich, L., Sevanto, S., Hölttä, T., Dannoura, M., and Epron,
D.: Drought impacts on tree phloem: from cell-level responses to ecological
significance, Tree Physiol., 39, 173–191, https://doi.org/10.1093/treephys/tpy153,
2019. a
Sotta, E. D., Veldkamp, E., Schwendemann, L., Guimaraes, B. R., Paixao, R. K.,
Ruivo, M. d. L. P., Lola da Costa, A. C., and Meir, P.: Effects of an induced
drought on soil carbon dioxide (CO2) efflux and soil CO2 production in
an Eastern Amazonian rainforest, Brazil, Glob. Change Biol., 13,
2218–2229, https://doi.org/10.1111/j.1365-2486.2007.01416.x, 2007. a
Sousa Neto, E., Carmo, J. B., Keller, M., Martins, S. C., Alves, L. F., Vieira, S. A., Piccolo, M. C., Camargo, P., Couto, H. T. Z., Joly, C. A., and Martinelli, L. A.: Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest, Biogeosciences, 8, 733–742, https://doi.org/10.5194/bg-8-733-2011, 2011.
a, b, c
Szaran, J.: Carbon isotope fractionation between dissolved and gaseous carbon
dioxide, Chem. Geol., 150, 331–337,
https://doi.org/10.1016/S0009-2541(98)00114-4, 1998. a
Townsend, A. R., Vitousek, P. M., and Trumbore, S. E.: Soil Organic Matter
Dynamics Along Gradients in Temperature and Land Use on the Island of Hawaii,
Ecology, 76, 721–733, https://doi.org/10.2307/1939339, 1995. a
Verhegghen, A., Mayaux, P., de Wasseige, C., and Defourny, P.: Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation, Biogeosciences, 9, 5061–5079, https://doi.org/10.5194/bg-9-5061-2012, 2012. a
Waring, B. G. and Powers, J. S.: Unraveling the mechanisms underlying pulse
dynamics of soil respiration in tropical dry forests, Environ. Res.
Lett., 11, 105005, https://doi.org/10.1088/1748-9326/11/10/105005, 2016. a
Werner, C., Kiese, R., and Butterbach-Bahl, K.: Soil-atmosphere exchange of
N2O, CH4, and CO2 and controlling environmental factors for
tropical rain forest sites in western Kenya, J. Geophys.
Res., 112, D03308, https://doi.org/10.1029/2006JD007388, 2007. a
Werner, R. A. and Brand, W. A.: Referencing strategies and techniques in stable
isotope ratio analysis, Rapid Commun. Mass Sp., 15,
501–519, https://doi.org/10.1002/rcm.258, 2001. a
Werner, R. A., Rothe, M., and Brand, W. A.: Extraction of CO2 from air
samples for isotopic analysis and limits to ultra high precision
δ18O determination in CO2 gas, Rapid Commun. Mass
S., 15, 2152–2167, https://doi.org/10.1002/rcm.487, 2001. a
Xu, M. and Qi, Y.: Soil-surface CO2 efflux and its spatial and temporal
variations in a young ponderosa pine plantation in northern California,
Glob. Change Biol., 7, 667–677, https://doi.org/10.1046/j.1354-1013.2001.00435.x,
2001. a
Zeeman, M., Werner, R., Eugster, W., Siegwolf, R., Wehrle, G., Mohn, J., and
Buchmann, N.: Optimization of automated gas sample collection and isotope
ratio mass spectrometric analysis of δ13C of CO2 in air, Rapid
Commun. Mass Sp., 22, 3883–3892,
https://doi.org/10.1002/rcm.3772, 2008. a
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Soil respiration is an important carbon flux and key process determining the net ecosystem...
Altmetrics
Final-revised paper
Preprint