Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-6237-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6237-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial variations in terrestrial net ecosystem productivity and its local indicators
Erqian Cui
Zhejiang Tiantong Forest Ecosystem National Observation and Research
Station, Shanghai Key Lab for Urban Ecological Processes and
Eco-Restoration, School of Ecological and Environmental Sciences, East China
Normal University, Shanghai 200241, China
Research Center for Global Change and Ecological Forecasting, East
China Normal University, Shanghai 200241, China
Chenyu Bian
Zhejiang Tiantong Forest Ecosystem National Observation and Research
Station, Shanghai Key Lab for Urban Ecological Processes and
Eco-Restoration, School of Ecological and Environmental Sciences, East China
Normal University, Shanghai 200241, China
Research Center for Global Change and Ecological Forecasting, East
China Normal University, Shanghai 200241, China
Center for Ecosystem Science and Society, Northern Arizona University,
Arizona, Flagstaff, AZ 86011, USA
Shuli Niu
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing, China
Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
Yingping Wang
CSIRO Oceans and Atmosphere, PMB 1, Aspendale, Victoria 3195,
Australia
Jianyang Xia
CORRESPONDING AUTHOR
Zhejiang Tiantong Forest Ecosystem National Observation and Research
Station, Shanghai Key Lab for Urban Ecological Processes and
Eco-Restoration, School of Ecological and Environmental Sciences, East China
Normal University, Shanghai 200241, China
Research Center for Global Change and Ecological Forecasting, East
China Normal University, Shanghai 200241, China
Related authors
No articles found.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
EGUsphere, https://doi.org/10.5194/egusphere-2025-2545, https://doi.org/10.5194/egusphere-2025-2545, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Accurate estimates of global soil organic carbon (SOC) content and its spatial pattern are critical for future climate change mitigation. However, the most advanced mechanistic SOC models struggle to do this task. Here we apply multiple explainable machine learning methods to identify missing variables and misrepresented relationships between environmental factors and SOC in these models, offering new insights to guide model development for more reliable SOC predictions.
Fangxiu Wan, Chenyu Bian, Ensheng Weng, Yiqi Luo, and Jianyang Xia
EGUsphere, https://doi.org/10.5194/egusphere-2025-1243, https://doi.org/10.5194/egusphere-2025-1243, 2025
Short summary
Short summary
We developed an improved model that captures how nutrients, especially phosphorus, influence carbon cycle in subtropical forest. By combining biogeochemical cycling with advanced data analysis techniques, our model creates a powerful tool for parameter optimization and reliable predictions. Using field observations from a phosphorus-limited forest, we validated that this integrated approach provides more accurate estimates, offering better support for climate-related decision making.
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-206, https://doi.org/10.5194/gmd-2024-206, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Including high-latitude deep carbon is critical for projecting future soil carbon emissions, yet it’s absent in most land surface models. Here we propose a new carbon accumulation protocol by integrating deep carbon from Yedoma deposits and representing the observed history of peat carbon formation in ORCHIDEE-MICT. Our results show an additional 157 PgC in present-day Yedoma deposits and a 1–5 m shallower peat depth, 43 % less passive soil carbon in peatlands against the convention protocol.
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Huifang Zhang, Zhonggang Tang, Binyao Wang, Hongcheng Kan, Yi Sun, Yu Qin, Baoping Meng, Meng Li, Jianjun Chen, Yanyan Lv, Jianguo Zhang, Shuli Niu, and Shuhua Yi
Earth Syst. Sci. Data, 15, 821–846, https://doi.org/10.5194/essd-15-821-2023, https://doi.org/10.5194/essd-15-821-2023, 2023
Short summary
Short summary
The accuracy of regional grassland aboveground biomass (AGB) is always limited by insufficient ground measurements and large spatial gaps with satellite pixels. This paper used more than 37 000 UAV images as bridges to successfully obtain AGB values matching MODIS pixels. The new AGB estimation model had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g m2. Our new dataset provides important input parameters for understanding the Qinghai–Tibet Plateau during global climate change.
