Research article
20 Jan 2021
Research article
| 20 Jan 2021
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Xiaoying Shi et al.
Related authors
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Binghao Jia, Xin Luo, Ximing Cai, Atul Jain, Deborah N. Huntzinger, Zhenghui Xie, Ning Zeng, Jiafu Mao, Xiaoying Shi, Akihiko Ito, Yaxing Wei, Hanqin Tian, Benjamin Poulter, Dan Hayes, and Kevin Schaefer
Earth Syst. Dynam., 11, 235–249, https://doi.org/10.5194/esd-11-235-2020, https://doi.org/10.5194/esd-11-235-2020, 2020
Short summary
Short summary
We quantitatively examined the relative contributions of climate change, land
use and land cover change, and elevated CO2 to interannual variations and seasonal cycle amplitude of gross primary productivity (GPP) in China based on multi-model ensemble simulations. The contributions of major subregions to the temporal change in China's total GPP are also presented. This work may help us better understand GPP spatiotemporal patterns and their responses to regional changes and human activities.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
J. Mao, D. M. Ricciuto, P. E. Thornton, J. M. Warren, A. W. King, X. Shi, C. M. Iversen, and R. J. Norby
Biogeosciences, 13, 641–657, https://doi.org/10.5194/bg-13-641-2016, https://doi.org/10.5194/bg-13-641-2016, 2016
Short summary
Short summary
The aim of this study is to implement, calibrate and evaluate the CLM4 against carbon and hydrology observations from a shading and labeling experiment in a stand of young loblolly pines. We found a combination of parameters measured on-site and calibration targeting biomass, transpiration, and 13C discrimination gave good agreement with pretreatment measurements. We also used observations from the experiment to develop a conceptual model of short-term photosynthate storage and transport.
X. Shi, P. E. Thornton, D. M. Ricciuto, P. J. Hanson, J. Mao, S. D. Sebestyen, N. A. Griffiths, and G. Bisht
Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, https://doi.org/10.5194/bg-12-6463-2015, 2015
W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt
Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, https://doi.org/10.5194/gmd-8-2203-2015, 2015
Short summary
Short summary
The integrated Earth system model (iESM) has been developed as a
new tool for projecting the joint human-climate system. The
iESM is based upon coupling an integrated assessment model (IAM)
and an Earth system model (ESM) into a common modeling
infrastructure. By introducing heretofore-omitted
feedbacks between natural and societal drivers in iESM, we can improve
scientific understanding of the human-Earth system
dynamics.
Y. Wei, S. Liu, D. N. Huntzinger, A. M. Michalak, N. Viovy, W. M. Post, C. R. Schwalm, K. Schaefer, A. R. Jacobson, C. Lu, H. Tian, D. M. Ricciuto, R. B. Cook, J. Mao, and X. Shi
Geosci. Model Dev., 7, 2875–2893, https://doi.org/10.5194/gmd-7-2875-2014, https://doi.org/10.5194/gmd-7-2875-2014, 2014
A. V. Di Vittorio, L. P. Chini, B. Bond-Lamberty, J. Mao, X. Shi, J. Truesdale, A. Craig, K. Calvin, A. Jones, W. D. Collins, J. Edmonds, G. C. Hurtt, P. Thornton, and A. Thomson
Biogeosciences, 11, 6435–6450, https://doi.org/10.5194/bg-11-6435-2014, https://doi.org/10.5194/bg-11-6435-2014, 2014
Short summary
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
B. Bond-Lamberty, K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Y. Shi, A. Thomson, P. Thornton, and Y. Zhou
Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, https://doi.org/10.5194/gmd-7-2545-2014, 2014
D. N. Huntzinger, C. Schwalm, A. M. Michalak, K. Schaefer, A. W. King, Y. Wei, A. Jacobson, S. Liu, R. B. Cook, W. M. Post, G. Berthier, D. Hayes, M. Huang, A. Ito, H. Lei, C. Lu, J. Mao, C. H. Peng, S. Peng, B. Poulter, D. Riccuito, X. Shi, H. Tian, W. Wang, N. Zeng, F. Zhao, and Q. Zhu
Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, https://doi.org/10.5194/gmd-6-2121-2013, 2013
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Guido Ceccherini, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Matthew J. McGrath, Julia Nabel, Benjamin Poulter, Simone Rossi, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-245, https://doi.org/10.5194/essd-2022-245, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing transparency and confidence in land-use CO2 flux estimates.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-130, https://doi.org/10.5194/bg-2022-130, 2022
Revised manuscript has not been submitted
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models likely have substantial consequences for projections of future carbon uptake.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
Daniel M. Ricciuto, Xiaojuan Yang, Dali Wang, and Peter E. Thornton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-163, https://doi.org/10.5194/bg-2021-163, 2021
Revised manuscript has not been submitted
Short summary
Short summary
This paper uses a novel approach to quantify the impacts of the choice of decomposition model on carbon and nitrogen cycling. We compare the models to experimental data that examined litter decomposition over five different biomes. Despite widely differing assumptions, the models produce similar patterns of decomposition when nutrients are limiting. This differs from past analyses that did not consider the impacts of changing environmental conditions or nutrients.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Martin Jung, Christopher Schwalm, Mirco Migliavacca, Sophia Walther, Gustau Camps-Valls, Sujan Koirala, Peter Anthoni, Simon Besnard, Paul Bodesheim, Nuno Carvalhais, Frédéric Chevallier, Fabian Gans, Daniel S. Goll, Vanessa Haverd, Philipp Köhler, Kazuhito Ichii, Atul K. Jain, Junzhi Liu, Danica Lombardozzi, Julia E. M. S. Nabel, Jacob A. Nelson, Michael O'Sullivan, Martijn Pallandt, Dario Papale, Wouter Peters, Julia Pongratz, Christian Rödenbeck, Stephen Sitch, Gianluca Tramontana, Anthony Walker, Ulrich Weber, and Markus Reichstein
Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, https://doi.org/10.5194/bg-17-1343-2020, 2020
Short summary
Short summary
We test the approach of producing global gridded carbon fluxes based on combining machine learning with local measurements, remote sensing and climate data. We show that we can reproduce seasonal variations in carbon assimilated by plants via photosynthesis and in ecosystem net carbon balance. The ecosystem’s mean carbon balance and carbon flux trends require cautious interpretation. The analysis paves the way for future improvements of the data-driven assessment of carbon fluxes.
Binghao Jia, Xin Luo, Ximing Cai, Atul Jain, Deborah N. Huntzinger, Zhenghui Xie, Ning Zeng, Jiafu Mao, Xiaoying Shi, Akihiko Ito, Yaxing Wei, Hanqin Tian, Benjamin Poulter, Dan Hayes, and Kevin Schaefer
Earth Syst. Dynam., 11, 235–249, https://doi.org/10.5194/esd-11-235-2020, https://doi.org/10.5194/esd-11-235-2020, 2020
Short summary
Short summary
We quantitatively examined the relative contributions of climate change, land
use and land cover change, and elevated CO2 to interannual variations and seasonal cycle amplitude of gross primary productivity (GPP) in China based on multi-model ensemble simulations. The contributions of major subregions to the temporal change in China's total GPP are also presented. This work may help us better understand GPP spatiotemporal patterns and their responses to regional changes and human activities.
Elias C. Massoud, Chonggang Xu, Rosie A. Fisher, Ryan G. Knox, Anthony P. Walker, Shawn P. Serbin, Bradley O. Christoffersen, Jennifer A. Holm, Lara M. Kueppers, Daniel M. Ricciuto, Liang Wei, Daniel J. Johnson, Jeffrey Q. Chambers, Charlie D. Koven, Nate G. McDowell, and Jasper A. Vrugt
Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, https://doi.org/10.5194/gmd-12-4133-2019, 2019
Short summary
Short summary
We conducted a comprehensive sensitivity analysis to understand behaviors of a demographic vegetation model within a land surface model. By running the model 5000 times with changing input parameter values, we found that (1) the photosynthetic capacity controls carbon fluxes, (2) the allometry is important for tree growth, and (3) the targeted carbon storage is important for tree survival. These results can provide guidance on improved model parameterization for a better fit to observations.
Xuecao Li, Yuyu Zhou, Lin Meng, Ghassem R. Asrar, Chaoqun Lu, and Qiusheng Wu
Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019, https://doi.org/10.5194/essd-11-881-2019, 2019
Short summary
Short summary
We generated a long-term (1985–2015) and medium-resolution (30 m) product of phenology indicators in urban domains in the conterminous US using Landsat satellite observations. The derived phenology indicators agree well with in situ observations and provide more spatial details in complex urban areas compared to the existing coarse resolution phenology products (e.g., MODIS). The published data are of great use for urban phenology studies (e.g., pollen-induced respiratory allergies).
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069–2089, https://doi.org/10.5194/gmd-12-2069-2019, https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Short summary
Here we used a simple analytical framework developed by Comins and McMurtrie (1993) to investigate how different model assumptions affected plant responses to elevated CO2. This framework is useful in revealing both the consequences and the mechanisms through which different assumptions affect predictions. We therefore recommend the use of this framework to analyze the likely outcomes of new assumptions before introducing them to complex model structures.
