Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3935-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3935-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Mirjam Pfeiffer
CORRESPONDING AUTHOR
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany
Munir P. Hoffmann
AGVOLUTION GmbH, 37075 Göttingen, Germany
Simon Scheiter
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany
William Nelson
Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, 37077 Göttingen, Germany
Johannes Isselstein
Institute of Grassland Science, University of Göttingen, 37075 Göttingen, Germany
Center of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, 37077 Göttingen, Germany
Kingsley Ayisi
Risk and Vulnerability Science Center, University of Limpopo, Sovenga 0727, South Africa
Jude J. Odhiambo
Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
Reimund Rötter
Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, 37077 Göttingen, Germany
Center of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, 37077 Göttingen, Germany
Related authors
No articles found.
Simon Scheiter, Jinfeng Chang, Philippe Ciais, Marie Dury, Louis Francois, Matthew Forrest, Alexandra Henrot, Christopher P. O. Reyer, Sonia Seneviratne, Jörg Steinkamp, Wim Thiery, Wenfang Xu, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2026-221, https://doi.org/10.5194/egusphere-2026-221, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study shows how climate change may reshape the world's major biomes, such as forests, grasslands, and tundra. Using dynamic vegetation models, machine learning and real-world observations, we found that many biomes are likely to shift toward the poles as temperatures rise. Even under low-emission scenarios, large areas could change. These results help identify regions most susceptible to climate change and support global efforts to protect and manage natural ecosystems in the future.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Dushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, and Simon Scheiter
Biogeosciences, 18, 2957–2979, https://doi.org/10.5194/bg-18-2957-2021, https://doi.org/10.5194/bg-18-2957-2021, 2021
Short summary
Short summary
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a vegetation model in South Asia, an often neglected region in global modeling studies. Understanding these impacts guides ecosystem management and biodiversity conservation. Our results indicate that savanna regions are at high risk of woody encroachment and transitioning into the forest, and the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and CO2.
Cited articles
Bailey, D. W., Trotter, M. G., Knight, C. W., and Thomas, M. G.: Use of GPS
tracking collars and accelerometers for rangeland livestock production
research, Trans. Animal Sci., 2, 81–88, https://doi.org/10.1093/tas/txx006,
2018. a
Bennett, J., Lent, P. C., and Harris, P. J. C.: Dry season foraging preferences
of cattle and sheep in a communal area of South Africa, Afr. J. Range Forage Sci., 24, 109–121,
https://doi.org/10.2989/AJRFS.2007.24.3.1.294, 2009. a
Cassman, K. G. and Grassini, P.: A global perspective on sustainable
intensification research, Nature Sustain., 3, 262–268,
https://doi.org/10.1038/s41893-020-0507-8, 2020. a
Castellanos-Navarrete, A., Tittonell, P., Rufino, M. C. C., and Giller, K. E.:
Feeding, crop residue and manure management for integrated soil fertility
management – A case study from Kenya, Agr. Syst., 134, 1–12,
https://doi.org/10.1016/j.agsy.2014.03.001, 2014. a
Conway, D., van Garderen, E. A., Deryng, D., Dorling, S., Krueger, T., Landman,
W., Lankford, B., Lebek, K., Osborn, T., Ringler, C., Thurlow, J., Zhu, T.,
and Dalin, C.: Climate and southern Africa's water–energy–food nexus,
Nat. Clim. Change, 5, 837–846, https://doi.org/10.1038/Nclimate2735, 2015. a
Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B.,
Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton,
P., and van den Belt, M.: The value of the world's ecosystem services and
natural capital, Nature, 287, 253–260, https://doi.org/10.1038/387253a0, 1997. a
Dagliesh, N., Hochman, Z., Huth, N., and Holzworth, D.: Field Protocol to
APSoil characterisations, Version 4, Tech. Rep., CSIRO Ecosystem Service, CSIRO Agriculture and Food, Canberra, http://hdl.handle.net/102.100.100/89627?index=1
(last accessed: 24 August 2022),
2016. a
Descheemaeker, K., Oosting, S. J., Homann-Kee Tui, S., P., M., Falconnier,
G. N., and Giller, K. E.: Climate change adaptation and mitigation in
smallholder crop-livestock systems in sub-Saharan Africa: a call for
integrated assessments, Reg. Clim. Change, 16, 2331–2343,
https://doi.org/10.1007/s10113-016-0957-8, 2016. a, b
Descheemaeker, K., Zijlstra, M., Masikati, P., Crespo, O., and Homann-Kee Tui,
S.: Effects of climate change and adaptation on the livestock component of
mixed farming systems: A modelling study from semi-arid Zimbabwe,
Agr. Syst., 159, 282–295, https://doi.org/10.1016/j.agsy.2017.05.004, 2018. a, b
Engelbrecht, C. J. and Engelbrecht, F. A.: Shifts in Köppen-Geiger
climate zones over southern Africa in relation to key global temperature
goals, Theor. Appl. Climatol., 123, 247–261,
https://doi.org/10.1007/s00704-014-1354-1, 2016. a
Erenstein, O.: Crop residue mulching in tropical and semi-tropical countries:
An evaluation of residue availability and other technological
implications, Soil Till. Res., 67, 115–133,
https://doi.org/10.1016/S0167-1987(02)00062-4, 2002. a
FAO: Family farmers: Feeding the world, caring for the Earth, World Food Day
Celebration Report, Bangkok,
http://www.fao.org/3/i4621e/i4621e.pdf (last access: 24 August 2022), 2014. a
FAO: The economic lives of smallholder farmers – an analysis based on household
data from nine countries,
http://www.fao.org/3/i5251e/i5251e.pdf (last access: 24 August 2022), 2015. a
Franzluebbers, A. J.: Water infiltration and soil structure related to organic
matter and its stratification with depth, Soil Till. Res., 66,
197–205, https://doi.org/10.1016/S0167-1987(02)00027-2, 2002. a
Fust, P. and Schlecht, E.: Integrating spatio-temporal variation in resource
availability and herbivore movements into rangeland management: RaMDry – An
agent-based model on livestock feeding ecology in a dynamic, heterogeneous,
semi-arid environment, Ecol. Model., 369, 13–41, 2018. a
Giller, K. E., Rowe, E. C., de Ridder, N., and van Keulen, H.: Resource use
dynamics and interactions in the tropics: Scaling up in space and time,
Agr. Syst., 88, 8–27, https://doi.org/10.1016/j.agsy.2005.06.016, 2006. a
Hack-ten Broeke, M. D., De Groot, W. J. M., and Dijkstra, J. P.: Impact of
excreted nitrogen by grazing cattle on nitrate leaching, Soil Use
Manag., 12, 190–198, https://doi.org/10.1111/j.1475-2743.1996.tb00542.x, 1996. a
Hanjra, M. A. and Williams, T. O.: The Role of Smallholder Farms in Food and
Nutrition Security, Global Change and Investments in Smallholder
Irrigation for Food and Nutrition Security in Sub-Saharan Africa,
99–132, Springer, Cham, https://doi.org/10.1007/978-3-030-42148-9_6, 2020. a
Harvey, C. A., Chacón, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A.,
Bede, L., Brown, D., Calle, A., Chará, J., Clement, C., Gray, E., Hoang,
M. H., Minang, P., Rodríguez, A. M., Seeberg-Elverfeldt, C., Semroc, B.,
Shames, S., Smukler, S., Somarriba, E., Torquebiau, E., van Etten, J., and
Wollenberg, E.: Climate-smart landscapes: opportunities and challenges for
integrating adaptation and mitigation in tropical agriculture, Conserv.
Lett., 7, 77–90, https://doi.org/10.1111/conl.12066, 2013. a, b
Herrero, M., Thornton, P. K., Gerber, P., and Reid, R. S.: Livestock,
livelihoods and the environment: understanding the trade-offs, Curr.
