Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Daniel M. Ricciuto
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Peter E. Thornton
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Xiaofeng Xu
Biology Department, San Diego State University, San Diego, CA,
92182-4614, USA
Fengming Yuan
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Richard J. Norby
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Anthony P. Walker
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Jeffrey M. Warren
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Jiafu Mao
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Paul J. Hanson
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Lin Meng
Department of Geological and Atmospheric Sciences, Iowa State
University, Ames, IA, 50011, USA
David Weston
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Natalie A. Griffiths
Climate Change Science Institute and Environmental Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Related authors
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025, https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary
Short summary
We have developed new maps that reveal how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2500 gauges and a wealth of climate and environmental information. The maps are a critical step in understanding and predicting how carbon moves through our environment, hence making them a useful tool for tackling climate challenges.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Rui Su, Kexin Li, Nannan Wang, Fenghui Yuan, Ying Zhao, Yunjiang Zuo, Ying Sun, Liyuan He, Xiaofeng Xu, and Lihua Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3347, https://doi.org/10.5194/egusphere-2024-3347, 2024
Short summary
Short summary
This research examines the effect of sulfate on methane oxidation in soil, finding that sulfate may facilitate methane oxidation. Considering methane's role as a greenhouse gas and rising sulfate deposition, the study aims to predict changes in methane oxidation due to acid deposition. Future experiments will explore microbial mechanisms, as sulfate reduces methane emissions while enhancing its consumption, providing insights for mitigation strategies.
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024, https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Short summary
Soil microbes are the driving engine for biogeochemical cycles of carbon and nutrients. This study applies a microbial-explicit model to quantify bacteria and fungal biomass carbon in soils from 1901 to 2016. Results showed substantial increases in bacterial and fungal biomass carbon over the past century, jointly influenced by vegetation growth and soil temperature and moisture. This pioneering century-long estimation offers crucial insights into soil microbial roles in global carbon cycling.
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024, https://doi.org/10.5194/gmd-17-1525-2024, 2024
Short summary
Short summary
Carbon-rich boreal peatlands are at risk of burning. The reproducibility and predictability of rare peatland fire events are investigated by constructing a two-step error-correcting machine learning framework to tackle such complex systems. Fire occurrence and impacts are highly predictable with our approach. Factor-controlling simulations revealed that temperature, moisture, and freeze–thaw cycles control boreal peatland fires, indicating thermal impacts on causing peat fires.
Kelsey T. Foster, Wu Sun, Yoichi P. Shiga, Jiafu Mao, and Anna M. Michalak
Biogeosciences, 21, 869–891, https://doi.org/10.5194/bg-21-869-2024, https://doi.org/10.5194/bg-21-869-2024, 2024
Short summary
Short summary
Assessing agreement between bottom-up and top-down methods across spatial scales can provide insights into the relationship between ensemble spread (difference across models) and model accuracy (difference between model estimates and reality). We find that ensemble spread is unlikely to be a good indicator of actual uncertainty in the North American carbon balance. However, models that are consistent with atmospheric constraints show stronger agreement between top-down and bottom-up estimates.
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
Daniel M. Ricciuto, Xiaojuan Yang, Dali Wang, and Peter E. Thornton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-163, https://doi.org/10.5194/bg-2021-163, 2021
Publication in BG not foreseen
Short summary
Short summary
This paper uses a novel approach to quantify the impacts of the choice of decomposition model on carbon and nitrogen cycling. We compare the models to experimental data that examined litter decomposition over five different biomes. Despite widely differing assumptions, the models produce similar patterns of decomposition when nutrients are limiting. This differs from past analyses that did not consider the impacts of changing environmental conditions or nutrients.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Cited articles
Ackermann, K., Zackrisson, O., Rousk, J., Jones, D. L., and DeLuca, T. H.:
N2 fixation in feather mosses is a sensitive indicator of N deposition in
boreal forests, Ecosystems, 15, 986–998, 2012.
Barber, V. A., Juday, G. P., and Finney, B. P.: Reduced growth of Alaskan
white spruce in the twentieth century from temperature-induced drought
stress, Nature, 405, 668–673, 2000.
Berg, A., Danielsson, A., and Sevensson, B. H.: Transfer of fixed-N from
N2-fixing cyanobacteria associated with moss sphagnum riparium results in
enhanced growth of the moss, Plant Soil, 362, 271–278,
https://doi.org/10.1007/s11104-012-1278-4, 2013.
Beringer, J., Lynch, A., Chapin, F., Mack, M., and Bonan, G.: The
Representation of Arctic Soils in the Land Surface Model: The Importance of
Mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
Blok, D., Heijmans, M., Schaepman-Strub, G., Van Ruijven, J., Parmentier,
F., Maximov, T., and Berendse, F.: The cooling capacity of mosses: Controls
on water and energy fluxes in a Siberian tundra site, Ecosystems, 14, 1055–1065, 2011.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the
dominant driver of central Canadian boreal forest carbon balance, Nature,
450, 89–92, 2007.
Bragazza, L., Buttler, A., Robroek, B. J., Albrecht, R., Zaccone, C.,
Jassey, V. E., and Signarbieux, C.: Persistent high temperature and low
precipitation reduce peat carbon accumulation, Glob. Change Biol., 22,
4114–4123, https://doi.org/10.1111/gcb.13319, 2016.
Breeuwer, A., Heijmans, M. M., Robroek, B. J., and Berendse, F.: The effect
of temperature on growth and competition between Sphagnum
species, Oecologia, 156, 155–167, https://doi.org/10.1007/s00442-008-0963-8, 2008.