Dan Lu and Daniel Ricciuto
Geosci. Model Dev., 12, 1791–1807, https://doi.org/10.5194/gmd-12-1791-2019, https://doi.org/10.5194/gmd-12-1791-2019, 2019
Short summary
Short summary
This work uses machine-learning techniques to advance the predictive understanding of large-scale Earth systems.
Junyi Liang, Gangsheng Wang, Daniel M. Ricciuto, Lianhong Gu, Paul J. Hanson, Jeffrey D. Wood, and Melanie A. Mayes
Geosci. Model Dev., 12, 1601–1612, https://doi.org/10.5194/gmd-12-1601-2019, https://doi.org/10.5194/gmd-12-1601-2019, 2019
Short summary
Short summary
Soil respiration, the second largest carbon fluxes between the atmosphere and land, is not well represented in global land models. In this study, using long-term observations at a temperate forest, we identified a solution for using better soil water potential simulations to improve predictions of soil respiration in the E3SM land model. In addition, parameter calibration further improved model performance.
Yuanyuan Huang, Mark Stacy, Jiang Jiang, Nilutpal Sundi, Shuang Ma, Volodymyr Saruta, Chang Gyo Jung, Zheng Shi, Jianyang Xia, Paul J. Hanson, Daniel Ricciuto, and Yiqi Luo
Geosci. Model Dev., 12, 1119–1137, https://doi.org/10.5194/gmd-12-1119-2019, https://doi.org/10.5194/gmd-12-1119-2019, 2019
Short summary
Short summary
Predicting future changes in ecosystem services is not only highly desirable but is also becoming feasible as several forces are converging to transform ecological research into quantitative forecasting. To realize ecological forecasting, we have developed an Ecological Platform for Assimilating Data (EcoPAD) into models. EcoPAD also has the potential to become an interactive tool for resource management, stimulate citizen science in ecology, and transform environmental education.
Jianqiu Zheng, Peter E. Thornton, Scott L. Painter, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 16, 663–680, https://doi.org/10.5194/bg-16-663-2019, https://doi.org/10.5194/bg-16-663-2019, 2019
Short summary
Short summary
Arctic warming exposes soil carbon to increased degradation, increasing CO2 and CH4 emissions. Models underrepresent anaerobic decomposition that predominates wet soils. We simulated microbial growth, pH regulation, and anaerobic carbon decomposition in a new model, parameterized and validated with prior soil incubation data. The model accurately simulated CO2 production and strong influences of water content, pH, methanogen biomass, and competing electron acceptors on CH4 production.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Misha B. Krassovski, Glen E. Lyon, Jeffery S. Riggs, and Paul J. Hanson
Geosci. Instrum. Method. Data Syst., 7, 289–295, https://doi.org/10.5194/gi-7-289-2018, https://doi.org/10.5194/gi-7-289-2018, 2018
Short summary
Short summary
Climate change studies are growing and related experiments are getting bigger and more complex. They are often conducted in remote areas where communications are limited. In cases like that the data can be transferred via a satellite connection, but these types of connections are slow. We found that by using the little known possibilities of LoggerNet software (the most popular data logger software in environmental science) it is possible to transfer quite a large amount of data.
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159–3185, https://doi.org/10.5194/gmd-11-3159-2018, https://doi.org/10.5194/gmd-11-3159-2018, 2018
Short summary
Short summary
Large uncertainty is inherent in model predictions due to imperfect knowledge of how to describe the processes that a model is intended to represent. Yet methods to quantify and evaluate this model hypothesis uncertainty are limited. To address this, the multi-assumption architecture and testbed (MAAT) automates the generation of all possible models by combining multiple representations of multiple processes. MAAT provides a formal framework for quantification of model hypothesis uncertainty.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Zhiwei Xu, Guirui Yu, Xinyu Zhang, Nianpeng He, Qiufeng Wang, Shengzhong Wang, Xiaofeng Xu, Ruili Wang, and Ning Zhao
Biogeosciences, 15, 1217–1228, https://doi.org/10.5194/bg-15-1217-2018, https://doi.org/10.5194/bg-15-1217-2018, 2018
Short summary
Short summary
Forest types with specific soil conditions supported the development of distinct soil microbial communities with variable functions. Our results indicate that the main controls on soil microbes and functions vary across forest ecosystems in different climatic zones. This information will add value to the modeling of microbial processes and will contribute to carbon cycling on a large scale.
Gautam Bisht, William J. Riley, Haruko M. Wainwright, Baptiste Dafflon, Fengming Yuan, and Vladimir E. Romanovsky
Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018, https://doi.org/10.5194/gmd-11-61-2018, 2018
Short summary
Short summary
The land model integrated into the Energy Exascale Earth System Model was extended to include snow redistribution (SR) and lateral subsurface hydrologic and thermal processes. Simulation results at a polygonal tundra site near Barrow, Alaska, showed that inclusion of SR resulted in a better agreement with observations. Excluding lateral subsurface processes had a small impact on mean states but caused a large overestimation of spatial variability in soil moisture and temperature.
Henrique F. Duarte, Brett M. Raczka, Daniel M. Ricciuto, John C. Lin, Charles D. Koven, Peter E. Thornton, David R. Bowling, Chun-Ta Lai, Kenneth J. Bible, and James R. Ehleringer
Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, https://doi.org/10.5194/bg-14-4315-2017, 2017
Short summary
Short summary
We evaluate the Community Land Model (CLM4.5) against observations at an old-growth coniferous forest site that is subjected to water stress each summer. We found that, after calibration, CLM was able to reasonably simulate the observed fluxes of energy and carbon, carbon stocks, carbon isotope ratios, and ecosystem response to water stress. This study demonstrates that carbon isotopes can expose structural weaknesses in CLM and provide a key constraint that may guide future model development.
Dan Lu, Daniel Ricciuto, Anthony Walker, Cosmin Safta, and William Munger
Biogeosciences, 14, 4295–4314, https://doi.org/10.5194/bg-14-4295-2017, https://doi.org/10.5194/bg-14-4295-2017, 2017
Short summary
Short summary
Calibration of terrestrial ecosystem models (TEMs) is important but challenging. This study applies an advanced sampling technique for parameter estimation of a TEM. The results improve the model fit and predictive performance.
Erik A. Hobbie, Janet Chen, Paul J. Hanson, Colleen M. Iversen, Karis J. McFarlane, Nathan R. Thorp, and Kirsten S. Hofmockel
Biogeosciences, 14, 2481–2494, https://doi.org/10.5194/bg-14-2481-2017, https://doi.org/10.5194/bg-14-2481-2017, 2017
Short summary
Short summary
We measured carbon and nitrogen isotope ratios (13C : 12C and 15N : 14N) in peat cores in a northern Minnesota bog to understand how climate, vegetation type, and decomposition affected C and N budgets over the last 9000 years. 13C : 12C patterns were primarily influenced by shifts in temperature, peatland vegetation and atmospheric CO2, whereas tree colonization and upland N influxes affected 15N : 14N ratios. Isotopic markers provided new insights into long-term patterns of CO2 and nitrogen losses.
Paul J. Hanson, Jeffery S. Riggs, W. Robert Nettles, Jana R. Phillips, Misha B. Krassovski, Leslie A. Hook, Lianhong Gu, Andrew D. Richardson, Donald M. Aubrecht, Daniel M. Ricciuto, Jeffrey M. Warren, and Charlotte Barbier
Biogeosciences, 14, 861–883, https://doi.org/10.5194/bg-14-861-2017, https://doi.org/10.5194/bg-14-861-2017, 2017
Short summary
Short summary
This paper describes operational methods to achieve whole-ecosystem warming (WEW) for tall-stature, high-carbon, boreal forest peatlands. The methods enable scientists to study immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles). The WEW technology allows researchers to have a plausible glimpse of future environmental conditions for study that are not available in the current observational record.
Dóra Hidy, Zoltán Barcza, Hrvoje Marjanović, Maša Zorana Ostrogović Sever, Laura Dobor, Györgyi Gelybó, Nándor Fodor, Krisztina Pintér, Galina Churkina, Steven Running, Peter Thornton, Gianni Bellocchi, László Haszpra, Ferenc Horváth, Andrew Suyker, and Zoltán Nagy
Geosci. Model Dev., 9, 4405–4437, https://doi.org/10.5194/gmd-9-4405-2016, https://doi.org/10.5194/gmd-9-4405-2016, 2016
Short summary
Short summary
This paper provides detailed documentation on the changes implemented in the widely used biogeochemical model Biome-BGC. The version containing all improvements is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module). Case studies on forest, cropland, and grassland are presented to demonstrate the effect of developments on the simulation. By using Biome-BGCMuSo, it became possible to analyze the effects of different environmental conditions and human activities on the ecosystems.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Jitendra Kumar, Nathan Collier, Gautam Bisht, Richard T. Mills, Peter E. Thornton, Colleen M. Iversen, and Vladimir Romanovsky
The Cryosphere, 10, 2241–2274, https://doi.org/10.5194/tc-10-2241-2016, https://doi.org/10.5194/tc-10-2241-2016, 2016
Short summary
Short summary
Microtopography of the low-gradient polygonal tundra plays a critical role in these ecosystem; however, patterns and drivers are poorly understood. A modeling-based approach was developed in this study to characterize and represent the permafrost soils in the model and simulate the thermal dynamics using a mechanistic high-resolution model. Results shows the ability of the model to simulate the patterns and variability of thermal regimes and improve our understanding of polygonal tundra.