Opin. Environ. Sustain., 1, 111–120,
https://doi.org/10.1016/j.cosust.2009.10.003, 2009. a, b
Hoffmann, M. P., Isselstein, J., Rötter, R. P., and Kayser, M.: Nitrogen
management in crop rotations after the break-up of grassland: Insights from
modelling, Agr. Ecosyst. Environ., 259, 28–44,
https://doi.org/10.1016/j.agee.2018.02.009, 2018a. a
Hoffmann, M. P., Odhiambo, J. J. O., Koch, M., Ayisi, K. K., Zhao, G., Soler,
A. S., and Rötter, R. P.: Exploring adaptations of groundnut cropping to
prevailing climate variability and extremes in Limpopo Province, South
Africa, Field Crop. Res., 219, 1–13, https://doi.org/10.1016/j.fcr.2018.01.019,
2018b. a, b, c, d
Hoffmann, M. P., Swanepoel, C. M., Nelson, W. C. D., Beukes, D. J., van der
Laan, M., Hargreaves, J. N. G., and Rötter, R. P.: Simulating medium-term
effects of cropping system diversification on soil fertility and crop
productivity in southern Africa, Eur. J. Agron., 119,
126089, https://doi.org/10.1016/j.eja.2020.126089, 2020. a, b, c, d, e
Hofmeyr, I.: Correct adaptation of livestock on crop residues in winter,
Stockfarm, 10, 37–39, 2020. a
Holzworth, D. P., Huth, N. I., Peter, G., Zurcher, E. J., Herrmann, N. I.,
McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., Moore,
A. D., H., B., Whish, J. P. M., Verrall, S., J., F., Bell, L. W., Peake,
A. S., Poulton, P. L., Z., H., Thorburn, P. J., Gaydon, D. S., Dalgliesh,
N. P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp,
J., Cichota, R., I., V., Y., L. F., Wang, E., Hammer, G. L., Robertson,
M. J., Dimes, J. P., Whitbread, A. M., J., H., van Rees, H., McClelland, T.,
Carberry, P. S., Hargreaves, J. N. G., Mac Leod, N., C., M., Harsdorf, J.,
Wedǵwood, S., and Keating, B. A.: APSIM – Evolution towards a new
generation of agricultural systems simulation, Environ. Model.
Softw., 62, 327–350, https://doi.org/10.1016/j.envsoft.2014.07.009, 2014. a
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson,
M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman,
Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E.,
Brown, S., Bristow, K. L., Asseng, S., Chapman, S., McCown, R. L., Freebairn,
D. M., and Smith, C. J.: An overview of APSIM, a model designed for farming
systems simulation, Eur. J. Agron., 18, 267–288,
https://doi.org/10.1016/S1161-0301(02)00108-9, 2003. a
Kersebaum, K. C., Boote, K. J., Jorgenson, J. S., Nendel, C., Bindi, M.,
Frühauf, C., Gaiser, T., Hoogenboom, G., Kollas, C., Olesen, J. E.,
Rötter, R. P., Ruget, F., Thorburn, P. J., Trnka, M., and Wegehenkel, M.:
Analysis and classification of data sets for calibration and validation of
agro-ecosystem models, Environ. Model. Softw., 72, 402–417,
https://doi.org/10.1016/j.envsoft.2015.05.009, 2015. a
Kitajima, K., Mulkey, S. S., and Wright, S. J.: Decline of photosynthetic
capacity with leaf age in relation to leaf longevity for five tropical canopy
tree species, Am. J. Bot., 84, 702–708,
https://doi.org/10.2307/2445906, 1997. a
Lam, Q. D., Rötter, R. P., Bracho-Mujica, G., Ferreira, N. C. R., Foord, S. H., Nelson, W. C. D., Odhiambo, J., and Ayisi, K.: Climate change impacts on the water resources of subhumid to semi-arid landscapes of Limpopo in southern Africa, in review, J. Agr. Water Manage., 2022. a
Lamega, S. A., Komainda, M., Hoffmann, M. P., Ayisi, K. K., Odhiambo, J. J.,
and Isselstein, J.: It depends on the rain: Smallholder farmers'
perceptions on the seasonality of feed gaps and how it affects livestock in
semi-arid and arid regions in Southern Africa, Clim. Risk Manag., 34,
100362, https://doi.org/10.1016/j.crm.2021.100362, 2021. a
Langan, L., Higgins, S., and Scheiter, S.: Climate-biomes, pedo-biomes or
pyro-biomes: which world view explains the tropical forest – savanna boundary
in South America?, J. Biogeogr., 44, 2319–2330,
https://doi.org/10.1111/jbi.13018, 2017. a, b
Lehman, R. M., Osborne, S. L., and Duke, S. E.: Diversified no-till crop
rotation reduces nitrous oxide emissions, increases soybean yields, and
promotes soil carbon accrual, Soil Sci. Soc. Am. J., 81,
76–83, https://doi.org/10.2136/sssaj2016.01.0021, 2017. a
Magomeyi, M. S., Taigbenu, A. E., and Barron, J.: Effectiveness of agricultural
water management technologies on rainfd cereal crop yield and runoff in
semi-arid catchment: a meta-analysis, Int. J. Agr.