Brown, S. M., Petrone, R. M., Mendoza, C., and Devito, K. J.: Surface
vegetation controls on evapotranspiration from a sub-humid Western Boreal
Plain wetland, Hydrol. Process., 24, 1072–1085, 2010.
Burrows, S. M., Maltrud, M. E., Yang, X., Zhu, Q., Jeffery, N., Shi., X.,
Ricciuto, D. M., Wang, S., Bisht, G., Tang, J., Wolfe, J. D., Harrop, B. E.,
Singh, B., Brent, L., Zhou, Tian, Cameron-Smith P. J., Keen, N., Collier,
N., Xu, M., Hunke, E. C., Elliott, S. M., Turner, A. K., Li, H., Wang, H.,
Golaz, J.-C., Bond-Lamberty, B., Hoffman, F. M., Riley, W. J., Thornton, P. E., Calvin, K., and Leung, L. R.: The DOE E3SM coupled model v1.1 biogeochemistry configuration: overview and evaluation of coupled carbon-climate experiments, J. Adv. Model Earth Sy., 12, e2019MS001766,
https://doi.org/10.1029/2019MS001766, 2020.
Busby, J. R., Bliss, L. C., and Hamilton, C. D.: Microclimate control of growth rates and habitats of the Boreal Forest Mosses, Tomenthypnum nitens and Hylocomium splenden, Ecol. Monogr., 48, 95–110, 1978.
Carrell, A. A., Kolton, M., Warren, M. J., Kostka, J. E., and Weston, D. J.:
Experimental warming alters the community composition, diversity, and N2
fixation activity of peat moss (Sphagnum fallax) microbiomes, Glob. Change
Biol., 25, 2993–3004, dio:10.1111/gcb.14715, 2019.
Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., Cox, P., and Friedlingstein, P.: An improved representation of physical permafrost dynamics in the JULES land-surface model, Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015, 2015.
Chapin III, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., and
Laundre, J. A.: Responses of Arctic tundra to experimental and observed
changes in climate, Ecology, 76, 694–711, 1995.
Chavardes, R. D., Daniels, L. D., Waeber P. O., Innes, J. L., and Nitschke,
C. R.: Unstable climate-growth relations for white spruce in southwest
Yukon, Canada, Climatic Change, 116, 593–611, 2013.
Chen, W. J., Black, T. A., Yang, P. C. Barr, A. G. Neumann, H. H.,
Nešić, Z., Blanken, P. D. Novak, M. D., Eley, J., Ketler, R., and
Cuenca, R. H.: Effects of climatic variability on the annual carbon
sequestration by a boreal aspen forest, Glob. Change Biol., 5, 41–53, 1999.
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth,
Lars O. H., Perakis, S. S., Latty, E. F., Von Fishcher, J. C., Elseroad,
A., and Wasson, M. F.: Global patterns of terrestrial biological nitrogen
(N2) fixation in natural ecosystem, Global Biogeochem. Cy.,
13, 623–645, 1999.
Clymo, R. S. and Hayward, P. M.: The ecology of Sphagnum, in: Bryophyte
Ecology, edited by: Smith, A. I. E., Chapman and Hall Ltd., London, UK, New
York, USA, 229–289, 1982.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental-regulation of stomatal conductance, photosynthesis and
transpiration – a model that includes a laminar boundary-layer, Agr. For. Meteorol., 54, 107–136,1991.
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled photosynthesis-
stomatal model for leaves of C4 plants, Austr. J. Plant
Physiol., 19, 519–538, 1992.
Cornelissen, H. C., Lang, S. I., Soudzilovskaia, N. A., and During, H. J.:
Comparative cryptogam ecology: a review of bryophyte and lichen traits that
drive biogeochemistry, Ann. Bot.-London, 99, 987–1001, 2007.
Druel, A., Peylin, P., Krinner, G., Ciais, P., Viovy, N., Peregon, A., Bastrikov, V., Kosykh, N., and Mironycheva-Tokareva, N.: Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0), Geosci. Model Dev., 10, 4693–4722, https://doi.org/10.5194/gmd-10-4693-2017, 2017.
Duarte, H. F., Raczka, B. M., Ricciuto, D. M., Lin, J. C., Koven, C. D., Thornton, P. E., Bowling, D. R., Lai, C.-T., Bible, K. J., and Ehleringer, J. R.: Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements, Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, 2017.
Euskirchen, E. S., McGuire, A. D., Chapin III, F. S., Yi, S., and Thompson,
C. C.: Changes in vegetation in northern Alaska under scenarios of climate
change, 2003–2100: implications for climate feedbacks, Ecol.
Appl., 19, 1022–1043, 2009.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Fenner, N., Ostle, N. J., Mcnamara, N., Sparks, T., Harmens, H., Reynolds,
B., and Freeman, C.: Elevated CO2 effects on peatland plant community
carbon dynamics and DOC production, Ecosystem, 10, 635–647, 2007.
Frolking, S. and Roulet, N. T.: Holocene radiative forcing impact of northern
peatland carbon accumulation and methane emissions, Glob. Change Biol., 13,
1079–1088, 2007.
Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., and Richard, P. J. H.: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation, Earth Syst. Dynam., 1, 1–21, https://doi.org/10.5194/esd-1-1-2010, 2010.
Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W., Zimmermann, N. E.,
Metsaranta, J. M., de Jong, R., Frank, D. C., Esper, J., Büntgen,
U., Guo, X., and Bhatti, J.: No growth stimulation of Canada's boreal forest
under half-century of combined warming and CO2 fertilization,
P. Natl. Acad. Sci. USA, 113, E8406–E8414, 2016.
Goetz, J. D. and Price, J. S.: Role of morphological structure and layering
of Sphagnum and Tomenthypnum mosses on moss productivity and evaporation
rates, Can. J. Soil Sci., 95, 109–124, https://doi.org/10.4141/CJSS-2014-092, 2015.
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M.,
A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J., G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J.,
Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
Klein, S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W. H.,
Ma, P.-L., Mahajan, S., Maltrud, M., E., Mametjanov, A., McClean, J. L.,
McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves
Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L.,
Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A.,
Thornton, P. E., Tuner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S.,
Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon,
J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang,
Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1:
Overview and evaluation at standard resolution, J. Adv. Model Earth Sy.,
11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.
Gorham, E.: Northern peatlands: role in the carbon cycle and probable
responses to climatic warming, Ecol. Appl., 1, 182–195, 1991.
Granath, G., Limpens, J., Posch, M., Mücher, S., and De
Vries, W.: Spatio-temporal trends of nitrogen deposition and climate effects
on Sphagnum productivity in European peatlands, Environ. Poll.,
187, 73–80, https://doi.org/10.1016/j.envpol.2013.12.023, 2014.
Grant, R. F., Desai, A. R., and Sulman, B. N.: Modelling contrasting responses of wetland productivity to changes in water table depth, Biogeosciences, 9, 4215–4231, https://doi.org/10.5194/bg-9-4215-2012, 2012.
Griffiths, N. A. and Sebestyen, S. D.: Dynamic vertical profiles of peat
porewater chemistry in a northern peatland, Wetland, 36, 1119-1130,
https://doi.org/10.1007/s13157-016-0829-5, 2016.
Griffiths, N. A., Hanson, P. J., Ricciuto, Iversen, C. M., Jensen, A. M.,
Malhotra, A., McFarlane, K. J., Norby, R. J., Sargsyan, K., Sebestyen, S.
D., Shi, X., Walker, A. P., Ward, E. J., Warren, J. M., and Weston, D,
J.: Temporal and spatial variation in peatland carbon cycling and
implications for interpreting responses of an ecosystem-scale warming
experiment, Soil Sci. Soc. Am. J., 81, 1668–1688,
https://doi.org/10.2136/sssaj2016.12.0422, 2018.
Grosvernier, P., Matthey, Y., and Buttler, A.: Growth potential of three
Sphagnum species in relation to water table level and peat properties with
implications for their restoration in cut-over bogs, J. Appl.
Ecol., 34, 471–483, https://doi.org/10.2307/2404891, 1997.
Grosvernier, P. R., Mitchell, E. A. D., Buttler, A., and Gobat, J. M.: Effects of elevated CO2 and nitrogen deposition on natural regeneration processes of cut-over ombrotrophic peat bogs in the Swiss Jura mountains, Glob. Change Prot. Areas, 9, 347–35, 2001.
Gundale, M. J., DeLuca, T. H., and Nordin, A.: Bryophytes attenuate
anthropogenic nitrogen inputs in boreal forests, Glob. Change Biol., 17,
2743–2753, 2011.
Gunnarsson, U., Granberg, G., and Nilsson, M.: Growth, production and
interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire, New Phytol., 163, 349–359,
https://doi.org/10.1111/j.1469-8137.2004.01108.x, 2004.
Hanson, P. J., Riggs, J. S., Nettles, W. R., Krassovski, M. B., and Hook L.
A.: SPRUCE deep peat heating (DPH) environmental data, February 2014 through
July 2015, Oak Ridge National Laboratory, TES SFA, U.S. Department of
Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/spruce.013, 2015a.
Hanson, P. J., Riggs, J. S. Dorrance, C., Nettles, W. R., and Hook, L. A.:
SPRUCE Environmental Monitoring Data: 2010-2016. Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy,
Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/spruce.001,
2015b.
Hanson, P. J., Riggs, J. S., Nettles, W. R., Phillips, J. R., Krassovski, M. B., Hook, L. A., Gu, L., Richardson, A. D., Aubrecht, D. M., Ricciuto, D. M., Warren, J. M., and Barbier, C.: Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere, Biogeosciences, 14, 861–883, https://doi.org/10.5194/bg-14-861-2017, 2017.
Hanson, P. J., Phillips, J. R., Wullschelger, S. D., Nettles, W. R., Warren,
J. M., Ward, E. J.: SPRUCE Tree Growth Assessments of Picea and Larix in
S1-Bog Plots and SPRUCE Experimental Plots beginning in 2011, Oak Ridge
National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge,
Tennessee, USA, https://doi.org/10.25581/spruce.051/1433836, 2018a.
Hanson, P. J., Phillips, J. R., Brice, D. J., and Hook, L. A.: SPRUCE
Shrub-Layer Growth Assessments in S1-Bog Plots and SPRUCE Experimental Plots
beginning in 2010, Oak Ridge National Laboratory, TES SFA, U.S. Department
of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.25581/spruce.052/1433837, 2018b.
Hanson, P. J., Griffiths, N. A., Iversen, C. M., Norby, R. J., Sebestyen, S.
D., Phillips, J. R., Chanton, P., Kolka, R. K., Malhotra, A.,
Oleheiser, K. C., Warren, J. M., Shi, X., Yang, X., Mao, J., and Ricciuto,
D. M.: Rapid net carbon loss from a whole-ecosystem warmed peatland, AGU Adv., 1, e2020AV000163, https://doi.org/10.1029/2020AV000163, 2020.