Brett Raczka, Henrique F. Duarte, Charles D. Koven, Daniel Ricciuto, Peter E. Thornton, John C. Lin, and David R. Bowling
Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, https://doi.org/10.5194/bg-13-5183-2016, 2016
Short summary
Short summary
We use carbon isotopes of CO2 to improve the performance of a land surface model, a component with earth system climate models. We found that isotope observations can provide important information related to the exchange of carbon and water from vegetation driven by environmental stress from low atmospheric moisture and nitrogen limitation. It follows that isotopes have a unique potential to improve model performance and provide insight into land surface model development.
Guoping Tang, Jianqiu Zheng, Xiaofeng Xu, Ziming Yang, David E. Graham, Baohua Gu, Scott L. Painter, and Peter E. Thornton
Biogeosciences, 13, 5021–5041, https://doi.org/10.5194/bg-13-5021-2016, https://doi.org/10.5194/bg-13-5021-2016, 2016
Short summary
Short summary
We extend the Community Land Model coupled with carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) describes the observed pH evolution. Fe reduction can increase pH toward neutral pH to facilitate methanogenesis.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Xiaofeng Xu, Fengming Yuan, Paul J. Hanson, Stan D. Wullschleger, Peter E. Thornton, William J. Riley, Xia Song, David E. Graham, Changchun Song, and Hanqin Tian
Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, https://doi.org/10.5194/bg-13-3735-2016, 2016
Short summary
Short summary
Accurately projecting future climate change requires a good methane modeling. However, how good the current models are and what are the key improvements needed remain unclear. This paper reviews the 40 published methane models to characterize the strengths and weakness of current methane models and further lay out the roadmap for future model improvements.
Guoping Tang, Fengming Yuan, Gautam Bisht, Glenn E. Hammond, Peter C. Lichtner, Jitendra Kumar, Richard T. Mills, Xiaofeng Xu, Ben Andre, Forrest M. Hoffman, Scott L. Painter, and Peter E. Thornton
Geosci. Model Dev., 9, 927–946, https://doi.org/10.5194/gmd-9-927-2016, https://doi.org/10.5194/gmd-9-927-2016, 2016
Short summary
Short summary
We demonstrate that CLM-PFLOTRAN predictions are consistent with CLM4.5 for Arctic, temperate, and tropical sites. A tight relative tolerance may be needed to avoid false convergence when scaling, clipping, or log transformation is used to avoid negative concentration in implicit time stepping and Newton-Raphson methods. The log transformation method is accurate and robust while relaxing relative tolerance or using the clipping or scaling method can result in efficient solutions.
J. Mao, D. M. Ricciuto, P. E. Thornton, J. M. Warren, A. W. King, X. Shi, C. M. Iversen, and R. J. Norby
Biogeosciences, 13, 641–657, https://doi.org/10.5194/bg-13-641-2016, https://doi.org/10.5194/bg-13-641-2016, 2016
Short summary
Short summary
The aim of this study is to implement, calibrate and evaluate the CLM4 against carbon and hydrology observations from a shading and labeling experiment in a stand of young loblolly pines. We found a combination of parameters measured on-site and calibration targeting biomass, transpiration, and 13C discrimination gave good agreement with pretreatment measurements. We also used observations from the experiment to develop a conceptual model of short-term photosynthate storage and transport.
X. Shi, P. E. Thornton, D. M. Ricciuto, P. J. Hanson, J. Mao, S. D. Sebestyen, N. A. Griffiths, and G. Bisht
Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, https://doi.org/10.5194/bg-12-6463-2015, 2015
W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt
Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, https://doi.org/10.5194/gmd-8-2203-2015, 2015
Short summary
Short summary
The integrated Earth system model (iESM) has been developed as a
new tool for projecting the joint human-climate system. The
iESM is based upon coupling an integrated assessment model (IAM)
and an Earth system model (ESM) into a common modeling
infrastructure. By introducing heretofore-omitted
feedbacks between natural and societal drivers in iESM, we can improve
scientific understanding of the human-Earth system
dynamics.
C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm, M. Williams, and P. E. Thornton
Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, https://doi.org/10.5194/gmd-8-1899-2015, 2015
Short summary
Short summary
In this paper we propose a probabilistic framework for an uncertainty quantification study of a carbon cycle model and focus on the comparison between steady-state and transient
simulation setups. We study model parameters via global sensitivity analysis and employ a Bayesian approach to calibrate these parameters using NEE observations at the Harvard Forest site. The calibration results are then used to assess the predictive skill of the model via posterior predictive checks.
J. Klaus, J. J. McDonnell, C. R. Jackson, E. Du, and N. A. Griffiths
Hydrol. Earth Syst. Sci., 19, 125–135, https://doi.org/10.5194/hess-19-125-2015, https://doi.org/10.5194/hess-19-125-2015, 2015
Y. Wei, S. Liu, D. N. Huntzinger, A. M. Michalak, N. Viovy, W. M. Post, C. R. Schwalm, K. Schaefer, A. R. Jacobson, C. Lu, H. Tian, D. M. Ricciuto, R. B. Cook, J. Mao, and X. Shi
Geosci. Model Dev., 7, 2875–2893, https://doi.org/10.5194/gmd-7-2875-2014, https://doi.org/10.5194/gmd-7-2875-2014, 2014
A. V. Di Vittorio, L. P. Chini, B. Bond-Lamberty, J. Mao, X. Shi, J. Truesdale, A. Craig, K. Calvin, A. Jones, W. D. Collins, J. Edmonds, G. C. Hurtt, P. Thornton, and A. Thomson
Biogeosciences, 11, 6435–6450, https://doi.org/10.5194/bg-11-6435-2014, https://doi.org/10.5194/bg-11-6435-2014, 2014
Short summary
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
B. Bond-Lamberty, K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Y. Shi, A. Thomson, P. Thornton, and Y. Zhou
Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, https://doi.org/10.5194/gmd-7-2545-2014, 2014
X. Yang, P. E. Thornton, D. M. Ricciuto, and W. M. Post
Biogeosciences, 11, 1667–1681, https://doi.org/10.5194/bg-11-1667-2014, https://doi.org/10.5194/bg-11-1667-2014, 2014
D. N. Huntzinger, C. Schwalm, A. M. Michalak, K. Schaefer, A. W. King, Y. Wei, A. Jacobson, S. Liu, R. B. Cook, W. M. Post, G. Berthier, D. Hayes, M. Huang, A. Ito, H. Lei, C. Lu, J. Mao, C. H. Peng, S. Peng, B. Poulter, D. Riccuito, X. Shi, H. Tian, W. Wang, N. Zeng, F. Zhao, and Q. Zhu
Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, https://doi.org/10.5194/gmd-6-2121-2013, 2013
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
Related subject area
Biogeochemistry: Modelling, Terrestrial
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Effect of land use legacy on the future carbon sink for the conterminous U.S.
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon
Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe
Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage
Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA
Global modelling of soil carbonyl sulfide exchanges
Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa
The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework
A robust initialization method for accurate soil organic carbon simulations
Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)
Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS
Theoretical insights from upscaling Michaelis–Menten microbial dynamics in biogeochemical models: a dimensionless approach
Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Optimal model complexity for terrestrial carbon cycle prediction
CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon
Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season
Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model
Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: insights from a mechanistic model
The climate benefit of carbon sequestration
Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models
Robust processing of airborne laser scans to plant area density profiles
Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model
Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content
Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2
Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator
Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget
Historical CO2 emissions from land use and land cover change and their uncertainty
A Bayesian approach to evaluation of soil biogeochemical models
Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Wide discrepancies in the magnitude and direction of modeled solar-induced chlorophyll fluorescence in response to light conditions
Modeling biological nitrogen fixation in global natural terrestrial ecosystems
The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought
Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Benjamin Seth Felzer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-208, https://doi.org/10.5194/bg-2022-208, 2022
Revised manuscript accepted for BG
Short summary
Short summary
The future of the terrestrial carbon sink depends upon the legacy of past land use, which determines the stand age of the forest and nutrient levels in the soil, both of which affect vegetation growth. This study uses a modeling approach to determine the effects of land use legacy in the conterminous U.S. from 1750 to 2099. Not accounting for land legacy results in a low carbon sink and high biomass, while water variables are not as highly affected.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Chris H. Wilson and Stefan Gerber
Biogeosciences, 18, 5669–5679, https://doi.org/10.5194/bg-18-5669-2021, https://doi.org/10.5194/bg-18-5669-2021, 2021
Short summary
Short summary
To better mitigate against climate change, it is imperative that ecosystem scientists understand how microbes decompose organic carbon in the soil and thereby release it as carbon dioxide into the atmosphere. A major challenge is the high variability across ecosystems in microbial biomass and in the environmental factors like temperature that drive their activity. In this paper, we use math to better understand how this variability impacts carbon dioxide release over large scales.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021, https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Short summary
Representing biological nitrogen fixation (BNF) is an important challenge for land models. We present a novel representation of BNF and updated nitrogen cycling in a land model. It includes a representation of asymbiotic BNF by soil microbes and the competitive dynamics between nitrogen-fixing and non-fixing plants. It improves estimations of major carbon and nitrogen pools and fluxes and their temporal dynamics in comparison to previous representations of BNF in land models.