Sustain., 16, 418–441, https://doi.org/10.1080/14735903.2018.1523828, 2018. a
Mediavilla, S. and Escudero, A.: Photosynthetic capacity, integrated over the
lifetime of a leaf, is predicted to be independent of leaf longevity in some
tree species, New Phytol., 159, 203–211,
2003. a
Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Synthesis,
Island Press, Washington, DC, ISBN 1-59726-040-1, 2005. a
Mohler, C. L. and Johnson, S. E.: Crop rotation on organic farms: a planning manual. Ithaca, NY: Natural Resource, Agriculture, and Engineering Service (NRAES) Cooperative Extension,
ISBN 978-1-933395-21-0,
https://doi.org/10.1046/j.0028-646x.2003.00798.x, 2009. a
Mueller, N., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and
Foley, J. A.: Closing yield gaps through nutrient and water management,
Nature, 490, 254–257, https://doi.org/10.1038/nature11420, 2012. a
Müller, B., Schulze, J., Kreuer, D., Linstädter, A., and Frank, K.: How
to avoid unsustainable side effects of managing climate risk in drylands –
The supplementary feeding controversy, Agr. Syst., 139, 153–65,
https://doi.org/10.1016/j.agsy.2015.07.001, 2015. a
Nelson, W. C. D., Hoffmann, M. P., May, C., Mashao, F., Ayisi, K., Odhiambo,
J., Bringhenti, T., Feil, J. H., Bakhsh, S. Y., and Abdulai, I.: Tackling
climate risk to sustainably intensify smallholder maize farming systems in
southern Africa, Environ. Res. Lett., 17, 075005,
https://doi.org/10.1088/1748-9326/ac77a3, 2022. a, b
Parry, K., van Rooyen, A. F., Bjornlund, H., Kissoly, L., Moyo, M., and
de Sousa, W.: The importance of learning processes in transitional
small-scale irrigation schemes, Int. J. Water Resour.
D., 36, 199–223, https://doi.org/10.1080/07900627.2020.1767542, 2020. a, b
Pfeiffer, M., Langan, L., Linstädter, A., Martens, C., Gaillard, C.,
Ruppert, J. C., Higgins, S. I., Mudongo, E. I., and Scheiter, S.: Grazing and
aridity reduce perennial grass abundance in semi-arid rangelands – Insights
from a trait-based dynamic vegetation model, Ecol. Model., 395,
11–22, 2019. a, b, c, d, e, f, g
Pfeiffer, M., Hoffmann, M. P., Scheiter, S., Nelson, W., Isselstein, J., Ayisi, K., Odhiambo, J. J., and Rötter, R. P.: Data and Data Processing Scripts for the Publication “Modeling the Effects of Alternative Crop-Livestock Management Scenarios on Important Ecosystem Services for Smallholder Farming from a Landscape Perspective”, Open Science Framework (OSF) [data set and code], https://doi.org/10.17605/OSF.IO/R2TS7, 2022. a
Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C., and Strong, W. M.:
APSIM's water and nitrogen modules and simulation of the dynamics of water
and nitrogen in fallow systems, Agr. Syst., 56, 1–28,
https://doi.org/10.1016/S0308-521X(97)00028-0, 1998. a
Rapholo, E., Odhjambo, J. J. O., Nelson, W. C. D., Rötter, R. P., Ayisi,
K., Koch, M., and Hoffmann, M. P.: Maize–lablab intercropping is promising
in supporting the sustainable intensification of smallholder cropping systems
under high climate risk in southern Africa, Exp. Agr., 56,
104–117, https://doi.org/10.1017/S0014479719000206, 2019. a
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J.,
Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng,
S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., and Winter, J. M.: The
Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols
and pilot studies, Agr. Forest Meteorol., 170, 166–182,
https://doi.org/10.1016/j.agrformet.2012.09.011, 2013. a
Rötter, R. P. and Van Keulen, H.: Variations in yield response to
fertilizer application in the tropics: II. Risks and opportunities for
smallholders cultivating maize on Kenya's arable land, Agr. Syst.,
53, 69–95, https://doi.org/10.1016/S0308-521X(96)00037-6, 1997. a