Heijmans, M., Arp, W. J., and Berendse, F.: Effects of elevated CO2 and
vascular plants on evapotranspiration in bog vegetation, Glob. Change Biol.,
7, 817–827, 2001.
Heijmans, M. M. P. D., Arp, W. J., and Chapin III, F. S.: Carbon dioxide and
water vapour exchange from understory species in boreal forest, Agr. For. Meteorol., 123, 135–147, https://doi.org/10.1016/j.agrformet.2003.12.006, 2004a.
Heijmans, M. M. P. D., Arp, W. J., and Chapin III, F. S.: Controls on moss
evaporation in a boreal black spruce forest, Glob. Biogeochem. Cy.,
18, 1–8, https://doi.org/10.1029/2003GB002128, 2004b.
Heijmans, M. M. P. D., Mauquoy, D., van Geel, B., and Berendse, F.: Long-term
effects of climate change on vegetation and carbon dynamics in peat bogs,
J. Veg. Sci., 19, 307–320, 2008.
Hobbie, S. E.: Temperature and plant species control over litter decomposition in Alaskan tundra, Ecol. Appl., 66, 503–522, 1996.
Hobbie, S. E. and Chapin III, F. S.: The response of tundra plant biomass,
aboveground production, nitrogen, and CO2 flux to experimental warming,
Ecology, 79, 1526–1544, 1998.
Hobbie, S. E., Shevtsova, A., and Chapin III, F. S.: Plant responses to
species removal and experimental warming in Alaskan Tussock Tundra, Oikos
84, 417–434, 1999.
Hoosbeek, M. R., Van Breemen, N., Vasander, H., Buttler, A., and Berendse, F.: Potassium limits potential growth of bog vegetation under elevated
atmospheric CO2 and N deposition, Glob. Change Biol., 8, 1130–1138,
https://doi.org/10.1046/j.1365-2486.2002.00535.x, 2002.
Jauhiainen, J. and Silvola, J.: Photosynthesis of Sphagnum fuscum at long-term
raised CO2 concentrations, Ann. Bot. Fenn., 36, 11–19, 1999.
Jensen, A. M., Warren, J. M., Hook, L. A., Wullschleger, S. D., Brice, D. J.,
Childs, J., and Vander Stel, H. M.: SPRUCE S1 Bog Pretreatment Seasonal
Photosynthesis and Respiration of Trees, Shrubs, and Herbaceous Plants,
2010–2015, Oak Ridge National Laboratory, TES SFA, U.S. Department of
Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/spruce.008, 2018.
Jensen, A. M., Warren, J. M., King, A., Ricciuto, D. M., Hanson, P. J., and
Wullschleger, S. D.: Simulated projections of boreal forest peatland
ecosystem productivity are sensitive to observed seasonality in leaf
phenology, Tree Physiol., 39, 556–572, https://doi.org/10.1093/treephys/tpy140,
2019.
Jiang, J., Huang, Y., Ma, S., Stacy, M., Shi, Z., Ricciuto, D. M., Hanson,
P. J., and Luo, Y.: Forecasting Responses of a Northern Peatland Carbon
Cycle to Elevated CO2 and a Gradient of Experimental Warming, J.
Geophys. Res.-Biogeo., 123, 1057–1071, https://doi.org/10.1002/2017JG004040, 2018.
Juday, G. P. and Alix, C.: Consistent negative temperature sensitivity and
positive influence of precipitation on growth of floodplain Picea glaucain
Interior Alaska, Can. J. For. Res., 42, 561–573, 2012.
Kostka, J. E., Weston, D. J., Glass, J. B., Lilleskov, E. A., Shaw, A. J., and Turetsky, M. R.: The Sphagnum microbiome: new insights from an ancient plant lineage, New Phytol., 211, 57–64, 2016.
Kuiper, J. J., Mooij, W. M., Bragazza, L., and Robroek, B. J.: Plant
functional types define magnitude of drought response in peatland CO2
exchange, Ecology, 95, 123–131, https://doi.org/10.1890/13-0270.1, 2014.
Lafleur, P. M., Hember, R. A., Admiral, S. W., and Roulet, N. T.: Annual and
seasonal variability in evapotranspiration and water table at a
shrub-covered bog in southern Ontario, Canada, Hydrol. Process., 19,
3533–3550, https://doi.org/10.1002/hyp.5842, 2005.
Larmola, T., Leppänen, S. M., Tuittila, E.-S., Aarva, M., Merilä, P., Fritze, H., and Tiirola, M.: Methanotrophy induces nitrogen fixation during peatland development, P. Natl. Acad. Sci. USA, 111, 734–739, https://doi.org/10.1073/pnas.1314284111, 2014.
Launiainen, S., Katul, G. G., Lauren, A., and Kolari, P.: Coupling boreal
forest CO2, H2O and energy flow by a vertically structured forest
canopy-Soil model with separate bryophyte layer, Ecol. Model., 312,
385–405. https://doi.org/10.1016/j.ecolmodel.2015.06.007, 2015.
Lindo, Z. and Gonzalez, A.: The bryosphere: an integral and influential
component of the earth's biosphere, Ecosystems, 13, 612–627, 2010.
Lindo, Z., Nilsson, M. C., and Gundale, M. J.: Bryophyte-cyanobacteria
associations as regulators of the northern latitude carbon balance in
response to global change, Glob. Change Biol., 19, 2022–2035, 2013.