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021, https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021, https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary
Short summary
The combined effects of ozone and nitrogen deposition on the terrestrial carbon uptake and storage has been unclear. Our simulations, from 1850 to 2099, show that ozone-related damage considerably reduced gross primary production and carbon storage in the past. The growth-stimulating effect induced by nitrogen deposition is offset until the 2050s. Accounting for nitrogen deposition without considering ozone effects might lead to an overestimation of terrestrial carbon uptake and storage.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020, https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Jinnan Gong, Nigel Roulet, Steve Frolking, Heli Peltola, Anna M. Laine, Nicola Kokkonen, and Eeva-Stiina Tuittila
Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020, https://doi.org/10.5194/bg-17-5693-2020, 2020
Short summary
Short summary
In this study, which combined a field and lab experiment with modelling, we developed a process-based model for simulating dynamics within peatland moss communities. The model is useful because Sphagnum mosses are key engineers in peatlands; their response to changes in climate via altered hydrology controls the feedback of peatland biogeochemistry to climate. Our work showed that moss capitulum traits related to water retention are the mechanism controlling moss layer dynamics in peatlands.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Thomas Gasser, Léa Crepin, Yann Quilcaille, Richard A. Houghton, Philippe Ciais, and Michael Obersteiner
Biogeosciences, 17, 4075–4101, https://doi.org/10.5194/bg-17-4075-2020, https://doi.org/10.5194/bg-17-4075-2020, 2020
Short summary
Short summary
We combine several lines of evidence to provide a robust estimate of historical CO2 emissions from land use change. Our novel approach leads to reduced uncertainty and identifies key remaining sources of uncertainty and discrepancy.
We also quantify the carbon removal by natural ecosystems that would have occurred if these ecosystems had not been destroyed (mostly via deforestation). Over the last decade, this foregone carbon sink amounted to about 50 % of the actual emissions.
Hua W. Xie, Adriana L. Romero-Olivares, Michele Guindani, and Steven D. Allison
Biogeosciences, 17, 4043–4057, https://doi.org/10.5194/bg-17-4043-2020, https://doi.org/10.5194/bg-17-4043-2020, 2020
Short summary
Short summary
Soil biogeochemical models (SBMs) are needed to predict future soil CO2 emissions levels, but we presently lack statistically rigorous frameworks for assessing the predictive utility of SBMs. In this study, we demonstrate one possible approach to evaluating SBMs by comparing the fits of two models to soil CO2 respiration data with recently developed Bayesian statistical goodness-of-fit metrics. Our results demonstrate that our approach is a viable one for continued development and refinement.
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020, https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Short summary
Carbon dioxide is produced by soil microbes through respiration, which is particularly fast when soils are moistened by rain. Will respiration increase with future more intense rains and longer dry spells? With a mathematical model, we show that wetter conditions increase respiration. In contrast, if rainfall totals stay the same, but rain comes all at once after long dry spells, the average respiration will not change, but the contribution of the respiration bursts after rain will increase.
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Short summary
Satellite measurements of solar-induced chlorophyll fluorescence (SIF) provide a global measure of photosynthetic change. This enables scientists to better track carbon cycle responses to environmental change and tune biochemical processes in vegetation models for an improved simulation of future change. We use tower-instrumented SIF measurements and controlled model experiments to assess the state of the art in terrestrial biosphere SIF modeling and find a wide range of sensitivities to light.
Tong Yu and Qianlai Zhuang
Biogeosciences, 17, 3643–3657, https://doi.org/10.5194/bg-17-3643-2020, https://doi.org/10.5194/bg-17-3643-2020, 2020
Short summary
Short summary
Biological nitrogen fixation (BNF) plays an important role in the global nitrogen cycle. However, the fixation rate has usually been measured or estimated at a particular observational site. This study develops a BNF model considering the symbiotic relationship between legume plants and bacteria. The model is extensively calibrated with site-level observational data and then extrapolated to the global terrestrial ecosystems to quantify the fixation rate in the 1990s.
Simon Jones, Lucy Rowland, Peter Cox, Deborah Hemming, Andy Wiltshire, Karina Williams, Nicholas C. Parazoo, Junjie Liu, Antonio C. L. da Costa, Patrick Meir, Maurizio Mencuccini, and Anna B. Harper
Biogeosciences, 17, 3589–3612, https://doi.org/10.5194/bg-17-3589-2020, https://doi.org/10.5194/bg-17-3589-2020, 2020
Short summary
Short summary
Non-structural carbohydrates (NSCs) are an important set of molecules that help plants to grow and respire when photosynthesis is restricted by extreme climate events. In this paper we present a simple model of NSC storage and assess the effect that it has on simulations of vegetation at the ecosystem scale. Our model has the potential to significantly change predictions of plant behaviour in global vegetation models, which would have large implications for predictions of the future climate.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Cited articles
Ackermann, K., Zackrisson, O., Rousk, J., Jones, D. L., and DeLuca, T. H.:
N2 fixation in feather mosses is a sensitive indicator of N deposition in
boreal forests, Ecosystems, 15, 986–998, 2012.
Barber, V. A., Juday, G. P., and Finney, B. P.: Reduced growth of Alaskan
white spruce in the twentieth century from temperature-induced drought
stress, Nature, 405, 668–673, 2000.
Berg, A., Danielsson, A., and Sevensson, B. H.: Transfer of fixed-N from
N2-fixing cyanobacteria associated with moss sphagnum riparium results in
enhanced growth of the moss, Plant Soil, 362, 271–278,
https://doi.org/10.1007/s11104-012-1278-4, 2013.
Beringer, J., Lynch, A., Chapin, F., Mack, M., and Bonan, G.: The
Representation of Arctic Soils in the Land Surface Model: The Importance of
Mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
Blok, D., Heijmans, M., Schaepman-Strub, G., Van Ruijven, J., Parmentier,
F., Maximov, T., and Berendse, F.: The cooling capacity of mosses: Controls
on water and energy fluxes in a Siberian tundra site, Ecosystems, 14, 1055–1065, 2011.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the
dominant driver of central Canadian boreal forest carbon balance, Nature,
450, 89–92, 2007.
Bragazza, L., Buttler, A., Robroek, B. J., Albrecht, R., Zaccone, C.,
Jassey, V. E., and Signarbieux, C.: Persistent high temperature and low
precipitation reduce peat carbon accumulation, Glob. Change Biol., 22,
4114–4123, https://doi.org/10.1111/gcb.13319, 2016.
Breeuwer, A., Heijmans, M. M., Robroek, B. J., and Berendse, F.: The effect
of temperature on growth and competition between Sphagnum
species, Oecologia, 156, 155–167, https://doi.org/10.1007/s00442-008-0963-8, 2008.
Brown, S. M., Petrone, R. M., Mendoza, C., and Devito, K. J.: Surface
vegetation controls on evapotranspiration from a sub-humid Western Boreal
Plain wetland, Hydrol. Process., 24, 1072–1085, 2010.
Burrows, S. M., Maltrud, M. E., Yang, X., Zhu, Q., Jeffery, N., Shi., X.,
Ricciuto, D. M., Wang, S., Bisht, G., Tang, J., Wolfe, J. D., Harrop, B. E.,
Singh, B., Brent, L., Zhou, Tian, Cameron-Smith P. J., Keen, N., Collier,
N., Xu, M., Hunke, E. C., Elliott, S. M., Turner, A. K., Li, H., Wang, H.,
Golaz, J.-C., Bond-Lamberty, B., Hoffman, F. M., Riley, W. J., Thornton, P. E., Calvin, K., and Leung, L. R.: The DOE E3SM coupled model v1.1 biogeochemistry configuration: overview and evaluation of coupled carbon-climate experiments, J. Adv. Model Earth Sy., 12, e2019MS001766,
https://doi.org/10.1029/2019MS001766, 2020.
Busby, J. R., Bliss, L. C., and Hamilton, C. D.: Microclimate control of growth rates and habitats of the Boreal Forest Mosses, Tomenthypnum nitens and Hylocomium splenden, Ecol. Monogr., 48, 95–110, 1978.
Carrell, A. A., Kolton, M., Warren, M. J., Kostka, J. E., and Weston, D. J.:
Experimental warming alters the community composition, diversity, and N2
fixation activity of peat moss (Sphagnum fallax) microbiomes, Glob. Change
Biol., 25, 2993–3004, dio:10.1111/gcb.14715, 2019.
Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., Cox, P., and Friedlingstein, P.: An improved representation of physical permafrost dynamics in the JULES land-surface model, Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015, 2015.