Rötter, R. P., Scheiter, S., Hoffmann, M., Pfeiffer, P., Nelson, M., Ayisi,
K., Taylor, P., Feil, J.-H., Bakhsh, S. Y., Isselstein, J., Linstädter,
A., Behn, K., Westphal, K., Odhiambo, J., Wayne, T., Grass, I., Merante, P.,
Bracho-Mujica, G., Bringhenti, T., Lamega, S., Abdulai, I., Lam, Q. D.,
Anders, M., Linden, V., Weier, V., Foord, S., and Erasmus, B.: Modeling the
multi-functionality of African savanna landscapes under global change, Land
Degrad. Dev., 32, 2077–2081, https://doi.org/10.1002/ldr.3925, 2021. a, b
Ruane, A. C., Goldberg, R., and Chryssantacopoulos, J.: AgMIP climate forcing
datasets for agricultural modeling: Merged products for gap-filling and
historical climate series estimation, Agr. Forest Meteorol.,
200, 233–284, https://doi.org/10.1016/j.agrformet.2014.09.016, 2015. a, b
Rufino, M. C., Tittonell, P., Reidsma, P., López-Ridaura, S., Hengsdijk, H.,
Giller, K. E., and Verhagen, A.: Network analysis of N flows and food
self-sufficiency – a comparative study of crop-livestock systems of the
highlands of East and southern Africa, Agr. Forest
Meteorol., 200, 233–284, https://doi.org/10.1016/j.agrformet.2014.09.016, 2015. a
Rusinamhodzi, L., Corbeels, M., van Wijk, M. T., Rufino, M. C., Nyamangara, J.,
and Giller, K. E.: A meta-analysis of long-term effects of conservation
agriculture on maize grain yield under rain-fed conditions, Agron.
Sustain. Dev., 31, 657–673, https://doi.org/10.1007/s13593-011-0040-2, 2011. a
Scheiter, S. and Higgins, S. I.: Impacts of climate change on the vegetation of
Africa: an adaptive vegetation modelling approach (aDGVM), Glob. Change
Biol., 15, 2224–2246, https://doi.org/10.1111/j.1365-2486.2008.01838.x, 2009. a
Scheiter, S., Langan, L., and Higgins, S. I.: Next generation dynamic global
vegetation models: learning from community ecology, New Phytol., 198,
957–969, https://doi.org/10.1111/nph.12210, 2013. a, b
Scheiter, S., Schulte, J., Pfeiffer, M., Martens, C., Erasmus, B. F. N., and
Twine, W. C.: How does climate change influence the economic value of
ecosystem services in savanna rangelands, Ecol. Econ., 157,
342–356, https://doi.org/10.1016/j.ecolecon.2018.11.015, 2019. a
Schrader, L.: Rinderzucht und Fleischerzeugung – Empfehlungen für die Praxis,
chap. Verhalten und Tierhaltung, 89–107, Landbauforschung
Völkenrode, Sonderheft 313,
https://literatur.thuenen.de/digbib_extern/dk038909.pdf (last access: 24 August 2022),
2007. a
Smith, T.: Some tools to combat dry season nutritional stress in ruminants
under African conditions, Proceedings of the Final Review Meeting of an
IAEA Technical Cooperation, Regional AFRA Project IAEA-TeCDOC-1294, https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/032/33032982.pdf?r=1,
(last access: 24 August 2022),
2002. a
Sumberg, J.: Toward a dis-aggregated view of crop-livestock integration in
Western Africa, Land Use Policy, 20, 253–264,
https://doi.org/10.1016/S0264-8377(03)00021-8, 2003. a
Suzuki, S., Noble, A. D., Ruaysoongnern, S., and Chinabut, N.: Improvement in
water-holding capacity and structural stability of a sandy soil in
northeastern Thailand, Arid Land Res. Manag., 21, 37–49,
https://doi.org/10.1080/15324980601087430, 2007. a
Tarawali, S., Herrero, M., Descheemaeker, K., Grings, E., and Blümmel, M.:
Pathways for sustainable development of mixed crop livestock systems: Taking
a livestock and pro-poor approach, Livest. Sci., 139, 11–21,
https://doi.org/10.1016/j.livsci.2011.03.003, 2011. a
Thornton, P. K. and Herrero, M.: Adapting to climate change in the mixed crop
and livestock farming systems in sub-Saharan Africa, Nat. Clim.
Change, 5, 830–836, https://doi.org/10.1038/nclimate2754, 2015. a
Tilman, D., C., B., Hill, J., and Befort, B. L.: Global food demand and the
sustainable intensification of agriculture, P. Natl.