Lu, D. and Ricciuto, D.: Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques, Geosci. Model Dev., 12, 1791–1807, https://doi.org/10.5194/gmd-12-1791-2019, 2019.
Lu, D., Ricciuto, D. M., Stoyanov, M., and Gu, L.: Calibration of the E3SM
Land Model Using Surrogate-Based Global Optimization, J. Adv. Model. Earth Sy., 10, 1337–1356, https://doi.org/10.1002/2017ms001134, 2018.
Man, R., Kayahara, G. J., Rice, J. A., and MacDonald, G. B.: Eleven-year
responses of a boreal mixedwood stand to partial harvesting: light,
vegetation, and regeneration dynamics, For. Ecol. Manag., 255, 697–706, 2008.
Mazziotta, A., Granath, G., Rydin, H., and Bengtsson F.: Scaling functional
traits to ecosystem processes: Towards a mechanistic understanding in peat
mosses, J. Ecol., 107, 843–859, https://doi.org/10.1111/1365-2745.13110, 2018.
McFadden, J. P., Eugster, W., and Chapin III, F. S.: A regional study of the
controls on water vapor and CO2 exchange in Arctic tundra, Ecology,
84, 2762–2776, 2003.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, 2009.
McPartland, M. Y., Montgomery, R. A., Hanson, P. J., Phillips, J. R., Kolka,
R., and Palik, B.: Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland, Environ. Res. Lett., 15, 124066,
https://doi.org/10.1088/1748-9326/abc4fb, 2020.
Metcalfe, D. B., Ricciuto D. M., Palmroth, S., Campbell, Hurry, C. V., Mao,
J., Keel, S. G., Linder, S., Shi, X., Näsholm, T., Ohlsson, K. E. A.,
Blackburn, M., Thornton, P. E., and Oren, R.: Informing climate models with
rapid chamber measurements of forest carbon uptake, Glob. Change Biol.,
23, 2130–2139, https://doi.org/10.1111/gcb.13451, 2017.
Miller, P. A. and Smith, B.: Modelling Tundra Vegetation Response to Recent
Arctic Warming, Ambio, 41, 281–291, https://doi.org/10.1007/s13280-012-0306-1, 2012.
Mokhov, I. I., Eliseev, A. V., and Denisov, S. N.: Model diagnostics of
variations in methane emissions by wetlands in the second half of the 20th
century based on reanalysis data, Dokl. Earth Sci., 417, 1293–1297, 2007.
Moore, T. R., Roulet, N. T., and Waddington, J. M.: Uncertainty in predicting
the effect of climate change on the carbon cycling of Canadian peatlands,
Clim. Change, 40, 229–245, 1998.
Murray, K. J., Tenhunen, J. D., and Nowak, R. S.: Photoinhibition as a control on photosynthesis and production of Sphagnum mosses, Oecologia, 96, 200–207, 1993.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.:
Increased plant growth in the northern high latitudes from 1981 to 1991,
Nature, 386, 698–702, 1997.
Nichols, J. E. and Peteet, D. M.: Rapid expansion of northern peatlands and
doubled estimate of carbon storage, Nat. Geosci. 12, 917–921,
https://doi.org/10.1038/s41561-019-0454-z, 2019.
Nilsson, M. C. and Wardle, D. A.: Understory vegetation as a forest ecosystem
driver: evidence from the northern Swedish boreal forest, Front.
Ecol. Environ., 3, 421–428, 2005.
Norby, R. J. and Childs, J.: SPRUCE: Sphagnum Productivity and Community Composition in the SPRUCE Experimental Plots, Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.25581/spruce.049/1426474, 2018.
Norby, R. J., Childs, J., Hanson, P. J., and Warren, J. M..: Rapid loss of an
ecosystem engineer: Sphagnum decline in an experimentally warmed bog,
Ecol. Evol., 9, 12571–12585, https://doi.org/10.1002/ece3.5722, 2019.
Nungesser, M. K.: Modelling microtopography in boreal peatlands: Hummocks
and hollows, Ecol. Model., 165, 175–207, 2003.
Oechel, W. C. and Van Cleve, K.: The role of bryophytes in nutrient cycling
in the taiga, in: Ecological Studies, Vol. 57: Forest Ecosystems in the
Alaskan Taiga, edited by: Van Cleve, K., Chapin III, F. S., Flanagan, P. W.,
Viereck, L. A., and Dyrness, C. T., Springer, New York, USA, 121–137, 1986.
Oleson, K. W., Lawrence, D. W., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E.,
Lamarque, J., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S.,
Ricciuto, D. M., Sacks, W., Sun,Y., Tang, J., and Yang, Z.: Technical
description of version 4.5 of the Community Land Model (CLM),
NCAR/TN-503+STR, NCAR Technical Note, https://doi.org/10.5065/D6RR1W7M, 2013.
Park, H., Launiainen, S., Konstantinov, P. Y., Iijima, Y., and Fedorov, A.
N.: Modeling the effect of moss cover on soil temperature and carbon fluxes
at a tundra site in northeastern Siberia, J. Geophys. Res.-Biogeo., 123,
3028–3044, https://doi.org/10.1029/2018JG004491, 2018.
Parsekian, A. D., Slater, L., Ntarlagiannis, D., Nolan, J., S. Sebestyen,
D., Kolka, R. K., and Hanson, P. J.: Uncertainty in peat volume and soil
carbon estimated using ground-penetrating radar and probing, Soil Sci. Soc.
Am. J., 76, 1911–1918. https://doi.org/10.2136/sssaj2012.0040, 2012.
