Articles | Volume 18, issue 6
https://doi.org/10.5194/bg-18-2221-2021
https://doi.org/10.5194/bg-18-2221-2021
Research article
 | Highlight paper
 | 
01 Apr 2021
Research article | Highlight paper |  | 01 Apr 2021

Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble

Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski

Related authors

Synthesis of data products for ocean carbonate chemistry
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255,https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Increased future ocean heat uptake constrained by Antarctic sea ice extent
Linus Vogt, Casimir de Lavergne, Jean-Baptiste Sallée, Lester Kwiatkowski, Thomas L. Frölicher, and Jens Terhaar
EGUsphere, https://doi.org/10.21203/rs.3.rs-3982037/v2,https://doi.org/10.21203/rs.3.rs-3982037/v2, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Composite model-based estimate of the ocean carbon sink from 1959 to 2022
Jens Terhaar
Biogeosciences, 22, 1631–1649, https://doi.org/10.5194/bg-22-1631-2025,https://doi.org/10.5194/bg-22-1631-2025, 2025
Short summary
AERA-MIP: emission pathways, remaining budgets, and carbon cycle dynamics compatible with 1.5 and 2 °C global warming stabilization
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024,https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024,https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Modeling the contribution of micronekton diel vertical migrations to carbon export in the mesopelagic zone
Hélène Thibault, Frédéric Ménard, Jeanne Abitbol-Spangaro, Jean-Christophe Poggiale, and Séverine Martini
Biogeosciences, 22, 2181–2200, https://doi.org/10.5194/bg-22-2181-2025,https://doi.org/10.5194/bg-22-2181-2025, 2025
Short summary
Mixing, spatial resolution and argon saturation in a suite of coupled general ocean circulation biogeochemical models off Mauritania
Heiner Dietze and Ulrike Löptien
Biogeosciences, 22, 1215–1236, https://doi.org/10.5194/bg-22-1215-2025,https://doi.org/10.5194/bg-22-1215-2025, 2025
Short summary
Efficiency metrics for ocean alkalinity enhancements under responsive and prescribed atmospheric pCO2 conditions
Michael D. Tyka
Biogeosciences, 22, 341–353, https://doi.org/10.5194/bg-22-341-2025,https://doi.org/10.5194/bg-22-341-2025, 2025
Short summary
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024,https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Acidification and nutrient management are projected to cause reductions in shell and tissue weights of oysters in a coastal plain estuary
Catherine Czajka, Marjorie A. M. Friedrichs, Emily B. Rivest, Pierre St-Laurent, Mark J. Brush, and Fei Da
EGUsphere, https://doi.org/10.5194/egusphere-2024-3359,https://doi.org/10.5194/egusphere-2024-3359, 2024
Short summary

Cited articles

Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 228–232, https://doi.org/10.1038/nature01092, 2002. a
AMAP: AMAP Assessment 2018: Arctic Ocean Acidification, Tech. Rep., Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, 2018. a, b, c, d
Anderson, L., Tanhua, T., Björk, G., Hjalmarsson, S., Jones, E., Jutterström, S., Rudels, B., Swift, J., and Wåhlstöm, I.: Arctic ocean shelf–basin interaction: An active continental shelf CO2 pump and its impact on the degree of calcium carbonate solubility, Deep-Sea Res. Pt. I, 57, 869–879, https://doi.org/10.1016/j.dsr.2010.03.012, 2010. a, b, c
Armstrong, J. L., Boldt, J. L., Cross, A. D., Moss, J. H., Davis, N. D., Myers, K. W., Walker, R. V., Beauchamp, D. A., and Haldorson, L. J.: Distribution, size, and interannual, seasonal and diel food habits of northern Gulf of Alaska juvenile pink salmon, Oncorhynchus gorbuscha, Deep-Sea Res. Pt. II, 52, 247–265, https://doi.org/10.1016/j.dsr2.2004.09.019, 2005. a, b, c
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009. a, b, c
Download
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Share
Altmetrics
Final-revised paper
Preprint