Articles | Volume 18, issue 24
Biogeosciences, 18, 6579–6588, 2021
https://doi.org/10.5194/bg-18-6579-2021
Biogeosciences, 18, 6579–6588, 2021
https://doi.org/10.5194/bg-18-6579-2021
Research article
23 Dec 2021
Research article | 23 Dec 2021

Extreme events driving year-to-year differences in gross primary productivity across the US

Alexander J. Turner et al.

Related authors

A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022,https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Assessing vehicle fuel efficiency using a dense network of CO2 observations
Helen L. Fitzmaurice, Alexander J. Turner, Jinsol Kim, Katherine Chan, Erin R. Delaria, Catherine Newman, Paul Wooldridge, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 3891–3900, https://doi.org/10.5194/acp-22-3891-2022,https://doi.org/10.5194/acp-22-3891-2022, 2022
Short summary
A double peak in the seasonality of California's photosynthesis as observed from space
Alexander J. Turner, Philipp Köhler, Troy S. Magney, Christian Frankenberg, Inez Fung, and Ronald C. Cohen
Biogeosciences, 17, 405–422, https://doi.org/10.5194/bg-17-405-2020,https://doi.org/10.5194/bg-17-405-2020, 2020
Short summary
Detecting high-emitting methane sources in oil/gas fields using satellite observations
Daniel H. Cusworth, Daniel J. Jacob, Jian-Xiong Sheng, Joshua Benmergui, Alexander J. Turner, Jeremy Brandman, Laurent White, and Cynthia A. Randles
Atmos. Chem. Phys., 18, 16885–16896, https://doi.org/10.5194/acp-18-16885-2018,https://doi.org/10.5194/acp-18-16885-2018, 2018
Short summary
2010–2016 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: contributions from different source sectors
Jian-Xiong Sheng, Daniel J. Jacob, Alexander J. Turner, Joannes D. Maasakkers, Joshua Benmergui, A. Anthony Bloom, Claudia Arndt, Ritesh Gautam, Daniel Zavala-Araiza, Hartmut Boesch, and Robert J. Parker
Atmos. Chem. Phys., 18, 12257–12267, https://doi.org/10.5194/acp-18-12257-2018,https://doi.org/10.5194/acp-18-12257-2018, 2018
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog
Tracy E. Rankin, Nigel T. Roulet, and Tim R. Moore
Biogeosciences, 19, 3285–3303, https://doi.org/10.5194/bg-19-3285-2022,https://doi.org/10.5194/bg-19-3285-2022, 2022
Short summary
Episodic N2O emissions following tillage of a legume–grass cover crop mixture
Alison Bressler and Jennifer Blesh
Biogeosciences, 19, 3169–3184, https://doi.org/10.5194/bg-19-3169-2022,https://doi.org/10.5194/bg-19-3169-2022, 2022
Short summary
Variation in CO2 and CH4 fluxes among land cover types in heterogeneous Arctic tundra in northeastern Siberia
Sari Juutinen, Mika Aurela, Juha-Pekka Tuovinen, Viktor Ivakhov, Maiju Linkosalmi, Aleksi Räsänen, Tarmo Virtanen, Juha Mikola, Johanna Nyman, Emmi Vähä, Marina Loskutova, Alexander Makshtas, and Tuomas Laurila
Biogeosciences, 19, 3151–3167, https://doi.org/10.5194/bg-19-3151-2022,https://doi.org/10.5194/bg-19-3151-2022, 2022
Short summary
Response of vegetation and carbon fluxes to brown lemming herbivory in northern Alaska
Jessica Plein, Rulon W. Clark, Kyle A. Arndt, Walter C. Oechel, Douglas Stow, and Donatella Zona
Biogeosciences, 19, 2779–2794, https://doi.org/10.5194/bg-19-2779-2022,https://doi.org/10.5194/bg-19-2779-2022, 2022
Short summary
Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils
Jenie Gil, Maija E. Marushchak, Tobias Rütting, Elizabeth M. Baggs, Tibisay Pérez, Alexander Novakovskiy, Tatiana Trubnikova, Dmitry Kaverin, Pertti J. Martikainen, and Christina Biasi
Biogeosciences, 19, 2683–2698, https://doi.org/10.5194/bg-19-2683-2022,https://doi.org/10.5194/bg-19-2683-2022, 2022
Short summary

Cited articles

Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance and terrestrial photosynthesis, Sci. Adv., 3, e1602244, https://doi.org/10.1126/sciadv.1602244, 2017. a
Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B.: Terrestrial Gross Primary Production: Using NIRV to Scale from Site to Globe, Glob. Change Biol., 25, 3731–3740, https://doi.org/10.1111/gcb.14729, 2019. a, b
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, Bull. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2, 2001. a
Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods, Ecology, 69, 1331–1340, https://doi.org/10.2307/1941631, 1988. a
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, 1st Edn., New York, NY, 2007. a, b
Download
Short summary
This work builds a high-resolution estimate (500 m) of gross primary productivity (GPP) over the US using satellite measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) between 2018 and 2020. We identify ecosystem-specific scaling factors for estimating gross primary productivity (GPP) from TROPOMI SIF. Extreme precipitation events drive four regional GPP anomalies that account for 28 % of year-to-year GPP differences across the US.
Altmetrics
Final-revised paper
Preprint