Pastor, J., Peckham, B., Bridgham, S., Weltzin, J., and Chen, J.: Plant
community dynamics, nutrient cycling, and alternative stable equilibria in
peatlands, Am. Nat., 160, 553–568, 2002.
Petrone, R., Solondz, D., Macrae, M., Gignac, D., and Devito, K. J.:
Microtopographical and canopy cover controls on moss carbon dioxide exchange
in a western boreal plain peatland, Ecohydrology, 4, 115–129, 2011.
Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating global carbon uptake by lichens and bryophytes with a process-based model, Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, 2013.
Porada, P., Ekici, A., and Beer, C.: Effects of bryophyte and lichen cover on permafrost soil temperature at large scale, The Cryosphere, 10, 2291–2315, https://doi.org/10.5194/tc-10-2291-2016, 2016.
Raczka, B., Duarte, H. F., Koven, C. D., Ricciuto, D., Thornton, P. E., Lin, J. C., and Bowling, D. R.: An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5), Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, 2016.
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. I. C.,
Wolters-Arts, M., Derksen, J., Jetten, M. S. M., Schouten, S., Sinninghe
Damsté, J. S., Lamers, L. P. M., Roelofs, J. G. M., Op den Camp, H. J. M., and Strous, M.: Methanotrophic symbionts provide carbon for photosynthesis in peat bogs, Nature, 436, 1153–1156, https://doi.org/10.1038/nature03802, 2005.
Ricciuto, D. M., Sargsyan, K., and Thornton, P. E.: The Impact of Parametric
Uncertainties on Biogeochemistry in the E3SM Land Model, J. Adv. Model Earth
Sy., 10, 297–319, https://doi.org/10.1002/2017ms000962, 2018.
Ricciuto, D. M., Xu, X., and Shi, X.: dmricciuto/CLM_SPRUCE: Release of CLM_SPRUCE (Version v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.3733924, 2020.
Riutta, T., Laine, J., and Tuittila, E.-S.: Sensitivity of CO2 exchange of
fen ecosystem componetns to water level variation, Ecosystem, 10,
718–733, 2007.
Robroek, B. J. M., Limpens, J., Breeuwer, A., and Schouten, M. G. C.: Effects of water level and temperature on performance of four Sphagnum mosses, Plant
Ecol., 190, 97–107, 2007.
Robroek, B. J. M., Schouten, M. G. C., Limpens, J., Berendse F. and Poorter, H.: Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table, Glob. Change Biol., 15, 680–691, 2009.
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa,
G., Menzel, A., Root, T., Estrella, N., Seguin, B., Tryjanowski, P., Liu,
C., Ravlins, S., and Imeson, A.: Attributing physical and biological impacts
to anthropogenic climate change, Nature, 453, 353–357,
https://doi.org/10.1038/nature06937, 2008.
Rousk, K. and Michelsen, A.: The sensitivity of Moss-Associated Nitrogen
Fixtion towards Repeated Nitrogen Input, Plos One, 11, e0146655,
https://doi.org/10.1371/journal.pone.0146655, 2016.
Rousk, K., Rousk, J., Jones, D. L., Zackrisson, O., and DeLuca, T. H.:
Feather moss nitrogen acquisition across natural fertility gradients in
boreal forests, Soil Biol. Biochem., 61, 86–95, 2013.
Rydin, H.: Effect of water level on desiccation of Sphagnum in relation to
surrounding Sphagna, Oikos, 45, 374–379, https://doi.org/10.2307/3565573,
1985.
Rydin, H. and Clymo, R. S.: Transport of carbon and phosphorus-compounds
about Sphagnum, Proc. R. Soc. Ser. B-Bio., 237, 63–84, https://doi.org/10.1098/rspb.1989.0037, 1989.
Rydsaa, J. H., Stordal, F., Bryn, A., and Tallaksen, L. M.: Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia, Biogeosciences, 14, 4209–4227, https://doi.org/10.5194/bg-14-4209-2017, 2017.
Saarnio, S., Jarvio, S., Saarinen, T., Vasander, H., and Silvola, J.: Minor
changes in vegetation and carbon gas balance in a boreal mire under a raised
CO2 or NH4NO3 supply, Ecosystems 6, 46–60,
https://doi.org/10.1007/s10021-002-0208-3, 2003.
Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D. M.,
and Thornton, P. E.: Dimensionality Reduction for Complex Models Via Bayesian
Compressive Sensing, Int. J. Uncertain. Quan., 4, 63–93, https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821, 2014.
Sebestyen, S. D., Dorrance, C., Olson, D. M., Verry, E. S., Kolka, R. K.,
Elling, A. E., and Kyllander, R.: Long-term monitoring sites and trends at
the Marcell Experimental Forest, in: Peatland biogeochemistry and watershed
hydrology at the Marcell Experimental Forest, edited by: Kolka, R. K.,
Sebestyen, S. D., Verry, E. S., and Brooks, K., CRC Press, New York, USA, 15–71,
2011.
Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J., Sebestyen, S. D., Griffiths, N. A., and Bisht, G.: Representing northern peatland microtopography and hydrology within the Community Land Model, Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, 2015.
Shi, X. and Ricciuto, D.: dmricciuto/ELM_SPRUCE_scripts, Zenodo, https://doi.org/10.5281/zenodo.4439419, 2021.
Silva, L. C. R., Anand, M., and Leithead, M. D.: Recent widespread tree
growth decline despite increasing atmospheric CO2, Plos One, 5, e11543,
https://doi.org/10.1371/journal.pone.0011543, 2010.