Junxiao Pan, Jinsong Wang, Dashuan Tian, Ruiyang Zhang, Yang Li, Lei Song, Jiaming Yang, Chunxue Wei, and Shuli Niu
SOIL, 8, 687–698, https://doi.org/10.5194/soil-8-687-2022, https://doi.org/10.5194/soil-8-687-2022, 2022
Short summary
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data, 13, 5831–5846, https://doi.org/10.5194/essd-13-5831-2021, https://doi.org/10.5194/essd-13-5831-2021, 2021
Short summary
Short summary
Our database of globally distributed natural soil total P (STP) concentration showed concentration ranged from 1.4 to 9630.0 (mean 570.0) mg kg−1. Global predictions of STP concentration increased with latitude. Global STP stocks (excluding Antarctica) were estimated to be 26.8 and 62.2 Pg in the topsoil and subsoil, respectively. Our global map of STP concentration can be used to constrain Earth system models representing the P cycle and to inform quantification of global soil P availability.
Juhwan Lee, Raphael A. Viscarra Rossel, Mingxi Zhang, Zhongkui Luo, and Ying-Ping Wang
Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, https://doi.org/10.5194/bg-18-5185-2021, 2021
Short summary
Short summary
We performed Roth C simulations across Australia and assessed the response of soil carbon to changing inputs and future climate change using a consistent modelling framework. Site-specific initialisation of the C pools with measurements of the C fractions is essential for accurate simulations of soil organic C stocks and composition at a large scale. With further warming, Australian soils will become more vulnerable to C loss: natural environments > native grazing > cropping > modified grazing.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A.,
Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K.,
Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y.,
Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid
ecosystems in the trend and variability of the land CO2 sink, Science,
348, 895–899, 2015.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.
Baldocchi, D., Chu, H., and Reichstein, M.: Inter-annual variability of net
and gross ecosystem carbon fluxes: A review, Agr. For. Meteorol., 249,
520–533, 2018.
Baldocchi, D., Sturtevant, C., and FLUXNET Contributors: Does day and night
sampling reduce spurious correlation between canopy photosynthesis and
ecosystem respiration?, Agr. Forest Meteorol., 207, 117–126, 2015.
Besnard, S., Carvalhais, N., Arain, A., Black, A., de Bruin, S., Buchmann,
N., Cescatti, A., Chen, J., JClevers, J. G. P. W., Desai, A. R., Gough, C. M., Havrankova, K., Herold, M., Hörtnagl, L., Jung, M., Knohl, A., Kruijt, B., Krupkova, L., Law, B. E., Lindroth, A., Noormets, A., Roupsard, O., Steinbrecher, R., Varlagin, A., Vincke, C., and Reichstein, M.: Quantifying the effect of forest age in annual net forest carbon balance, Environ. Res. Lett., 13, 124018, https://doi.org/10.1088/1748-9326/aaeaeb, 2018.
Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E.,
Kolb, T. E., Yepez, E. A., Oechel, W. C., Blanken, P. D., Bell, T. W.,
Garatuza-Payan, J., Maurer, E., Dore, S., and Burns, S. P.: Terrestrial
carbon balance in a drier world: the effects of water availability in
southwestern North America, Global Change Biol., 22, 1867–1879, 2016.
Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0), Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018, 2018.
Carpenter, S. R. and Brock, W. A.: Rising variance: a leading indicator of
ecological transition, Ecol. Lett., 9, 311–318, 2006.
Churkina, G., Schimel, D., Braswell, B. H., and Xiao, X.: Spatial analysis
of growing season length control over net ecosystem exchange, Global Change
Biol., 11, 1777–1787, 2005.
Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao, S. L.,
Moriarty, R., Broquet, G., Le Quéré, C., Canadell, J. G., Peng, S.,
Poulter, B., Liu Z., and Tans, P.: Five decades of northern land carbon
uptake revealed by the interhemispheric CO2 gradient, Nature, 568,
221–225, 2019.