Chapin III, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., and
Laundre, J. A.: Responses of Arctic tundra to experimental and observed
changes in climate, Ecology, 76, 694–711, 1995.
Chavardes, R. D., Daniels, L. D., Waeber P. O., Innes, J. L., and Nitschke,
C. R.: Unstable climate-growth relations for white spruce in southwest
Yukon, Canada, Climatic Change, 116, 593–611, 2013.
Chen, W. J., Black, T. A., Yang, P. C. Barr, A. G. Neumann, H. H.,
Nešić, Z., Blanken, P. D. Novak, M. D., Eley, J., Ketler, R., and
Cuenca, R. H.: Effects of climatic variability on the annual carbon
sequestration by a boreal aspen forest, Glob. Change Biol., 5, 41–53, 1999.
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth,
Lars O. H., Perakis, S. S., Latty, E. F., Von Fishcher, J. C., Elseroad,
A., and Wasson, M. F.: Global patterns of terrestrial biological nitrogen
(N2) fixation in natural ecosystem, Global Biogeochem. Cy.,
13, 623–645, 1999.
Clymo, R. S. and Hayward, P. M.: The ecology of Sphagnum, in: Bryophyte
Ecology, edited by: Smith, A. I. E., Chapman and Hall Ltd., London, UK, New
York, USA, 229–289, 1982.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental-regulation of stomatal conductance, photosynthesis and
transpiration – a model that includes a laminar boundary-layer, Agr. For. Meteorol., 54, 107–136,1991.
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled photosynthesis-
stomatal model for leaves of C4 plants, Austr. J. Plant
Physiol., 19, 519–538, 1992.
Cornelissen, H. C., Lang, S. I., Soudzilovskaia, N. A., and During, H. J.:
Comparative cryptogam ecology: a review of bryophyte and lichen traits that
drive biogeochemistry, Ann. Bot.-London, 99, 987–1001, 2007.
Druel, A., Peylin, P., Krinner, G., Ciais, P., Viovy, N., Peregon, A., Bastrikov, V., Kosykh, N., and Mironycheva-Tokareva, N.: Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0), Geosci. Model Dev., 10, 4693–4722, https://doi.org/10.5194/gmd-10-4693-2017, 2017.
Duarte, H. F., Raczka, B. M., Ricciuto, D. M., Lin, J. C., Koven, C. D., Thornton, P. E., Bowling, D. R., Lai, C.-T., Bible, K. J., and Ehleringer, J. R.: Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements, Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, 2017.
Euskirchen, E. S., McGuire, A. D., Chapin III, F. S., Yi, S., and Thompson,
C. C.: Changes in vegetation in northern Alaska under scenarios of climate
change, 2003–2100: implications for climate feedbacks, Ecol.
Appl., 19, 1022–1043, 2009.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Fenner, N., Ostle, N. J., Mcnamara, N., Sparks, T., Harmens, H., Reynolds,
B., and Freeman, C.: Elevated CO2 effects on peatland plant community
carbon dynamics and DOC production, Ecosystem, 10, 635–647, 2007.
Frolking, S. and Roulet, N. T.: Holocene radiative forcing impact of northern
peatland carbon accumulation and methane emissions, Glob. Change Biol., 13,
1079–1088, 2007.
Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., and Richard, P. J. H.: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation, Earth Syst. Dynam., 1, 1–21, https://doi.org/10.5194/esd-1-1-2010, 2010.
Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W., Zimmermann, N. E.,
Metsaranta, J. M., de Jong, R., Frank, D. C., Esper, J., Büntgen,
U., Guo, X., and Bhatti, J.: No growth stimulation of Canada's boreal forest
under half-century of combined warming and CO2 fertilization,
P. Natl. Acad. Sci. USA, 113, E8406–E8414, 2016.
Goetz, J. D. and Price, J. S.: Role of morphological structure and layering
of Sphagnum and Tomenthypnum mosses on moss productivity and evaporation
rates, Can. J. Soil Sci., 95, 109–124, https://doi.org/10.4141/CJSS-2014-092, 2015.
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M.,
A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J., G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J.,
Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
Klein, S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W. H.,
Ma, P.-L., Mahajan, S., Maltrud, M., E., Mametjanov, A., McClean, J. L.,
McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves
Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L.,
Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A.,
Thornton, P. E., Tuner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S.,
Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon,
J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang,
Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1:
Overview and evaluation at standard resolution, J. Adv. Model Earth Sy.,
11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.
Gorham, E.: Northern peatlands: role in the carbon cycle and probable
responses to climatic warming, Ecol. Appl., 1, 182–195, 1991.
Granath, G., Limpens, J., Posch, M., Mücher, S., and De
Vries, W.: Spatio-temporal trends of nitrogen deposition and climate effects
on Sphagnum productivity in European peatlands, Environ. Poll.,
187, 73–80, https://doi.org/10.1016/j.envpol.2013.12.023, 2014.
Grant, R. F., Desai, A. R., and Sulman, B. N.: Modelling contrasting responses of wetland productivity to changes in water table depth, Biogeosciences, 9, 4215–4231, https://doi.org/10.5194/bg-9-4215-2012, 2012.
Griffiths, N. A. and Sebestyen, S. D.: Dynamic vertical profiles of peat
porewater chemistry in a northern peatland, Wetland, 36, 1119-1130,
https://doi.org/10.1007/s13157-016-0829-5, 2016.
Griffiths, N. A., Hanson, P. J., Ricciuto, Iversen, C. M., Jensen, A. M.,
Malhotra, A., McFarlane, K. J., Norby, R. J., Sargsyan, K., Sebestyen, S.
D., Shi, X., Walker, A. P., Ward, E. J., Warren, J. M., and Weston, D,
J.: Temporal and spatial variation in peatland carbon cycling and
implications for interpreting responses of an ecosystem-scale warming
experiment, Soil Sci. Soc. Am. J., 81, 1668–1688,
https://doi.org/10.2136/sssaj2016.12.0422, 2018.
Grosvernier, P., Matthey, Y., and Buttler, A.: Growth potential of three
Sphagnum species in relation to water table level and peat properties with
implications for their restoration in cut-over bogs, J. Appl.
Ecol., 34, 471–483, https://doi.org/10.2307/2404891, 1997.
Grosvernier, P. R., Mitchell, E. A. D., Buttler, A., and Gobat, J. M.: Effects of elevated CO2 and nitrogen deposition on natural regeneration processes of cut-over ombrotrophic peat bogs in the Swiss Jura mountains, Glob. Change Prot. Areas, 9, 347–35, 2001.
Gundale, M. J., DeLuca, T. H., and Nordin, A.: Bryophytes attenuate
anthropogenic nitrogen inputs in boreal forests, Glob. Change Biol., 17,
2743–2753, 2011.
Gunnarsson, U., Granberg, G., and Nilsson, M.: Growth, production and
interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire, New Phytol., 163, 349–359,
https://doi.org/10.1111/j.1469-8137.2004.01108.x, 2004.
Hanson, P. J., Riggs, J. S., Nettles, W. R., Krassovski, M. B., and Hook L.
A.: SPRUCE deep peat heating (DPH) environmental data, February 2014 through
July 2015, Oak Ridge National Laboratory, TES SFA, U.S. Department of
Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/spruce.013, 2015a.
Hanson, P. J., Riggs, J. S. Dorrance, C., Nettles, W. R., and Hook, L. A.:
SPRUCE Environmental Monitoring Data: 2010-2016. Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy,
Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/spruce.001,
2015b.
Hanson, P. J., Riggs, J. S., Nettles, W. R., Phillips, J. R., Krassovski, M. B., Hook, L. A., Gu, L., Richardson, A. D., Aubrecht, D. M., Ricciuto, D. M., Warren, J. M., and Barbier, C.: Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere, Biogeosciences, 14, 861–883, https://doi.org/10.5194/bg-14-861-2017, 2017.
Hanson, P. J., Phillips, J. R., Wullschelger, S. D., Nettles, W. R., Warren,
J. M., Ward, E. J.: SPRUCE Tree Growth Assessments of Picea and Larix in
S1-Bog Plots and SPRUCE Experimental Plots beginning in 2011, Oak Ridge
National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge,
Tennessee, USA, https://doi.org/10.25581/spruce.051/1433836, 2018a.
Hanson, P. J., Phillips, J. R., Brice, D. J., and Hook, L. A.: SPRUCE
Shrub-Layer Growth Assessments in S1-Bog Plots and SPRUCE Experimental Plots
beginning in 2010, Oak Ridge National Laboratory, TES SFA, U.S. Department
of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.25581/spruce.052/1433837, 2018b.
Hanson, P. J., Griffiths, N. A., Iversen, C. M., Norby, R. J., Sebestyen, S.
D., Phillips, J. R., Chanton, P., Kolka, R. K., Malhotra, A.,
Oleheiser, K. C., Warren, J. M., Shi, X., Yang, X., Mao, J., and Ricciuto,
D. M.: Rapid net carbon loss from a whole-ecosystem warmed peatland, AGU Adv., 1, e2020AV000163, https://doi.org/10.1029/2020AV000163, 2020.