Sonnentag, O., Van Der Kamp, G., Barr, A. G., and Chen, J.: on the
relationship between water table depth and water vapor and carbon dioxide
fluxes in a minerotrophic fen, Glob. Change Biol., 16, 1761–1776,
https://doi.org/10.1111/j.1365-2486.2009.02032.x, 2010.
St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and Arora, V.: McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments, Biogeosciences, 7, 3517–3530, https://doi.org/10.5194/bg-7-3517-2010, 2010.
Tenhunen, J. D., Weber, J. A., Yocum, C. S., and Gates, D. M.: Development of a photosynthesis model with an emphasis on ecological applications, Oecologia, 26, 101–119, 1976.
Tian, H., Lu, C., Yang, J., Banger, K., Huntinzger, D. N., Schwalm, C. R.,
Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A.,
Jacobson, A., Jain, A., Lei, H., Mao, J., Pan, S., Post, W. M, Peng, S.,
Poulter, B., Ren, W., Ricciuto, D. M., Schaefer, K., Shi, X., Tao, B., Wang, W., Wei, Y., Yang, Q., Zhang, B., and Zeng, N.: Global patterns of soil carbon stocks and fluxes as simulated by multiple terrestrial biosphere models: sources and magnitude uncertainty, Glob. Biogeochem. Cy., 29, 775–792, https://doi.org/10.1002/2014GB005021, 2015.
Titus, J. E., Wagner, D. J., and Stephens, M. D.: Contrasting Water Relations
of Photosynthesis for 2 Sphagnum Mosses, Ecology, 64, 1109–1115, 1983.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Toet, S., Cornelissen, J. H., Aerts, R., van Logtestijn, R. S., de Beus, M.,
Stoevelaar, R.: Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland, Plants and climate change, Springer,
Netherlands, 27–42, 2006.
Turetsky, M. R. and Wieder, R. K.: Boreal bog Sphagnum refixes
soil-produced and respired 14CO2, Ecoscience, 6, 587–591,
https://doi.org/10.1080/11956860.1999.11682559, 1999.
Turetsky, M. R., Wieder, R. K., and Vitt, D. H.: Boreal peatland C fluxes
under varying permafrost regimes, Soil Biol. Biochem., 34, 907–912, 2002.
Turetsky, M. R., Mack, M .C., Hollingsworth, T. N., and Harden, J. W.: The role of mosses in ecosystem succession and function in Alaska's boreal forest, Can. J. For. Res., 4, 1237–1264, 2010.
Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking,
S., McGuire, A. D., and Tuittila, E.-S.: The resilience and functional role
of moss in boreal and arctic ecosystems, New Phytol., 196, 49–67,
https://doi.org/10.1111/j.1469-8137.2012.04254.x, 2012.
Van, B. N.: How Sphagnum bogs down other plants, Trends Ecol. Evol., 10,
270–275, 1995.
Van Der Heijden, E., Verbeek, S. K., Kuiper, P. J. C.: Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.),
Warnst. Glob. Change Biol., 6, 201–212, https://doi.org/10.1046/j.1365-2486.2000.00303.x, 2000.
van der Schaaf, S.: Bog hydrology, in: Conservation and Restoration of
Raised Bogs: Geological, Hydrological and Ecological Studies, edited by:
Schouten, M. G. C., The Government Stationery Office, Dublin, Ireland, 54–109, 2002.
van der Wal, R., Pearce, I. S. K., and Brooker, R. W.: Mosses and the struggle
for light in a nitrogen-polluted world, Oecologia, 142, 159–168, 2005.
Van Gaalen, K. E., Flanagan, L. B., and Peddle, D. R.: Photosynthesis,
chlorophyll fluorescence and spectral reflectance in Sphagnum moss at
varying water contents, Oecologia, 153, 19–28,
https://doi.org/10.1007/s00442-007-0718-y, 2007.
Verry, E. S. and Jansenns, J.: Geology, vegetation, and hydrology of the S2
bog at the MEF: 12,000 years in northern Minnesota, in Peatland
biogeochemistry and watershed hydrology at the Marcell Experimental Forest,
edited by Kolka, R. K., Sebestyen, S. D., Verry, E. S., and Brooks, K. N., CRC Press, New York, USA, 93–134, 2011.
Vile, M. A., Kelman Wieder, R., Živkovicì, T., Scott, K. D., Vitt, D. H.,
Hartsock, J. A., Iosue, C. L., Quinn, J. C., Petix, M., Fillingim, H. M.,
Popma, J. M. A., Dynarski, K. A., Jackman, T. R., Albright, C. M., and Wykoff, D. D.: N2-fixation by methanotrophs sustains carbon and nitrogen
accumulation in pristine peatlands, Biogeochemistry, 121, 317–328,
https://doi.org/10.1007/s10533-014-0019-6, 2014.
Vitt, D. H.: A key and review of bryophytes common in North American
peatlands, Evansia, 31, 121–158, 2014.
Walker, A. P., Carter, K. R., Gu, L., Hanson, P. J., Malhotra, A., Norby,
R. J., Sebestyen, S. D., Wullschleger, S. D., Weston, D. J.: 2017.
Biophysical drivers of seasonal variability in Sphagnum gross primary
production in a northern temperate bog, J. Geophys. Res.-Biogeo., 122,
1078–1097, https://doi.org/10.1002/2016JG003711, 2017.