Cui, E., Huang, K., Arain, M. A., Fisher, J. B., Huntzinger, D. N., Ito, A.,
Luo, Y., Jain, A. K., Mao, J., Michalak, A. M., Niu, S., Parazoo, N. C.,
Peng, C., Peng, S., Poulter, B., Ricciuto, D. M., Schaefer, K. M., Schwalm,
C. R., Shi, X., Tian, H., Wang, W., Wang, J., Wei, Y., Yan, E., Yan, L.,
Zeng, N., Zhu, Q., and Xia, J.: Vegetation functional properties determine
uncertainty of simulated ecosystem productivity: A traceability analysis in
the East Asian monsoon region, Global Biogeochem. Cy., 33, 668–689, 2019.
Fu, Z., Dong, J., Zhou, Y., Stoy, P. C., and Niu, S.: Long term trend and
interannual variability of land carbon uptake-the attribution and processes,
Environ. Res. Lett., 12, 014018, https://doi.org/10.1088/1748-9326/aa5685, 2017.
Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., and
Niu, S.: Maximum carbon uptake rate dominates the interannual variability of
global net ecosystem exchange, Global Change Biol., 25, 3381–3394, 2019.
Gilmanov, T. G., Tieszen, L. L., Wylie, B. K., Flanagan, L. B., Frank, A.
B., Haferkamp, M. R., Meyers, T. P., and Morgan, J. A.: Integration of
CO2 flux and remotely-sensed data for primary production and ecosystem
respiration analyses in the Northern Great Plains: Potential for
quantitative spatial extrapolation, Global Ecol. Biogeogr., 14, 271–292,
2005.
Gray, J. M., Frolking, S., Kort, E. A., Ray, D. K., Kucharik, C. J.,
Ramankutty, N., and Friedl, M. A.: Direct human influence on atmospheric
CO2 seasonality from increased cropland productivity, Nature, 515,
398–401, 2014.
Grömping, U.: Estimators of relative importance in linear regression
based on variance decomposition, Am. Stat., 61, 139–147, 2007.
Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R. B., Cui,
E., Fang, Y., Fisher, J. B., Huntzinger, D. N., Li, Z., Michalak, A. M.,
Qiao, Y., Schaefer, K., Schwalm, C., Wang, J., Wei, Y., Xu, X., Yan, L.,
Bian C., and Luo, Y.: Enhanced peak growth of global vegetation and its key
mechanisms, Nat. Ecol. Evol., 2, 1897–1905, 2018.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y., Weber,
U., Zaehle S., and Zeng, N.: Compensatory water effects link yearly global
land CO2 sink changes to temperature, Nature, 541, 516–520, https://doi.org/10.1038/nature20780, 2017 (data available at: https://www.bgc-jena.mpg.de/geodb/projects/Home.php, last access: 20 January 2020).
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger,
D. Y., Munger, J. W., O'Keefe, J., Schmid, H. P., Wing, I. S., Yang, B., and
Richardson, A. D.: Net carbon uptake has increased through warming-induced
changes in temperate forest phenology, Nat. Clim. Change, 4, 598–604, 2014.
Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin,
D. C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M.,
Baraloto, C., Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S.,
Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., Onoda, Y.,
Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-Benito, P.,
Sun, I., Ståhl, G., Swenson, N. G., Thompson, J., Westerlund, B., Wirth,
C., Zavala, M. A., Zeng, H., Zimmerman, J. K., Zimmermann N. E., and
Westoby, M.: Plant functional traits have globally consistent effects on
competition, Nature, 529, 204–207, 2016.
Lawrence Berkeley National Laboratory: FLUXNET2015 dataset, available at: https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/, last access: February 2019.
Li, G., Han, H., Du, Y., Hui, D., Xia, J., Niu, S., Li, X., and Wan, S.:
Effects of warming and increased precipitation on net ecosystem
productivity: a long-term manipulative experiment in a semiarid grassland,
Agr. Forest Meteorol., 232, 359–366, 2017.