Heijmans, M., Arp, W. J., and Berendse, F.: Effects of elevated CO2 and
vascular plants on evapotranspiration in bog vegetation, Glob. Change Biol.,
7, 817–827, 2001.
Heijmans, M. M. P. D., Arp, W. J., and Chapin III, F. S.: Carbon dioxide and
water vapour exchange from understory species in boreal forest, Agr. For. Meteorol., 123, 135–147, https://doi.org/10.1016/j.agrformet.2003.12.006, 2004a.
Heijmans, M. M. P. D., Arp, W. J., and Chapin III, F. S.: Controls on moss
evaporation in a boreal black spruce forest, Glob. Biogeochem. Cy.,
18, 1–8, https://doi.org/10.1029/2003GB002128, 2004b.
Heijmans, M. M. P. D., Mauquoy, D., van Geel, B., and Berendse, F.: Long-term
effects of climate change on vegetation and carbon dynamics in peat bogs,
J. Veg. Sci., 19, 307–320, 2008.
Hobbie, S. E.: Temperature and plant species control over litter decomposition in Alaskan tundra, Ecol. Appl., 66, 503–522, 1996.
Hobbie, S. E. and Chapin III, F. S.: The response of tundra plant biomass,
aboveground production, nitrogen, and CO2 flux to experimental warming,
Ecology, 79, 1526–1544, 1998.
Hobbie, S. E., Shevtsova, A., and Chapin III, F. S.: Plant responses to
species removal and experimental warming in Alaskan Tussock Tundra, Oikos
84, 417–434, 1999.
Hoosbeek, M. R., Van Breemen, N., Vasander, H., Buttler, A., and Berendse, F.: Potassium limits potential growth of bog vegetation under elevated
atmospheric CO2 and N deposition, Glob. Change Biol., 8, 1130–1138,
https://doi.org/10.1046/j.1365-2486.2002.00535.x, 2002.
Jauhiainen, J. and Silvola, J.: Photosynthesis of Sphagnum fuscum at long-term
raised CO2 concentrations, Ann. Bot. Fenn., 36, 11–19, 1999.
Jensen, A. M., Warren, J. M., Hook, L. A., Wullschleger, S. D., Brice, D. J.,
Childs, J., and Vander Stel, H. M.: SPRUCE S1 Bog Pretreatment Seasonal
Photosynthesis and Respiration of Trees, Shrubs, and Herbaceous Plants,
2010–2015, Oak Ridge National Laboratory, TES SFA, U.S. Department of
Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/spruce.008, 2018.
Jensen, A. M., Warren, J. M., King, A., Ricciuto, D. M., Hanson, P. J., and
Wullschleger, S. D.: Simulated projections of boreal forest peatland
ecosystem productivity are sensitive to observed seasonality in leaf
phenology, Tree Physiol., 39, 556–572, https://doi.org/10.1093/treephys/tpy140,
2019.
Jiang, J., Huang, Y., Ma, S., Stacy, M., Shi, Z., Ricciuto, D. M., Hanson,
P. J., and Luo, Y.: Forecasting Responses of a Northern Peatland Carbon
Cycle to Elevated CO2 and a Gradient of Experimental Warming, J.
Geophys. Res.-Biogeo., 123, 1057–1071, https://doi.org/10.1002/2017JG004040, 2018.
Juday, G. P. and Alix, C.: Consistent negative temperature sensitivity and
positive influence of precipitation on growth of floodplain Picea glaucain
Interior Alaska, Can. J. For. Res., 42, 561–573, 2012.
Kostka, J. E., Weston, D. J., Glass, J. B., Lilleskov, E. A., Shaw, A. J., and Turetsky, M. R.: The Sphagnum microbiome: new insights from an ancient plant lineage, New Phytol., 211, 57–64, 2016.
Kuiper, J. J., Mooij, W. M., Bragazza, L., and Robroek, B. J.: Plant
functional types define magnitude of drought response in peatland CO2
exchange, Ecology, 95, 123–131, https://doi.org/10.1890/13-0270.1, 2014.
Lafleur, P. M., Hember, R. A., Admiral, S. W., and Roulet, N. T.: Annual and
seasonal variability in evapotranspiration and water table at a
shrub-covered bog in southern Ontario, Canada, Hydrol. Process., 19,
3533–3550, https://doi.org/10.1002/hyp.5842, 2005.
Larmola, T., Leppänen, S. M., Tuittila, E.-S., Aarva, M., Merilä, P., Fritze, H., and Tiirola, M.: Methanotrophy induces nitrogen fixation during peatland development, P. Natl. Acad. Sci. USA, 111, 734–739, https://doi.org/10.1073/pnas.1314284111, 2014.
Launiainen, S., Katul, G. G., Lauren, A., and Kolari, P.: Coupling boreal
forest CO2, H2O and energy flow by a vertically structured forest
canopy-Soil model with separate bryophyte layer, Ecol. Model., 312,
385–405. https://doi.org/10.1016/j.ecolmodel.2015.06.007, 2015.
Lindo, Z. and Gonzalez, A.: The bryosphere: an integral and influential
component of the earth's biosphere, Ecosystems, 13, 612–627, 2010.
Lindo, Z., Nilsson, M. C., and Gundale, M. J.: Bryophyte-cyanobacteria
associations as regulators of the northern latitude carbon balance in
response to global change, Glob. Change Biol., 19, 2022–2035, 2013.
Lu, D. and Ricciuto, D.: Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques, Geosci. Model Dev., 12, 1791–1807, https://doi.org/10.5194/gmd-12-1791-2019, 2019.
Lu, D., Ricciuto, D. M., Stoyanov, M., and Gu, L.: Calibration of the E3SM
Land Model Using Surrogate-Based Global Optimization, J. Adv. Model. Earth Sy., 10, 1337–1356, https://doi.org/10.1002/2017ms001134, 2018.
Man, R., Kayahara, G. J., Rice, J. A., and MacDonald, G. B.: Eleven-year
responses of a boreal mixedwood stand to partial harvesting: light,
vegetation, and regeneration dynamics, For. Ecol. Manag., 255, 697–706, 2008.
Mazziotta, A., Granath, G., Rydin, H., and Bengtsson F.: Scaling functional
traits to ecosystem processes: Towards a mechanistic understanding in peat
mosses, J. Ecol., 107, 843–859, https://doi.org/10.1111/1365-2745.13110, 2018.
McFadden, J. P., Eugster, W., and Chapin III, F. S.: A regional study of the
controls on water vapor and CO2 exchange in Arctic tundra, Ecology,
84, 2762–2776, 2003.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, 2009.
McPartland, M. Y., Montgomery, R. A., Hanson, P. J., Phillips, J. R., Kolka,
R., and Palik, B.: Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland, Environ. Res. Lett., 15, 124066,
https://doi.org/10.1088/1748-9326/abc4fb, 2020.
Metcalfe, D. B., Ricciuto D. M., Palmroth, S., Campbell, Hurry, C. V., Mao,
J., Keel, S. G., Linder, S., Shi, X., Näsholm, T., Ohlsson, K. E. A.,
Blackburn, M., Thornton, P. E., and Oren, R.: Informing climate models with
rapid chamber measurements of forest carbon uptake, Glob. Change Biol.,
23, 2130–2139, https://doi.org/10.1111/gcb.13451, 2017.
Miller, P. A. and Smith, B.: Modelling Tundra Vegetation Response to Recent
Arctic Warming, Ambio, 41, 281–291, https://doi.org/10.1007/s13280-012-0306-1, 2012.
Mokhov, I. I., Eliseev, A. V., and Denisov, S. N.: Model diagnostics of
variations in methane emissions by wetlands in the second half of the 20th
century based on reanalysis data, Dokl. Earth Sci., 417, 1293–1297, 2007.
Moore, T. R., Roulet, N. T., and Waddington, J. M.: Uncertainty in predicting
the effect of climate change on the carbon cycling of Canadian peatlands,
Clim. Change, 40, 229–245, 1998.
Murray, K. J., Tenhunen, J. D., and Nowak, R. S.: Photoinhibition as a control on photosynthesis and production of Sphagnum mosses, Oecologia, 96, 200–207, 1993.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.:
Increased plant growth in the northern high latitudes from 1981 to 1991,
Nature, 386, 698–702, 1997.
Nichols, J. E. and Peteet, D. M.: Rapid expansion of northern peatlands and
doubled estimate of carbon storage, Nat. Geosci. 12, 917–921,
https://doi.org/10.1038/s41561-019-0454-z, 2019.
Nilsson, M. C. and Wardle, D. A.: Understory vegetation as a forest ecosystem
driver: evidence from the northern Swedish boreal forest, Front.
Ecol. Environ., 3, 421–428, 2005.
Norby, R. J. and Childs, J.: SPRUCE: Sphagnum Productivity and Community Composition in the SPRUCE Experimental Plots, Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.25581/spruce.049/1426474, 2018.
Norby, R. J., Childs, J., Hanson, P. J., and Warren, J. M..: Rapid loss of an
ecosystem engineer: Sphagnum decline in an experimentally warmed bog,
Ecol. Evol., 9, 12571–12585, https://doi.org/10.1002/ece3.5722, 2019.