Acad. Sci. USA, 108, 20260–20264, https://doi.org/10.1073/pnas.1116437108,
2011. a
Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto,
I., Vandermeer, J., and Whitbread, A.: Global food security, biodiversity
conservation and the future of agricultural intensification, Biol.
Conserv., 151, 53–59, https://doi.org/10.1016/j.biocon.2012.01.068, 2012. a
UN General Assembly: Transforming our World: the 2030 Agenda for Sustainable
Development, A/RES/70/1,
https://www.refworld.org/docid/57b6e3e44.html (last access: 24 August 2022), 2015. a
Valbuena, D., Erenstein, O., Homann-Kee Tui, S., Abdoulaye, T., Claessens, L.,
Duncan, A. J., Gérard, B., Rufino, M. C., Teufel, N., van Rooyen, A., and
van Wijk, M. T.: Conservation Agriculture in mixed crop-livestock systems:
Scoping crop residue trade-offs in Sub-Saharan Africa and South
Asia, Field Crop. Res., 132, 175–184, https://doi.org/10.1016/j.fcr.2012.02.022,
2012.
a
van de Ven, G. W. J., de Ridder, N., van Keulen, H., and van Ittersum, M. K.:
Concepts in production ecology for analysis and design of animal and
plant-animal production systems, Agr. Syst., 76, 507–525,
https://doi.org/10.1016/S0308-521X(02)00110-5, 2003. a
Vanlauwe, B. and Dobermann, A.: Sustainable intensification of agriculture in
sub-Saharan Africa: first things first!, Front. Agr. Sci.
Eng., 7, 376–382, https://doi.org/10.15302/J-FASE-2020351, 2020. a
Vignola, R., Harvey, C. A., Bautista-Solis, P., Avelino, J., Rapidel, B.,
Donatti, C., and Martinez, R.: Ecosystem-based adaptation for smallholder
farmers: Definitions, opportunities and constraints, Agr. Ecosyst.
Environ., 211, 126–132, https://doi.org/10.1016/j.agee.2015.05.013, 2015. a
Waha, K., van Wijk, M. T., Fritz, S., See, L., Thornton, P. K., Wichern, J.,
and Herrero, M.: Agricultural diversification as an important strategy for
achieving food security in Africa, Glob. Change Biol., 24, 3390–3400,
https://doi.org/10.1111/gcb.14158, 2018. a
Walpole, M., Smith, J., Rosser, A., Brown, C., Schulte-Herbruggen, B., Booth,
H., Sassen, M., Mapendeme, A., Fancourt, M., Bieri, M., Glaser, S., Corrigan,
C., Narloch, U., Runsten, L., Jenkins, M., Gomera, M., and Hutton, J. M.:
Smallholders, food security, and the environment, Unep technical report,
IFAD,
https://www.ifad.org/documents/38714170/39135645/smallholders_report.pdf/133e8903-0204-4e7d-a780-bca847933f2e (last access: 24 August 2022),
2013. a, b
Wang, E., Bell, M., Luo, Z., Moody, P., and Probert, M. E.: Modelling crop
response to phosphorus inputs and phosphorus use efficiency in a crop
rotation, Field Crop. Res., 155, 120–132,
https://doi.org/10.1016/j.fcr.2013.09.015, 2014. a
Whitbread, A. M., Robertson, M. J., Carberry, P. S., and Dimes, J. P.: How
farming systems simulation can aid the development of more sustainable
smallholder farming systems in southern Africa, Eur. J.
Agron., 32, 51–58, https://doi.org/10.1016/j.eja.2009.05.004, 2010. a, b
Whitbread, A. M., Hoffmann, M. P., Davoren, W., Mowat, D., and Baldock, J. A.:
Measuring and Modeling the Water Balance in Low-Rainfall Cropping Systems,
T. ASABE, 60, 2097–2110, https://doi.org/10.13031/trans.12581, 2017. a
Williams, A., Jordan, N. R., Smith, R. G., Hunter, M. C., Kammerer, M., A.,
K. D., Koide, R. T., and Davis, A. S.: A regionally-adapted implementation of
conservation agriculture delivers rapid improvements to soil properties
associated with crop yield stability, Sci. Rep., 8, 8467,
https://doi.org/10.1038/s41598-018-26896-2, 2018. a
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Smallholder farmers face challenges due to poor land management and climate change. We linked...
Altmetrics
Final-revised paper
Preprint