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B., Epstein, H. E., Jonsdottir, I. S., Klein, J. A., Magnusson, B., Molau, U., Oberbauer,S. F., Rewa, S. P., Robinson, C. H., Shaver, G. R., Suding, K. N., Thompson, C. C., Tolvanen, A., Totland, O., Turner, P. L., Tweedie, C. E., Webber, and P. J., Wookey, P. A.: Plant community responses to experimental warming across the tundra biome, P. Natl. Acad. Sci. USA, 103 1342–1346, 2006.
Walker, T. N., Ward, S. E., Ostle, N. J., and Bardgett, R. D.: Contrasting
growth responses of dominant peatland plants to warming and vegetation
composition, Oecologia, 178, 141–151, https://doi.org/10.1007/s00442-015-3254-1, 2015.
Wania, R., Ross, I., Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 1. Evaluation and sensitivity of
physical land surface processes, Glob. Biogeochem. Cy., 23, GB3014,
https://doi.org/10.1029/2008GB003412, 2009.
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian, H., van Bodegom, P. M., Kleinen, T., Yu, Z. C., Singarayer, J. S., Zürcher, S., Lettenmaier, D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, 2013.
Weltzin, J. F., Harth, C., Bridgham, S. D., Pastor, J., and Vonderharr, M.:
Production and microtopography of bog bryophytes: response to warming and
water-table manipulations, Oecologia, 128, 557–565, https://doi.org/10.1007/s004420100691, 2001.
Weston, D. J., Timm, C. M., Walker, A. P., Gu, L., Muchero, W., Schmuta, J.,
Shaw, A. J., Tuskan, G. A., Warren, J. M., and Wllschleger, S. D.: Sphagnum
physiology in the context of changing climate: Emergent influences of
genomics, modeling and host-microbiome interactions on understanding
ecosystem function, Plant Cell Environ., 38, 1737–1751, https://doi.org/10.1111/pce.12458, 2015.
White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.:
Parameterization and sensitivity analysis of the BIOME-BGC terrestrial
ecosystem model: Net primary production controls, Earth Interact., 4,
1–85, 2000.
Wieder R. K.: Primary production in boreal peatlands, in: Boreal peatland
ecosystems, edited by: Wieder, R. K. and Vitt, D. H., Springer-Verlag,
Berlin, Heidelberg, Germany, 145–163, 2006.
Williams, T. G. and Flanagan, L. B.: Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium, Plant Cell Environ., 21, 555–564, 1998.
Wilmking, M., Juday, G. P., Barber, V. A., and Zald, H. S. J.: Recent
climate warming forces contrasting growth responses of white spruce at
treeline in Alaska through temperature thresholds, Glob. Change Biol.
10, 1724–1736, 2004.
Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and
ecosystem function of the Barents Region, Clim. Change, 87, 51–73,
https://doi.org/10.1007/s10584-007-9342-4, 2008.
Wolken, J. M., Mann, D. H., Grant, T. A., Lloyd, A. H., Rupp, T. S., and
Hollingsworth, T. N.: 2016. Climate-growth relationships along a black
spruce topose-quence in interior Alaska, Arct. Antarct. Alp.
Res., 48, 637–652, 2016.
Wu, J. and Roulet, N. T.: Climate change reduces the capacity of northern
peatlands to absorb the atmospheric carbon dioxide: The different responses
of bogs and fens, Glob. Biogeochem. Cy., 28, 1005–1024, https://doi.org/10.1002/2014GB004845, 2014.
Wu, J., Roulet, N. T., Sagerfors, J., Nilsson, M. B.: Simulation of six
years of carbon fluxes for a sedge-dominated oligotrophic minerogenic
peatland in Northern Sweden using the McGill Wetland Model (MWM), J.
Geophys. Res.-Biogeo., 118, 795–807, https://doi.org/10.1002/jgrg.20045, 2013.
Wu, Y. and Blodau, C.: PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands, Geosci. Model Dev., 6, 1173–1207, https://doi.org/10.5194/gmd-6-1173-2013, 2013.
Wu, Y., Verseghy, D. L., and Melton, J. R.: Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0, Geosci. Model Dev., 9, 2639–2663, https://doi.org/10.5194/gmd-9-2639-2016, 2016.
Yang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F.,
Norby R. J.: The effects of phosphorus cycle dynamics on carbon sources and
sinks in the Amazon region: a modeling study using ELM v1, J. Geophys.
Res.-Biogeo, 124, 3686–3698, https://doi.org/10.1029/2019JG005082, 2019.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37,
L13402, https://doi.org/10.1029/2010GL043584, 2010.
Yurova, A., Wolf, A., Sagerfors, J., and Nilsson, M.: Variations in net
ecosystem exchange of carbon dioxide in a boreal mire: Modeling mechanisms
linked to water table position, J. Geophys. Res.-Biogeo., 112, G02025,
https://doi.org/10.1029/2006JG000342, 2007.
Zhang, W. X., Miller, P. A., Smith, B., Wania, R., Koenigk, T., and Doscher,
R.: Tundra shrubification and tree-line advance amplify arctic climate
warming: results from an individual-based dynamic vegetation model,
Environ. Res. Lett., 8, 034023,
https://doi.org/10.1088/1748-9326/8/3/034023, 2013.
Zhuang, Q., Melillo, J. M., Sarofim, M. C., Kicklighter, D. W., McGuire, A. D., Felzer, B. S., Sokolov, A., Prinn, R. G., Steudler, P. A., and Hu, S.: CO2 and CH4 exchanges between land ecosystems and the atmosphere in
northern high latitudes over the 21st century, Geophys. Res. Lett., 33,
L17403, https://doi.org/10.1029/2006GL026972, 2006.
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the...
Altmetrics
Final-revised paper
Preprint