Nungesser, M. K.: Modelling microtopography in boreal peatlands: Hummocks
and hollows, Ecol. Model., 165, 175–207, 2003.
Oechel, W. C. and Van Cleve, K.: The role of bryophytes in nutrient cycling
in the taiga, in: Ecological Studies, Vol. 57: Forest Ecosystems in the
Alaskan Taiga, edited by: Van Cleve, K., Chapin III, F. S., Flanagan, P. W.,
Viereck, L. A., and Dyrness, C. T., Springer, New York, USA, 121–137, 1986.
Oleson, K. W., Lawrence, D. W., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E.,
Lamarque, J., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S.,
Ricciuto, D. M., Sacks, W., Sun,Y., Tang, J., and Yang, Z.: Technical
description of version 4.5 of the Community Land Model (CLM),
NCAR/TN-503+STR, NCAR Technical Note, https://doi.org/10.5065/D6RR1W7M, 2013.
Park, H., Launiainen, S., Konstantinov, P. Y., Iijima, Y., and Fedorov, A.
N.: Modeling the effect of moss cover on soil temperature and carbon fluxes
at a tundra site in northeastern Siberia, J. Geophys. Res.-Biogeo., 123,
3028–3044, https://doi.org/10.1029/2018JG004491, 2018.
Parsekian, A. D., Slater, L., Ntarlagiannis, D., Nolan, J., S. Sebestyen,
D., Kolka, R. K., and Hanson, P. J.: Uncertainty in peat volume and soil
carbon estimated using ground-penetrating radar and probing, Soil Sci. Soc.
Am. J., 76, 1911–1918. https://doi.org/10.2136/sssaj2012.0040, 2012.
Pastor, J., Peckham, B., Bridgham, S., Weltzin, J., and Chen, J.: Plant
community dynamics, nutrient cycling, and alternative stable equilibria in
peatlands, Am. Nat., 160, 553–568, 2002.
Petrone, R., Solondz, D., Macrae, M., Gignac, D., and Devito, K. J.:
Microtopographical and canopy cover controls on moss carbon dioxide exchange
in a western boreal plain peatland, Ecohydrology, 4, 115–129, 2011.
Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating global carbon uptake by lichens and bryophytes with a process-based model, Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, 2013.
Porada, P., Ekici, A., and Beer, C.: Effects of bryophyte and lichen cover on permafrost soil temperature at large scale, The Cryosphere, 10, 2291–2315, https://doi.org/10.5194/tc-10-2291-2016, 2016.
Raczka, B., Duarte, H. F., Koven, C. D., Ricciuto, D., Thornton, P. E., Lin, J. C., and Bowling, D. R.: An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5), Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, 2016.
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. I. C.,
Wolters-Arts, M., Derksen, J., Jetten, M. S. M., Schouten, S., Sinninghe
Damsté, J. S., Lamers, L. P. M., Roelofs, J. G. M., Op den Camp, H. J. M., and Strous, M.: Methanotrophic symbionts provide carbon for photosynthesis in peat bogs, Nature, 436, 1153–1156, https://doi.org/10.1038/nature03802, 2005.
Ricciuto, D. M., Sargsyan, K., and Thornton, P. E.: The Impact of Parametric
Uncertainties on Biogeochemistry in the E3SM Land Model, J. Adv. Model Earth
Sy., 10, 297–319, https://doi.org/10.1002/2017ms000962, 2018.
Ricciuto, D. M., Xu, X., and Shi, X.: dmricciuto/CLM_SPRUCE: Release of CLM_SPRUCE (Version v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.3733924, 2020.
Riutta, T., Laine, J., and Tuittila, E.-S.: Sensitivity of CO2 exchange of
fen ecosystem componetns to water level variation, Ecosystem, 10,
718–733, 2007.
Robroek, B. J. M., Limpens, J., Breeuwer, A., and Schouten, M. G. C.: Effects of water level and temperature on performance of four Sphagnum mosses, Plant
Ecol., 190, 97–107, 2007.
Robroek, B. J. M., Schouten, M. G. C., Limpens, J., Berendse F. and Poorter, H.: Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table, Glob. Change Biol., 15, 680–691, 2009.
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa,
G., Menzel, A., Root, T., Estrella, N., Seguin, B., Tryjanowski, P., Liu,
C., Ravlins, S., and Imeson, A.: Attributing physical and biological impacts
to anthropogenic climate change, Nature, 453, 353–357,
https://doi.org/10.1038/nature06937, 2008.
Rousk, K. and Michelsen, A.: The sensitivity of Moss-Associated Nitrogen
Fixtion towards Repeated Nitrogen Input, Plos One, 11, e0146655,
https://doi.org/10.1371/journal.pone.0146655, 2016.
Rousk, K., Rousk, J., Jones, D. L., Zackrisson, O., and DeLuca, T. H.:
Feather moss nitrogen acquisition across natural fertility gradients in
boreal forests, Soil Biol. Biochem., 61, 86–95, 2013.
Rydin, H.: Effect of water level on desiccation of Sphagnum in relation to
surrounding Sphagna, Oikos, 45, 374–379, https://doi.org/10.2307/3565573,
1985.
Rydin, H. and Clymo, R. S.: Transport of carbon and phosphorus-compounds
about Sphagnum, Proc. R. Soc. Ser. B-Bio., 237, 63–84, https://doi.org/10.1098/rspb.1989.0037, 1989.
Rydsaa, J. H., Stordal, F., Bryn, A., and Tallaksen, L. M.: Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia, Biogeosciences, 14, 4209–4227, https://doi.org/10.5194/bg-14-4209-2017, 2017.
Saarnio, S., Jarvio, S., Saarinen, T., Vasander, H., and Silvola, J.: Minor
changes in vegetation and carbon gas balance in a boreal mire under a raised
CO2 or NH4NO3 supply, Ecosystems 6, 46–60,
https://doi.org/10.1007/s10021-002-0208-3, 2003.
Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D. M.,
and Thornton, P. E.: Dimensionality Reduction for Complex Models Via Bayesian
Compressive Sensing, Int. J. Uncertain. Quan., 4, 63–93, https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821, 2014.
Sebestyen, S. D., Dorrance, C., Olson, D. M., Verry, E. S., Kolka, R. K.,
Elling, A. E., and Kyllander, R.: Long-term monitoring sites and trends at
the Marcell Experimental Forest, in: Peatland biogeochemistry and watershed
hydrology at the Marcell Experimental Forest, edited by: Kolka, R. K.,
Sebestyen, S. D., Verry, E. S., and Brooks, K., CRC Press, New York, USA, 15–71,
2011.
Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J., Sebestyen, S. D., Griffiths, N. A., and Bisht, G.: Representing northern peatland microtopography and hydrology within the Community Land Model, Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, 2015.
Shi, X. and Ricciuto, D.: dmricciuto/ELM_SPRUCE_scripts, Zenodo, https://doi.org/10.5281/zenodo.4439419, 2021.
Silva, L. C. R., Anand, M., and Leithead, M. D.: Recent widespread tree
growth decline despite increasing atmospheric CO2, Plos One, 5, e11543,
https://doi.org/10.1371/journal.pone.0011543, 2010.
Sonnentag, O., Van Der Kamp, G., Barr, A. G., and Chen, J.: on the
relationship between water table depth and water vapor and carbon dioxide
fluxes in a minerotrophic fen, Glob. Change Biol., 16, 1761–1776,
https://doi.org/10.1111/j.1365-2486.2009.02032.x, 2010.
St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and Arora, V.: McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments, Biogeosciences, 7, 3517–3530, https://doi.org/10.5194/bg-7-3517-2010, 2010.
Tenhunen, J. D., Weber, J. A., Yocum, C. S., and Gates, D. M.: Development of a photosynthesis model with an emphasis on ecological applications, Oecologia, 26, 101–119, 1976.
Tian, H., Lu, C., Yang, J., Banger, K., Huntinzger, D. N., Schwalm, C. R.,
Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A.,
Jacobson, A., Jain, A., Lei, H., Mao, J., Pan, S., Post, W. M, Peng, S.,
Poulter, B., Ren, W., Ricciuto, D. M., Schaefer, K., Shi, X., Tao, B., Wang, W., Wei, Y., Yang, Q., Zhang, B., and Zeng, N.: Global patterns of soil carbon stocks and fluxes as simulated by multiple terrestrial biosphere models: sources and magnitude uncertainty, Glob. Biogeochem. Cy., 29, 775–792, https://doi.org/10.1002/2014GB005021, 2015.
Titus, J. E., Wagner, D. J., and Stephens, M. D.: Contrasting Water Relations
of Photosynthesis for 2 Sphagnum Mosses, Ecology, 64, 1109–1115, 1983.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Toet, S., Cornelissen, J. H., Aerts, R., van Logtestijn, R. S., de Beus, M.,
Stoevelaar, R.: Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland, Plants and climate change, Springer,
Netherlands, 27–42, 2006.