Luo, Y. and Weng, E.: Dynamic disequilibrium of the terrestrial carbon
cycle under global change, Trends Ecol. Evol., 26, 96–104, 2011.
Luo, Y. and Zhou, X.: Soil respiration and the environment, Academic Press, Burlington, VA, 320 pp., 2006.
Marcolla, B., Rödenbeck, C., and Cescatti, A.: Patterns and controls of inter-annual variability in the terrestrial carbon budget, Biogeosciences, 14, 3815–3829, https://doi.org/10.5194/bg-14-3815-2017, 2017.
Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black,
T. A., Janssens, I., Knohl, A., Loustau, D., Roupsard, O., Varlagin, A.,
Rambal, S., Cescatti, A., Gianelle, D., Kondo, H., Tamrakar, R., and
Mahecha, M. D.: Stand age and species richness dampen interannual variation
of ecosystem-level photosynthetic capacity, Nat. Ecol. Evol., 1, 0048, https://doi.org/10.1038/s41559-016-0048, 2017.
Niu, S., Fu, Z., Luo, Y., Stoy, P. C., Keenan, T. F., Poulter, B., Zhang,
L., Piao, S., Zhou, X., Zheng, H., Han, J., Wang, Q., and Yu, G.:
Interannual variability of ecosystem carbon exchange: From observation to
prediction, Global Ecol. Biogeogr., 26, 1225–1237, 2017.
Novick, K. A., Oishi, A. C., Ward, E. J., Siqueira, M. B., Juang, J. Y., and
Stoy, P. C.: On the difference in the net ecosystem exchange of CO2
between deciduous and evergreen forests in the southeastern United States,
Glob. Change Biol., 21, 827–842, 2015.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E.,
Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S.,
Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical
description of version 4.5 of the Community Land Model (CLM), NCAR Earth
System Laboratory-Climate and Global Dynamics Division, Boulder, Colorado,
USA, Tech. Rep. TN-503+STR, available at:
http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf (last access: 27 September 2017), 2013.
Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E.,
Baldocchi, D., and Torn, M.: A new data set to keep a sharper eye on
land-air exchanges, Eos, 98, https://doi.org/10.1029/2017EO071597, 2017.
Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S.,
Piao, S., Ahlström, A., Huntingford, C., Levy, P., Li, X., Liu, Y.,
Lomas, M., Poulter, B., Viovy, N., Wang, T., Wang, X., Zaehle, S., Zeng, N.,
Zhao, F., and Zhao, H.: Benchmarking the seasonal cycle of CO2 fluxes
simulated by terrestrial ecosystem models, Global Biogeochem. Cy., 29,
46–64, 2015.
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, 2013.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W.,
Sitch, S., and van der Werf, G. R.: Contribution of semi-arid ecosystems to
interannual variability of the global carbon cycle, Nature, 509, 600–603,
2014.
Randerson, J. T.: Climate science: Global warming and tropical carbon,
Nature, 494, 319–320, 2013.
Randerson, J. T., Chapin III, F. S., Harden, J. W., Neff, J. C., and Harmon,
M. E.: Net ecosystem production: a comprehensive measure of net carbon
accumulation by ecosystems, Ecol. Appl., 12, 937–947, 2002.
R Development Core Team.: R: A Language and Environment for Statistical
Computing 3-900051-07-0, R Foundation for Statistical Computing, Vienna,
Austria, 2011.
Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.:
Linking plant and ecosystem functional biogeography, P. Natl Acad. Sci.
USA, 111, 13697–13702, 2014.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl,
A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,
Miglietta, F., Ourcival, J., Pumpanen J., Rambal, S., Rotenberg, E., Sanz,
M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and
Valentini, R.: On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: review and improved algorithm, Glob. Change
Biol., 11, 1424–1439, 2005.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O.,
and Toomey, M.: Climate change, phenology, and phenological control of
vegetation feedbacks to the climate system, Agr. For. Meteorol., 169,
156–173, 2013.
Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data, Biogeosciences, 15, 2481–2498, https://doi.org/10.5194/bg-15-2481-2018, 2018 (data available at: http://www.bgc-jena.mpg.de/CarboScope/?ID=s, last access: 6 August 2020).
Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter,
L., Peñuelas, J., and Thonicke, K.: Leaf and stem economics spectra
drive diversity of functional plant traits in a dynamic global vegetation
model, Glob. Change Biol., 21, 2711–2725, 2015.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R.,
Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G.:
Early-warning signals for critical transitions, Nature, 461, 53–59, 2009.
Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C. J.
M. E. A. G., Moors, E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard,
K., Lindroth, A., Grelle, A., Bernhofer, C., Grünwald, T., Aubinet, M.,
Ceulemans, R., Kowalski, A. S., Vesala, T., Rannik, Ü., Berbigier, P.,
Loustau, D., Guðmundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern,
K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi S., and Jarvis, P.
G.: Respiration as the main determinant of carbon balance in European
forests, Nature, 404, 861–865, 2000.
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018.
Xia, J., Chen, J., Piao, S., Ciais, P., Luo, Y., and Wan, S.: Terrestrial
carbon cycle affected by non-uniform climate warming, Nat. Geosci., 7,
173–180, 2014.
Xia, J., McGuire, A. D., Lawrence, D., Burke, E., Chen, G., Chen, X.,
Delire, C., Koven, C., MacDougall, A., Peng, S., Rinke, A., Saito, K.,
Zhang, W., Alkama, R., Bohn, T. J., Ciais, P., Decharme, B., Gouttevin, I.,
Hajima, T., Hayes, D. J., Huang, K., Ji, D., Krinner, G., Lettenmaier, D.
P., Miller, P. A., Moore, J. C., Smith, B., Sueyoshi, T., Shi, Z., Yan, L.,
Liang, J., Jiang, L., Zhang, Q., and Luo, Y.: Terrestrial ecosystem model
performance in simulating productivity and its vulnerability to climate
change in the northern permafrost region, J. Geophys. Res.-Biogeo., 122,
430–446, 2017.
Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., Arain,
A., Blanken, P. D., Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S.,
Chen, S., Dong, J., Flanagan, L. B., Frankenberg, C., Georgiadis, T., Gough,
C. M., Hui, D., Kiely, G., Li, J., Lund, M., Magliulo, V., Marcolla, B.,
Merbold, L., Montagnani, L., Moors, E. J., Olesen, J. E., Piao, S., Raschi,
A., Roupsard, O., Suyker, A. E., Urbaniak, M., Vaccari, F. P., Varlagin, A.,
Vesala, T., Wilkinson, M., Weng, E., Wohlfahrt, G., Yan, L., and Luo, Y.:
Joint control of terrestrial gross primary productivity by plant phenology
and physiology, P. Natl. Acad. Sci. USA, 112, 2788–2793, 2015.
Xia, J., Wang, J., and Niu, S.: Research challenges and opportunities for
using big data in global change biology, Glob. Change Biol., 26, 6040–6061,
https://doi.org/10.1111/gcb.15317, 2020.
Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., and Zhu,
X.: High carbon dioxide uptake by subtropical forest ecosystems in the East
Asian monsoon region, P. Natl Acad. Sci. USA, 111, 4910–4915, 2014.
Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J., West, T.
O., and Guanter, L.: Agricultural Green Revolution as a driver of increasing
atmospheric CO2 seasonal amplitude, Nature, 515, 394–397, 2014.
Zhao, J., Peichl, M., Öquist, M., and Nilsson, M. B.: Gross primary
production controls the subsequent winter CO2 exchange in a boreal
peatland, Glob. Change Biol., 22, 4028–4037, 2016.
Zhou, S., Zhang, Y., Ciais, P., Xiao, X., Luo, Y., Caylor, K. K., Huang, Y.,
and Wang, G.: Dominant role of plant physiology in trend and variability of
gross primary productivity in North America, Sci. Rep.-UK, 7, 41366, https://doi.org/10.1038/srep41366, 2017.
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a...
Altmetrics
Final-revised paper
Preprint