Turetsky, M. R. and Wieder, R. K.: Boreal bog Sphagnum refixes
soil-produced and respired 14CO2, Ecoscience, 6, 587–591,
https://doi.org/10.1080/11956860.1999.11682559, 1999.
Turetsky, M. R., Wieder, R. K., and Vitt, D. H.: Boreal peatland C fluxes
under varying permafrost regimes, Soil Biol. Biochem., 34, 907–912, 2002.
Turetsky, M. R., Mack, M .C., Hollingsworth, T. N., and Harden, J. W.: The role of mosses in ecosystem succession and function in Alaska's boreal forest, Can. J. For. Res., 4, 1237–1264, 2010.
Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking,
S., McGuire, A. D., and Tuittila, E.-S.: The resilience and functional role
of moss in boreal and arctic ecosystems, New Phytol., 196, 49–67,
https://doi.org/10.1111/j.1469-8137.2012.04254.x, 2012.
Van, B. N.: How Sphagnum bogs down other plants, Trends Ecol. Evol., 10,
270–275, 1995.
Van Der Heijden, E., Verbeek, S. K., Kuiper, P. J. C.: Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.),
Warnst. Glob. Change Biol., 6, 201–212, https://doi.org/10.1046/j.1365-2486.2000.00303.x, 2000.
van der Schaaf, S.: Bog hydrology, in: Conservation and Restoration of
Raised Bogs: Geological, Hydrological and Ecological Studies, edited by:
Schouten, M. G. C., The Government Stationery Office, Dublin, Ireland, 54–109, 2002.
van der Wal, R., Pearce, I. S. K., and Brooker, R. W.: Mosses and the struggle
for light in a nitrogen-polluted world, Oecologia, 142, 159–168, 2005.
Van Gaalen, K. E., Flanagan, L. B., and Peddle, D. R.: Photosynthesis,
chlorophyll fluorescence and spectral reflectance in Sphagnum moss at
varying water contents, Oecologia, 153, 19–28,
https://doi.org/10.1007/s00442-007-0718-y, 2007.
Verry, E. S. and Jansenns, J.: Geology, vegetation, and hydrology of the S2
bog at the MEF: 12,000 years in northern Minnesota, in Peatland
biogeochemistry and watershed hydrology at the Marcell Experimental Forest,
edited by Kolka, R. K., Sebestyen, S. D., Verry, E. S., and Brooks, K. N., CRC Press, New York, USA, 93–134, 2011.
Vile, M. A., Kelman Wieder, R., Živkovicì, T., Scott, K. D., Vitt, D. H.,
Hartsock, J. A., Iosue, C. L., Quinn, J. C., Petix, M., Fillingim, H. M.,
Popma, J. M. A., Dynarski, K. A., Jackman, T. R., Albright, C. M., and Wykoff, D. D.: N2-fixation by methanotrophs sustains carbon and nitrogen
accumulation in pristine peatlands, Biogeochemistry, 121, 317–328,
https://doi.org/10.1007/s10533-014-0019-6, 2014.
Vitt, D. H.: A key and review of bryophytes common in North American
peatlands, Evansia, 31, 121–158, 2014.
Walker, A. P., Carter, K. R., Gu, L., Hanson, P. J., Malhotra, A., Norby,
R. J., Sebestyen, S. D., Wullschleger, S. D., Weston, D. J.: 2017.
Biophysical drivers of seasonal variability in Sphagnum gross primary
production in a northern temperate bog, J. Geophys. Res.-Biogeo., 122,
1078–1097, https://doi.org/10.1002/2016JG003711, 2017.
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B., Epstein, H. E., Jonsdottir, I. S., Klein, J. A., Magnusson, B., Molau, U., Oberbauer,S. F., Rewa, S. P., Robinson, C. H., Shaver, G. R., Suding, K. N., Thompson, C. C., Tolvanen, A., Totland, O., Turner, P. L., Tweedie, C. E., Webber, and P. J., Wookey, P. A.: Plant community responses to experimental warming across the tundra biome, P. Natl. Acad. Sci. USA, 103 1342–1346, 2006.
Walker, T. N., Ward, S. E., Ostle, N. J., and Bardgett, R. D.: Contrasting
growth responses of dominant peatland plants to warming and vegetation
composition, Oecologia, 178, 141–151, https://doi.org/10.1007/s00442-015-3254-1, 2015.
Wania, R., Ross, I., Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 1. Evaluation and sensitivity of
physical land surface processes, Glob. Biogeochem. Cy., 23, GB3014,
https://doi.org/10.1029/2008GB003412, 2009.
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian, H., van Bodegom, P. M., Kleinen, T., Yu, Z. C., Singarayer, J. S., Zürcher, S., Lettenmaier, D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, 2013.
Weltzin, J. F., Harth, C., Bridgham, S. D., Pastor, J., and Vonderharr, M.:
Production and microtopography of bog bryophytes: response to warming and
water-table manipulations, Oecologia, 128, 557–565, https://doi.org/10.1007/s004420100691, 2001.
Weston, D. J., Timm, C. M., Walker, A. P., Gu, L., Muchero, W., Schmuta, J.,
Shaw, A. J., Tuskan, G. A., Warren, J. M., and Wllschleger, S. D.: Sphagnum
physiology in the context of changing climate: Emergent influences of
genomics, modeling and host-microbiome interactions on understanding
ecosystem function, Plant Cell Environ., 38, 1737–1751, https://doi.org/10.1111/pce.12458, 2015.
White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.:
Parameterization and sensitivity analysis of the BIOME-BGC terrestrial
ecosystem model: Net primary production controls, Earth Interact., 4,
1–85, 2000.
Wieder R. K.: Primary production in boreal peatlands, in: Boreal peatland
ecosystems, edited by: Wieder, R. K. and Vitt, D. H., Springer-Verlag,
Berlin, Heidelberg, Germany, 145–163, 2006.
Williams, T. G. and Flanagan, L. B.: Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium, Plant Cell Environ., 21, 555–564, 1998.
Wilmking, M., Juday, G. P., Barber, V. A., and Zald, H. S. J.: Recent
climate warming forces contrasting growth responses of white spruce at
treeline in Alaska through temperature thresholds, Glob. Change Biol.
10, 1724–1736, 2004.
Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and
ecosystem function of the Barents Region, Clim. Change, 87, 51–73,
https://doi.org/10.1007/s10584-007-9342-4, 2008.
Wolken, J. M., Mann, D. H., Grant, T. A., Lloyd, A. H., Rupp, T. S., and
Hollingsworth, T. N.: 2016. Climate-growth relationships along a black
spruce topose-quence in interior Alaska, Arct. Antarct. Alp.
Res., 48, 637–652, 2016.
Wu, J. and Roulet, N. T.: Climate change reduces the capacity of northern
peatlands to absorb the atmospheric carbon dioxide: The different responses
of bogs and fens, Glob. Biogeochem. Cy., 28, 1005–1024, https://doi.org/10.1002/2014GB004845, 2014.
Wu, J., Roulet, N. T., Sagerfors, J., Nilsson, M. B.: Simulation of six
years of carbon fluxes for a sedge-dominated oligotrophic minerogenic
peatland in Northern Sweden using the McGill Wetland Model (MWM), J.
Geophys. Res.-Biogeo., 118, 795–807, https://doi.org/10.1002/jgrg.20045, 2013.
Wu, Y. and Blodau, C.: PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands, Geosci. Model Dev., 6, 1173–1207, https://doi.org/10.5194/gmd-6-1173-2013, 2013.
Wu, Y., Verseghy, D. L., and Melton, J. R.: Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0, Geosci. Model Dev., 9, 2639–2663, https://doi.org/10.5194/gmd-9-2639-2016, 2016.
Yang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F.,
Norby R. J.: The effects of phosphorus cycle dynamics on carbon sources and
sinks in the Amazon region: a modeling study using ELM v1, J. Geophys.
Res.-Biogeo, 124, 3686–3698, https://doi.org/10.1029/2019JG005082, 2019.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37,
L13402, https://doi.org/10.1029/2010GL043584, 2010.
Yurova, A., Wolf, A., Sagerfors, J., and Nilsson, M.: Variations in net
ecosystem exchange of carbon dioxide in a boreal mire: Modeling mechanisms
linked to water table position, J. Geophys. Res.-Biogeo., 112, G02025,
https://doi.org/10.1029/2006JG000342, 2007.
Zhang, W. X., Miller, P. A., Smith, B., Wania, R., Koenigk, T., and Doscher,
R.: Tundra shrubification and tree-line advance amplify arctic climate
warming: results from an individual-based dynamic vegetation model,
Environ. Res. Lett., 8, 034023,
https://doi.org/10.1088/1748-9326/8/3/034023, 2013.
Zhuang, Q., Melillo, J. M., Sarofim, M. C., Kicklighter, D. W., McGuire, A. D., Felzer, B. S., Sokolov, A., Prinn, R. G., Steudler, P. A., and Hu, S.: CO2 and CH4 exchanges between land ecosystems and the atmosphere in
northern high latitudes over the 21st century, Geophys. Res. Lett., 33,
L17403, https://doi.org/10.1029/2006GL026972, 2006.
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the...
Altmetrics
Final-revised paper
Preprint